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Robust measurement-based buffer overflow

probability estimators for QoS provisioning

and traffic anomaly prediction applications
Spyridon Vassilaras and Ioannis Ch. Paschalidis

Abstract

Suitable estimators for a class of Large Deviation approximations of rare event probabilities based on
sample realizations of random processes have been proposed in our earlier work [PV01]. These estimators
are expressed as non-linear multi-dimensional optimization problems of a special structure. In this paper,
we develop an algorithm to solve these optimization problems very efficiently based on their characteristic
structure. After discussing the nature of the objective function and constraint set and their peculiarities,
we provide a formal proof that the developed algorithm is guaranteed to always converge. The existence
of efficient and provably convergent algorithms for solving these problems is a prerequisite for using the
proposed estimators in real time problems such as call admission control, adaptive modulation and coding
with QoS constraints, and traffic anomaly detection in high data rate communication networks.
Keywords: Large Deviations, Markov-modulated processes, Estimation, Non-linear optimiza-

tion, QoS, Traffic anomaly detection.

I. Introduction

Large Deviations (LD) theory (see [DZ98]) is an important analytical tool that has been applied
to provide approximate solutions to a variety of queuing and stochastic decision problems for which
analytical solutions are not practical (see for example [BPT98b], [BPT98a], [Pas99] and references
therein). Most LD results provide an asymptotic approximation for the probability of a rare
event that is formulated as a non-linear optimization problem. Solving this optimization problem
is preferable to calculating the exact solution, which is often intractable or requires computing
a definite integral in a high dimensional space. This computation typically requires numerical
integration since the integrant is not given in closed form.

In prior work [PV01], we have proposed a class of LD estimators of small overflow probabilities at
a queue fed by Markovian arrival processes when the statistics of the arrival process are estimated
from a finite realization of the process. The proposed estimators are expressed as non-linear multi-
dimensional optimization problems of a special structure. In [PV01], a heuristic, custom-made
algorithm to solve this type of problems was presented. Unfortunately, this algorithm, albeit
working very well in most cases, did not exhibit guaranteed convergence. In this paper, we improve
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on the previous algorithm to develop an algorithm that maintains the efficiency of the previous
one while guaranteeing convergence. Proving that this algorithm always converges to the global
optimum is the main result of this paper.

To better understand the context of this optimization problem, we start by a more detailed
description of its perceived applications. In modern high-speed fixed communication networks
congestion manifests itself as buffer overflows; the Quality of Service (QoS) faced by various con-
nections can be quantified by the buffer overflow probability. To provide QoS guarantees the so
called effective bandwidth admission control mechanism has been proposed [Hui88], [GH91], [Kel91],
[GAN91], [Kel96], [Pas99]. Briefly, effective bandwidth is a number between the peak and aver-
age rate of a connection such that when connections are allocated their effective bandwidth in an
appropriately dimensioned buffer, the buffer overflow probability stays below a given small level
(say on the order of 10−6). Real-time applications can tolerate such small frequencies of congestion
phenomena. In wireless networks, which experience higher Bit Error Rate (BER) and time varying
link quality, the targeted buffer overflow probability is much higher while the effective bandwidth
of the source cannot be offered to a connection on a constant basis (since the available link capacity
is a function of the link quality). In order to characterize the time-varying behavior of a wireless
link the dual concept of effective capacity has been proposed by [WN03], [Wu03]. The effective
capacity of a wireless link is the maximum constant source rate that can be offered to this link
such that the buffer overflow probability stays below a given level. As the data rate and BER over
a wireless link depend on the modulation and coding scheme applied, adaptive modulation and
coding can achieve maximum effective capacity under a given BER constraint [LZG04], [LZG05],
[LZG06], [TZ06], [TZ07b], [TZ07a]. More recently, a combined buffer overflow probability and BER
minimization scheme has been proposed in [Vas10].

In make-to-stock manufacturing systems and supply chains, the objective is to control the in-
ventory in order to avoid stockouts (see [BP01], [Gla97], [PL03]). In such systems demand is met
from a finished goods inventory, and it is backlogged if inventory is not available. The stockout
probability quantifies the QoS encountered by customers. It can be shown that this probability
is equal to a buffer overflow probability in a corresponding make-to-order system [BP01], [PL03].
Thus, the problem of estimating the stockout probability can be transformed into one of estimating
a buffer overflow probability.

Similar LD techniques have been applied in traffic anomaly detection where real time monitoring
and analysis of the aggregate traffic in various points of a network can identify and classify unusual
traffic fluctuations that can be caused by network intrusion, malicious attacks, network malfunction
or irregular use of network resources [PS09], [PC10]. LD techniques for traffic anomaly detection can
provide automatic alerts to previously unknown suspicious events, unlike signature based techniques
that rely on known malicious content in data packets.

In each one of the above applications, we are interested in estimating buffer overflow or excessive
queuing delay or stockout or traffic anomaly indicator probabilities that are very small. Moreover,
arrival and service processes are typically autocorrelated (to model bursty traffic in communication
networks and time varying capacity of wireless links, and to accommodate realistic demand scenarios
and model failure-prone production facilities in make-to-stock manufacturing systems). As a result,
obtaining exact analytic expressions is intractable; it is, therefore, natural to focus on approximate
solutions such as the ones developed using LD techniques.
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Most of the initial LD work assumed the detailed knowledge of models for the arrival and service
processes. In practice however, such traffic models are not known a priori and have to be estimated
from real observations. Consequently, one approach for estimating buffer overflow probabilities is
to assume a certain traffic model, estimate the parameters of the model from real observations, and
then calculate the overflow probability using large deviations results. Consider for example the case
of a deterministic Markov-modulated source (i.e., a source which has a constant rate at every state
of the underlying Markov chain) and let g(Ξ) be the overflow probability when this source is fed in
a certain buffer, where Ξ denotes the transition probability matrix of the underlying Markov-chain.
(We assume that the rate at every state, and the characteristics of the buffer are given, thus, we
do not explicitly denote the dependence of the overflow probability on these quantities). Let Ξ̂

be an unbiased estimator of the transition probability matrix Ξ, that is, E[Ξ̂] = Ξ. Suppose that
we use g(Ξ̂) as an estimator for the overflow probability. An important observation is that due to
the nonlinearity of g(·), E[g(Ξ̂)] is not necessarily equal to g(E[Ξ̂]) = g(Ξ). That is, a certainty
equivalence approach can lead to an erroneous estimate.

Subsequent work in the field has recognized this practical issue and developed LD estimators
for measurement-based, model-free admission control [GT99a], [GT99b], [Duf99]. Our prior work
[PV01] proposed new estimators of overflow probabilities in queues fed by Markov-modulated arrival
processes. Intuitively, the proposed estimators suggested that we should quote a quantity that is
larger than g(Ξ̂) to guard against estimation errors. Hence, these estimators are “safe” even when
based on relatively few observations, meaning that they do not lead to substantial underestimation
of the overflow probability that can compromise QoS. Still, they are consistent in the sense that
they converge to g(Ξ) with probability 1 (w.p.1) as the number of observations tends to infinity.

The development of efficient non-linear optimization algorithms to compute the proposed esti-
mators is of paramount importance. Given that these estimators are meant to be used for real time
applications in fixed and wireless telecommunication networks, they should be computed in very
short time. This means that the non-linear optimization algorithm must guarantee convergence to
the minimum in a small number of steps. The high dimensionality of the decision variable space
and the nature of the objective function (which is computationally expensive to calculate) makes
standard optimization algorithms not efficient enough. The algorithm proposed in this paper takes
advantage of the special structure of the objective function and the constraint set to achieve fast
and guaranteed convergence.

This paper is organized as follows. We start in Section II with a summary of the key results and
notation from [PV01] including the optimization problems that we want to solve. In Section III we
analyze the structure of the objective functions and constraint sets of these optimization problems
and discuss their key properties such as differentiability and convexity. In Section IV we develop
two algorithms for solving the optimization problems and show that the second one (which is an
improved version of the first one) exhibits guaranteed convergence. Finally, conclusions are in
Section V.

On a notational remark, in this paper, matrices are denoted by bold uppercase and vectors by
bold lowercase characters. Moreover, all vectors will be assumed to be column vectors, unless
otherwise specified.
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II. Estimates of the overflow probability based on an arrival process realization

In this Section we summarize the key results and notation from [PV01] in order to establish our
notation and understand the significance of the optimization problems at hand. Consider a single
class G/G/1 queue with a Markov-modulated arrival process. We will be using a discrete-time
model, where time is divided into time slots. We let Ak, k ∈ Z, denote the aggregate number
of “customers” that enter the queue at time k. The queue has an infinite buffer and is serviced
according to a general service process which can clear up to Bk customers during the time interval
[k, k + 1]. We assume that the stochastic processes {Ak; k ∈ Z} and {Bk; k ∈ Z} are stationary,
possibly autocorrelated and mutually independent processes. For such a discrete time stochastic
process {Xk; k ∈ Z} let us define the partial sum process Sn =

∑n
k=1Xk. We assume that the

partial sum processes of both the arrival and service processes {Ak; k ∈ Z} and {Bk; k ∈ Z}
satisfy some technical conditions (see Assumption A in [PV01]) among which is the property that
the limit

ΛX(θ)
△
= lim

n→∞
ΛX
n (θ) = lim

n→∞

1

n
logE[eθSn ],

exists for all θ, where ±∞ are allowed both as elements of the sequence ΛX
n (θ) and as limit

points. Note that the set of processes satisfying these conditions is large enough to include re-
newal, Markov-modulated, and stationary processes with mild mixing conditions. Such processes
can model “burstiness” and are commonly used in modeling the input traffic to communication
networks and the link capacity fluctuations due to wireless channel fading. They have also being
used in modeling demand and the production process in manufacturing systems [BP01], [PL03].

Let us define:
Λ∗
X(a)

△
= sup

θ

(θa− ΛX(θ)), (1)

which is the Legendre transform of ΛX(·). The function Λ∗
X(·) is convex and lower semicontinuous

(see [DZ98]). In Large Deviations parlance, ΛX(·) and Λ∗
X(·) are called the limiting log-moment

generating function and the large deviations rate function, respectively, of the process {Xk; k ∈ Z}.

We denote by Lk the queue length at time k (without counting arrivals at time k). We assume
that the server uses a work-conserving policy (i.e., the server never stays idle when there is work
in the system) and that

E[A1] < E[B1], (2)

which by stationarity carries over to all k. We also assume that the queue length process {Lk; k ∈ Z}
is stationary. To simplify the analysis we consider a discrete-time “fluid” model, meaning that we
will be treating Ak, Lk, and Bk as nonnegative real numbers (the amount of fluid entering the
buffer, in queue, and the service capacity, respectively).

A Large Deviations Principle (LDP) for the queue length process has been established in [GW94],
[BPT98b] and is given in the next proposition. In preparation for the result, consider a convex
function g(u) with the property g(0) = 0. We define the largest root of g(u) to be the solution of
the optimization problem supu:g(u)<0 u. If g(·) has negative derivative at u = 0, there are two cases:
either g(·) has a single positive root or it stays below the horizontal axis for all u > 0. In the latter
case, we will say that g(·) has a root at u = ∞.
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Proposition II.1 The steady-state queue length process Lk satisfies

lim
U→∞

1

U
logP[Lk ≥ U ] = −θ∗, (3)

where θ∗ > 0 is the largest root of the equation

ΛA(θ) + ΛB(−θ) = 0. (4)

More intuitively, for large enough U we have

P[Lk ≥ U ] ∼ e−Uθ∗ .

This expression can be used to estimate the overflow probability in a queue with a finite buffer of
size U . Kelly [Kel96] establishes that the latter probability has the same asymptotic decay rate
(same exponent) with P[Lk ≥ U ].

A. Markov-modulated arrivals

Calculating the limiting log-moment generating function can be made easier than computing
infinite sums when dealing with certain special stochastic processes. The most common such
process is the Markov-modulated process, which is defined as follows: Consider an irreducible
Markov chain with M states 1, 2, . . . ,M and transition probability matrix Ξ = {p(i, j)}Mi,j=1. We

will be using the notation pT = (pT
1 , . . . ,p

T
M ), where pT

i is the i-th row of Ξ and AT denotes the
transpose of A. The Markov chain makes one transition per time slot; let Yk be the state at time
k. The number of arrivals at time k is a random function of the state, i.e., it is drawn according to
a p.d.f. fYk

(·) associated with that state. Let us denote by ηi(θ) the moment generating function
of fi(·). Note that for a deterministic amount of arrivals ri per time slot at state i, the moment
generating function is ηi(θ) = eθri .

In [DZ98, Sec. 3.1.1] it is established that the limiting log-moment generating function of the
arrival process {Ak; k ∈ Z}, is given by

ΛA(θ,p) = log ρ(ΠA
θ,p), (5)

where ρ(ΠA
θ,p) denotes the Perron-Frobenius eigenvalue of the M ×M matrix:

ΠA
θ,p = {p(i, j)ηj(θ)}

M
i,j=1. (6)

(In this Markov-modulated case we are using notation that explicitly denotes the dependence of
ΛA(θ,p) and ΠA

θ,p on the transition probabilities p.) Notice that because the quantities ηj(θ) are

always positive the irreducibility of Ξ implies that ΠA
θ,p is irreducible.

B. Estimating the Overflow Probability

Consider now the more realistic case where the transition probabilities p(i, j) are not known
in advance, but need to be estimated by observing the arrival process. In particular, we will be
assuming that we have perfect knowledge of the service process {Bk; k ∈ Z}, and that we can
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observe the states of the Markov chain associated with the arrival process. That is, we do know M
and the probability density functions fi(·) (the supports of whom do not overlap), but the transition
probability matrix Ξ is unknown. Suppose that we observe a sequence Y = Y1, Y2, . . . , Yn of states
that the unknown Markov chain visits with the initial state being Y0 = σ. Consider the empirical
measures:

qYn (y) =
1

n

n∑

k=1

1y(Yk−1Yk),

where y ∈ A2 △
= {1, . . . ,M} × {1, . . . ,M}. Note that when y = (i, j) ∈ A2 the empirical measure

qYn (y) denotes the fraction of times that the Markov chain makes transitions from i to j in the

sequence Y. Let now A2
p

△
= {(i, j) ∈ A2 | p(i, j) > 0} denote the set of pairs of states that

can appear in the sequence Y1, Y2, . . . , Yn and denote by M1(A
2
p) the standard |A2

p|-dimensional

probability simplex, where |A2
p| denotes the cardinality of A2

p. Note that the vector of qYn (y)’s

denoted by qYn = (qYn (y); y ∈ A2
p) is an element of M1(A

2
p). For any q ∈ M1(A

2
p), let

q1(i)
△
=

M∑

j=1

q(i, j) and q2(i) =

M∑

j=1

q(j, i) (7)

be its marginals. Whenever q1(i) > 0, let qf (j | i)
△
= q(i, j)/q1(i). We will be using the notation

qf = (qf (1 | 1), . . . , qf (M | 1), qf (1 | 2), . . . , qf (M | 2), . . . , qf (1 | M), . . . , qf (M | M)). (To avoid
overburdening the notation, we will suppress the dependence of the estimators on the sequence Y.
We will also often ommit the subscript n and simply write q, qf and q1(i).)

Note that p (the vector of the actual but unknown transition probabilities) is an element of
(M1(A))M (i.e., the M -times cartesian product of M1(A)). As the transition probabilities p are
not known, we assume a prior pdf φp− ∈ (M1(M1(A)))M , which assigns probability mass only to
p’s corresponding to irreducible Markov chains. Let p− denote the support of φp− .

Let us define:

I3(p) =

{∑M
i=1 q1(i)H(qf (· | i) | p(i, ·)), if p ∈ p−,

∞, otherwise.
(8)

where H(qf (· | i) | p(i, ·)) is the relative entropy defined as

H(qf (· | i) | p(i, ·)) =
M∑

j=1

qf (j | i) log
qf (j | i)

p(i, j)
.

Now given the empirical measure qn, a maximum likelihood estimator of the transition proba-
bilities is given by

p̂n(i, j) = qnf (j | i) =
qn(i, j)

qn1(i)
, i, j = 1, . . . ,M, (9)

where the extra n in the subscripts explicitly denotes the dependence on the length n of the sample
sequence. Let p̂n denote the vector of these estimates. We can now construct a matrix ΠA

θ,p̂n
with
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elements
πA
θ,p̂n

(i, j) = p̂n(i, j)ηj(θ) i, j = 1, . . . ,M,

and obtain an estimate, ΛA(θ, p̂n), of the limiting log-moment generating function for the arrival
process by computing the Perron-Frobenius eigenvalue of ΠA

θ,p̂n
. The following 3 estimators of the

overflow probability P[Li ≥ U ] have been described in [PV01] (the reader is referred to [PV01] for
more detailed explanation of these estimators).

The traditional “certainty equivalent” estimator:

PI
n

△
= e−Uθ∗(p̂n), (10)

where θ∗(p̂n) is the largest root of the equation ΛA(θ, p̂n) + ΛB(−θ) = 0.

And two improved estimators:

PII
n

△
= exp

{
−n inf

p∈(M1(A))M
[sθ∗(p) + I3(p)]

}
. (11)

and

PIV
n (µ)

△
= PII

n + µ
√

PIII
n (2) − (PII

n )2, (12)

where µ is some scalar and

PIII
n (ℓ)

△
= exp

{
−n inf

p∈(M1(A))M
[ℓsθ∗(p) + I3(p)]

}
ℓ = 1, 2, . . . . (13)

PIV
n (µ) can be interpreted as expectation plus µ times standard deviation. The idea is that by

selecting µ large enough PIV
n (µ) can be adequately safe, i.e., the likelihood that PIV

n (µ) underes-
timates the true probability of loss can be made adequately small.

III. Computing the Estimators

Computing the estimators in (11) and (13) requires solving nonlinear optimization problems. In
this section we examine the structure of these problems and devise efficient algorithms for their
solution.

The optimization problems in (11) and (13) have the following form

minimize ℓsθ∗(p) + I3(p)
s.t. p(i, j) ≥ 0, i, j = 1, . . . ,M,∑M

j=1 p(i, j) = 1, i = 1, . . . ,M,

(14)

where ℓ is some positive scalar and I3(p) is given by (cf. Eq. (8))

I3(p) =

{∑M
i=1 q1(i)

∑M
j=1 qf (j | i) log

qf (j|i)
p(i,j) , if p ∈ p−,

∞, otherwise.
(15)
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We are interested in solving relatively large instances of (14); typically M can be in the range
of 5-100 which brings the number of decision variables in the range of 25-10000. Since one major
application for these estimators is Call Admission Control in telecommunication networks that
provide QoS guarantees, the optimization problems at hand should be solved in real time. As a
result, computational efficiency is critical and special purpose algorithms that exploit the special
structure of these optimization problems are of interest.

On the structure of the objective function, a first observation is that I3(p) is a convex function
if p− is a convex set. This can be easily established directly from the definition of convexity.
Furthermore, I3(p) is strictly convex in p− (where it is finite). In Section II we have assumed that
the prior assigns probability mass only to p’s corresponding to irreducible Markov chains. Let I
be the set of p’s corresponding to irreducible Markov chains. The set I is a convex set (for a proof
see [PV01]).

Based on the convexity of I and assuming that the support of the prior p− is a convex subset
of I, I3(p) is a convex function. Henceforth, and in the absence of more information on the true
transition probabilities of the Markov chain we wish to estimate, we will be making the following
assumption.

Assumption A

The support of the prior, p−, is the set I of transition probability vectors p corresponding to
irreducible Markov chains.

Assumption A implies that n can always be taken large enough so that at least one exit transition
for each state has been observed and therefore qf is the transition probability vector of an irreducible
Markov chain. Hence we assume that if the observed sequence Y results to qf /∈ I then we prolong
the observation period by a few samples to achieve qf ∈ I.

Consider now the following optimization problem:

minimize ℓsθ∗(p) + Î3(p)
s.t. p(i, j) ≥ 0, i, j = 1, . . . ,M,∑M

j=1 p(i, j) = 1, i = 1, . . . ,M,

(16)

where

Î3(p) =
M∑

i=1

q1(i)
M∑

j=1

qf (j | i) log
qf (j | i)

p(i, j)
. (17)

The following property of the optimal solution of the above optimization problem is established
in [PV01]:

Lemma III.1 Let p∗ be an optimal solution of the optimization problem in (16). Then p∗ is the
transition probability vector of an irreducible Markov chain.

The result of this lemma suggests that under Assumption A the optimization problem in (16) is
equivalent to the problem in (14). Hence, we will focus on solving (16).

A very important issue for any nonlinear programming problem is the form of the objective
function. A convex objective function, especially under polyhedral constraints (as in (16)), can
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lead to more efficient algorithms. Let

θ̄(p)
△
= ℓsθ∗(p) + Î3(p)

denote the objective function in (16). Notice that it is the weighted sum of a strictly convex
function, Î3(p), and θ∗(p), which is not necessarily convex. To see this, we consider an example
where ℓ = 1 and the arrival process is a two-state Markov-modulated process with deterministic
number of arrivals per state (r1, r2) = (0.042, 0.077). This arrival process is fed into a buffer which
is served at fixed service rate c = 0.058. The parameter s was set equal to 0.002. In Figure 1 (a)
we plot θ∗(p) and in (b) θ̄(p) versus the two (arbitrarily chosen as) independent decision variables
p(1, 1) and p(2, 2). It can be seen that although θ∗(p) is not convex (it is convex only along some
directions), θ̄(p) is convex. Consequently, θ̄(p) is not convex in general. Nevertheless, since Î3(p) is
strictly convex, it can be seen that θ̄(p) will be convex for small enough values of s. Recalling that
s = U/n and assuming that the buffer size U is given, we will be dealing with a convex objective
function if we can afford a large number n of measurements.
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Fig. 1

Plots of θ∗(p) (a) and θ̄(p) (b) versus p(1, 1) and p(2, 2) when the arrival process is a

Markov chain with 2 states.

Another important observation, which will affect the convergence of the optimization algorithms
presented in the next section, is that θ∗(p) might be equal to 0 (which translates into PI

n = 1) for
some values of p. This happens when the mean arrival rate is larger or equal to the mean service rate
E[B1] (which is equal to c in the most common case of a deterministic service process). Therefore, if
we denote by p1(i) the steady state probability for state i corresponding to the transition probability
vector p and by E[A1 | i] the conditional mean number of arrivals given that we are at state i, the
condition for θ∗(p) = 0 can be written as:
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M∑

i=1

p1(i) E[A1 | i] ≥ E[B1] (18)

Let us now define the following subsets of I:

• I1 , {p ∈ I |
∑M

i=1 p1(i) E[A1 | i] < E[B1]}

• I2 , {p ∈ I |
∑M

i=1 p1(i) E[A1 | i] > E[B1]}

• I3 , {p ∈ I |
∑M

i=1 p1(i) E[A1 | i] = E[B1]}

• I4 , {p ∈ I |
∑M

i=1 p1(i) E[A1 | i] ≤ E[B1]} = I1 ∪ I3

• I5 , {p ∈ I |
∑M

i=1 p1(i) E[A1 | i] ≥ E[B1]} = I2 ∪ I3

Obviously, I1, I2 and I3 form a partition of I into disjoint sets. Furthermore, the dimension
of I3 is always equal to the dimension of I minus one. I3 forms a boundary between I1 and I2.
Note that if qf ∈ I5, then PI

n = 1, which implies that PII
n = 1 (since PII

n ≥ PI
n), which is a case

of hardly any interest. In the sequel, we will assume that qf ∈ I1. The next lemma reveals an
important property of I1 with respect to the optimization problem in (16):

Lemma III.2 If qf ∈ I1 then p∗ ∈ I4, where p∗ is the minimizing p in (16).

Proof : Assume p∗ /∈ I4, which is equivalent to p∗ ∈ I2. Now, denote by l1 the line segment that
connects the two points qf and p∗. For every point p ∈ l1 different than p∗, Î3(p) < Î3(p

∗) due

to the strict convexity of Î3(·) whose global minimum is at qf . Also, for every point p ∈ l1∩ I5,
θ∗(p) = 0. Furthermore, there is at least one point p ∈ l1∩ I5 \ {p

∗}, since p∗ ∈ I2. For this point
we have that θ̄(p) = ksθ∗(p)+ Î3(p) = Î3(p) < Î3(p

∗) = θ̄(p∗). But this contradicts our initial
assumption that p∗ is the minimizer in (16). Thus, p∗ ∈ I4.

Figure 1 seems to suggest that I3 is a straight line, which makes I1, I2,I4 and I5 convex sets.
Indeed, for the case where M = 2, p1(1) and p1(2) can be expressed as a function of p(1, 1) and
p(2, 2) as follows:

p1(1) =
1− p(2, 2)

2− p(1, 1) − p(2, 2)

and

p1(2) =
1− p(1, 1)

2− p(1, 1) − p(2, 2)

Therefore the condition for p ∈ I3 becomes:

2∑

i=1

1− p(i, i)

2− p(1, 1) − p(2, 2)
E[A1 | 3− i] = E[B1]

10



which after some routine algebraic manipulations can be written as:

(E[B1]−E[A1 | 2])p(1, 1) + (E[B1]−E[A1 | 1])p(2, 2) = 2E[B1]−E[A1 | 1]−E[A1 | 2]

The above equation is clearly a line equation on the plane and that is in agreement with the straight
line border between I1 and I2 shown in Figure 1. However, for M > 2, it can be easily shown by
example that both sets I1 and I2 are not necessarily convex. For a case with M=3, where I1 is
not convex, take the following two elements of I given in matrix form

Ξ1 =



0.2 0.6 0.2
0.6 0.2 0.2
0.2 0.4 0.4


 and Ξ2 =



0.7 0.1 0.2
0.2 0.1 0.7
0.3 0.6 0.1


,

and assume
[E[A1 | 1], [E[A1 | 2], [E[A1 | 3]] = [0.2, 1.0, 2.5].

Figure 2(a) shows the mean arrival rate of a Markov-modulated process driven by an underlying
Markov chain with transition probability matrix along the line segment connecting Ξ1 to Ξ2. More
specifically, it plots a graph of

E[A1] =
3∑

i=1

p1(i) E[A1 | i],

where p1(i) is the steady state probability of state i of a Markov chain with transition probability
matrix αΞ1 + (1− α)Ξ2, as a function of the parameter α. It can be seen that for an appropriate
choice of E[B1] (e.g., the one depicted by the horizontal dashed line) Ξ1 and Ξ2 belong to I1 but
there are points on the line segment connecting Ξ1 and Ξ2 that don’t. Hence, in this case I1 is not
convex.

Similarly, for a case where I2 is not convex, consider the transition probability matrices

Ξ1 =



0.2 0.6 0.2
0.2 0.2 0.6
0.3 0.4 0.3


 and Ξ2 =



0.2 0.1 0.7
0.7 0.1 0.2
0.4 0.2 0.4


,

and keep the same conditional mean arrival rates as in the previous example. A plot of the mean
arrival rate of the MMP along the line segment connecting Ξ1 and Ξ2 is shown in Figure 2(b).
Clearly, for an appropriate choice of E[B1] (e.g., the one depicted by the horizontal dashed line)
Ξ1 and Ξ2 belong to I2 but there are points on the line segment connecting Ξ1 and Ξ2 that don’t.
Hence, in this case I2 is not convex.

In the next section we will see that θ̄(p), the objective function in problem (16), is not differen-
tiable at I3. If I1was always convex, we could take advantage of Lemma (III.2) and the continuity
of θ̄(p) to constraint the optimization into I1. Unfortunately this is not the case.

IV. Algorithms for solving the optimization problem

To solve the problem in (16) we have developed a heuristic algorithm which performs very well
in practice, typically giving first decimal digit approximations to the optimal value by the third

11
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Fig. 2

Plots of E[A1] along the line segments connecting two points in I for examples where (a)

I1 is not convex and (b) I2 is not convex.

iteration and third decimal digit by the fourth.

To describe the heuristic, note that the constraint set I is the Cartesian product of simplices, and
that qf (j | i) > 0 implies p(i, j) > 0 for all i, j = 1, . . . ,M . This feasible set implies the following
optimality conditions ([Ber95, pg. 178-179])

∂θ̄(p)

∂p(i, j)
=

∂θ̄(p)

∂p(i, j′)
∀i, j, j′ = 1, . . . ,M, satisfying qf (j | i), qf (j

′ | i) > 0. (19)

The heuristic algorithm iterates as follows:

Algorithm A:

1. Initialize with p(0) = qf and m=0.
2. Form an approximation of θ̄(p)

θ̄(m)
app (p)

△
= ℓsθ∗(p(m)) + ℓs∇θ∗(p(m))′(p− p(m)) + Î3(p). (20)

Minimize the expression in Eq. (20) subject to the constraints of problem (16) to obtain an optimal
solution p∗

p(m) .

3. Set p(m+1) := p∗
p(m) and then make m=m+1.

4. If θ̄(p(m−1)) − θ̄(p(m)) < ǫ, where ǫ is the desired accuracy, terminate with optimal solution
p(m). Otherwise, return to Step 2.

The intuition behind this algorithm is that as we get closer to the real minimum, p∗, of problem

12



(16) the approximations θ̄
(m)
app(p) of θ̄(p) improve and yield p(m+1) that are closer to p∗. Because

at each step we solve the approximate problem exactly, the algorithm typically needs much fewer
iterations than a standard gradient-based algorithm.

The minimization of the expression in Eq. (20) can be performed by solving the system of
optimality conditions:

∂θ̄
(m)
app (p)

∂p(i, j)
=

∂θ̄
(m)
app (p)

∂p(i, j′)
∀i, j, j′ = 1, . . . ,M satisfying qf (j | i), qf (j

′ | i) > 0 (21)

which, by introducing the variables wi, can be written equivalently as:

∂θ̄
(m)
app (p)

∂p(i, j)
= wi ∀i, j = 1, . . . ,M satisfying qf (j | i) > 0 (22)

subject to the conditions:
M∑

j=1

p(i, j) = 1 ∀i = 1, . . . ,M (23)

and
p(i, j) > 0 ∀i, j = 1, . . . ,M satisfying qf (j | i) > 0 (24)

At the same time, ∀i, j = 1, . . . ,M satisfying qf (j | i) = 0, p(i, j) must be equal to zero as well.
Let us define the sets:

J (i) , {j = 1, . . . ,M | qf (j | i) > 0}.

The partial derivatives in Eq. (22) are:

∂θ̄
(m)
app (p)

∂p(i, j)
= ℓs

∂θ∗(p(m))

∂p(m)(i, j)
+

∂Î3(p)

∂p(i, j)

where
∂Î3(p)

∂p(i, j)
= −

q1(i)qf (j|i)

p(i, j)
(25)

Therefore Eq. (22) becomes:

ℓs
∂θ∗(p(m))

∂p(m)(i, j)
−

q1(i)qf (j|i)

p(i, j)
= wi ∀i = 1, · · · ,M and j ∈ J (i) (26)

which is equivalent to

p(i, j) =
q1(i)qf (j|i)

ℓs∂θ∗(p(m))

∂p(m)(i,j)
− wi

∀i = 1, · · · ,M and j ∈ J (i) (27)

13



In order for the p(i, j) to be positive we need:

wi < ℓs
∂θ∗(p(m))

∂p(m)(i, j)
∀i = 1, · · · ,M and j ∈ J (i)

or equivalently

wi < min
j∈J (i)

ℓs
∂θ∗(p(m))

∂p(m)(i, j)
, wmax ∀i

We can then use Eq. (23) to get:

∑

j∈J (i)

q1(i)qf (j|i)

ℓs∂θ∗(p(m))

∂p(m)(i,j)
− wi

= 1, ∀i

The latest equation is a scalar equation in wi which can be solved numerically in (−∞, wmax).

A unique solution is guaranteed since the function θ̄
(m)
app (p) is strictly convex and therefore has a

unique minimum. We need to solve M such equations one for each wi. Then by substituting the
wi’s back in Eq. (27) we get all p(i, j) that minimize the expression in Eq. (20) to form the optimal
solution p∗

p(m) .

Although Algorithm A performs well in practice, it does not guarantee convergence. This is

the case because the approximations θ̄
(m)
app(p) are good in a small region around the expansion

point, but may be well off away from that point. This might lead to unpleasant situations where
θ̄(p(m)) > θ̄(p(m−1)). For the same reason, a step of the algorithm might produce a p(m) that
belongs to I2, independently of whether it is improving the value of the objective function. In this

case the next step will yield p(m+1) = qf , since θ̄
(m+1)
app (p) = Î3(p). Clearly, this will bring the

algorithm into an infinite loop. Lastly, we might be really unlucky and land on a point p(m) ∈ I3.

As we will see later on, ∇θ∗(p(m)) and consequently θ̄
(m)
app(p) are not well defined at any p(m) ∈ I3

and hence the algorithm won’t be able to continue.

Before we discuss an algorithm that does guarantee convergence, we need to calculate the gradient
of θ̄(p). The partial derivatives of Î3(p) are given in Eq. (25) and are continuous everywhere in I.
The calculation of the gradient of θ∗(p) in I is a bit more involved:

Obviously, for p ∈ I2, ∇θ∗(p) = 0. In the following, we will calculate the gradient ∇θ∗(p), for
p ∈ I1, i.e., in the region where θ∗(p) > 0:

Let us denote by λi the i-th eigenvalue of ΠA
θ,p, and by u(i) and v(i) the (normalized) left and

right eigenvectors corresponding to this eigenvalue respectively (thus the spectral radius ρ(ΠA
θ,p) =

λ1). Note that all the above eigenvalues and eigenvectors are functions of p, θ and the marginal
probability densities of arrival rates per state in the arrival process A. We will often omit these
dependences for brevity. Assuming that the entries of ΠA

θ,p are functions of some parameter δ and
since λ1 has always multiplicity 1 (Perron-Frobenius theorem), we have (see [MH88] and [Wil65,
Sec. 2.5-2.8])

∂λ1

∂δ
=

u(1)T ( ∂
∂δ
ΠA

θ,p)v
(1)

u(1)T v(1)
. (28)
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Using the definition of ΠA
θ,p, i.e., Π

A
θ,p = {πA

θ,p(i, j)}
M
i,j=1,...,M

△
= {p(i, j)ηj(θ)}

M
i,j=1,...,M , the above

equation for δ = p(i, j) becomes:

∂ρ

∂p(i, j)
=

u
(1)
i v

(1)
j ηj(θ)

u(1)T v(1)
. (29)

and for δ = θ:

∂ρ

∂θ
=

∑

i,j

[
u
(1)
i v

(1)
j

u(1)T v(1)
p(i, j)

∂ηj(θ)

∂θ

]
(30)

Now recall that ΛA(θ,p) = log ρ(ΠA
θ,p). Therefore:

∂ΛA(θ,p)

∂p(i, j)
=

∂ log ρ(ΠA
θ,p)

∂p(i, j)
=

1

ρ(ΠA
θ,p)

∂ρ1(Π
A
θ,p)

∂p(i, j)
=

ηj(θ)

ρ(ΠA
θ,p)

u
(1)
i v

(1)
j

u(1)T v(1)
(31)

Similarly,

∂ΛA(θ,p)

∂θ
=

1

ρ(ΠA
θ,p)

∂ρ(ΠA
θ,p)

∂θ

=
1

ρ(ΠA
θ,p)

∑

i,j

[
u
(1)
i v

(1)
j

u(1)T v(1)
p(i, j)

∂ηj(θ)

∂θ

]
. (32)

Recall also that θ∗(p) is the largest root of the equation ΛA(θ,p) + ΛB(−θ) = 0. Based on the
discussion in Section II, θ∗(p) can be alternatively written as

θ∗(p) = sup
{θ|ΛA(θ,p)+ΛB(−θ)<0}

θ

= sup
{θ|ΛA(θ,p)+ΛB(−θ)≤0}

θ (33)

= inf
a≥0

sup
θ

[θ − aΛA(θ,p)− aΛB(−θ)], (34)

where the second equality is due to the convexity of the limiting log-moment generating functions
and the fact that ΛA(θ,p) + ΛB(−θ) is negative for sufficiently small θ > 0. The third equality
above is due to strong duality which holds since we are dealing with a convex programming problem
(see [Ber95, Chapter 5]). Using the envelope theorem [Var92], we obtain

∇θ∗(p) = −a∗∇pΛA(θ
∗,p), (35)

where a∗, θ∗ are optimal solutions of the optimization problems in (34), and the elements of
∇pΛA(θ

∗,p) are given by (31). Note that a∗ is a Lagrange multiplier for the original optimization
problem in (33) and therefore satisfies the first order optimality condition

1− a∗
∂(ΛA(θ

∗,p) + ΛB(−θ∗))

∂θ∗
= 0,
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which implies

a∗ =

[
∂(ΛA(θ

∗,p) + ΛB(−θ∗))

∂θ∗

]−1

. (36)

Another way of deriving this result is by using the fact that ΛA(θ
∗(p),p)+ΛB(−θ∗(p)) is equal to

zero for all p satisfying 0 < θ∗(p) < +∞. Thus,

∇pΛA(θ
∗(p),p) +∇pΛB(−θ∗(p)) = 0,

and by using the chain rule we obtain

∇θ∗(p) = −
∇pΛA(θ

∗,p)
∂

∂θ∗
(ΛA(θ∗,p) + ΛB(−θ∗))

, (37)

which is in agreement with (35)-(36).

It is crucial to understand the behavior of ∇θ̄(p) and the directional derivatives of θ̄(p) along

feasible directions as p approaches the boundary I3 from within I1. We will denote this by p
I1→ r,

where r is some arbitrary point belonging to I3. Let us start by noting that due to the continuity
of θ∗(p),

lim
p
I1→r

θ∗(p) = θ∗(r) = 0

On the same token,
lim
p
I1→r

ηj(θ
∗(p)) = ηj(0) = 1

which implies that:
lim
p
I1→r

ΠA
θ∗,p = lim

p
I1→r

{p(i, j)ηj(θ
∗(p))} = {p(i, j)} = Ξ

It is known that the spectral radius of Ξ, ρ(Ξ) = 1 and that its non-normalized right eigenvector
has all its elements equal to each other (the normalized one is (1, 1, . . . , 1)) while its normalized
left eigenvector comprises of the steady state probabilities for the Markov chain represented by Ξ.
Thus:

lim
p
I1→r

u
(1)
i v

(1)
j

u(1)T v(1)
=

u
(1)
i v

(1)
j

∑
i

u
(1)
i v

(1)
i

=
u
(1)
i v

(1)
j

v
(1)
j

∑
i

u
(1)
i

=
u
(1)
i∑

i

u
(1)
i

= p1(i)

Furthermore, from the basic property of moment generating functions,

lim
p
I1→r

∂ηj(θ)

∂θ

∣∣∣∣
θ=θ∗(p)

=
∂ηj(θ)

∂θ

∣∣∣∣
θ=0

= E[A1 | j]

Putting all these together we have that for all r ∈ I3:
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lim
p
I1→r

∂ΛA(θ
∗,p)

∂θ∗
= lim

p
I1→r

1

ρ(ΠA
θ∗,p)

∑

i,j

u
(1)
i v

(1)
j

u(1)T v(1)
p(i, j)

∂ηj(θ
∗)

∂θ∗
=

∑

i,j

p1(i)p(i, j)E[A1 | j]

=
∑

j

E[A1 | j]
∑

i

p1(i)p(i, j) =
∑

j

p1(j)E[A1 | j] = E[B1]

Moreover,
∂ΛB(−θ∗)

∂θ∗
= −E[B1]

Therefore the denominator in Eq. (37) goes to zero for p
I1→ r. At the same time the components

of the numerator become:

lim
p
I1→r

∂ΛA(θ
∗,p)

∂p(i, j)
= lim

p
I1→r

ηj(θ
∗)

ρ(ΠA
θ∗,p)

u
(1)
i v

(1)
j

u(1)T v(1)
= p1(i) 6= 0

We conclude that all partial derivatives tend to (plus or minus) infinity as p
I1→ r. However, this

is not necessarily the case for directional derivatives along feasible directions. Let us denote by
D(p) the set of all feasible directions d at point p. Note that all feasible directions are of the form:

d = (d11, d12, . . . , d1M , . . . , dM1, dM2, . . . dMM ) with
∑

j

dij = 0, ∀i.

In order to calculate the directional derivative we consider a normalized feasible direction vector
which satisfies the additional constraint:

√∑

i,j

d2ij = 1,

so that moving along the feasible direction is expressed as p+ βd

We denote by D the M × M matrix corresponding to d and by H the diagonal matrix with

elements ηi(θ). We also denote by Hθ
△
= ∂H

∂θ
, by Hθθ

△
= ∂2

H

∂θ2
, by Πθ

△
= ∂Π

∂θ
and by Πβ

△
= ∂Π

∂β
. Note

that:

Π = P ·H ⇒

{
Πθ = P ·Hθ

Πβ = D ·H

Based on the above notation we can also write:

∂ΛA

∂θ
=

1

ρ

u(1)TPHθv
(1)

u(1)T v(1)
. (38)
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Now, the directional derivative of ρ(ΠA
θ,p) is derived from (28) as:

∂λ1

∂β
=

u(1)T ( ∂
∂β

ΠA
θ,p)v

(1)

u(1)T v(1)
=

u(1)TDHv(1)

u(1)T v(1)
. (39)

Therefore:
∂ΛA

∂β
=

1

ρ

u(1)TDHv(1)

u(1)T v(1)
. (40)

By the same arguments used above to obtain (37) we obtain:

∂θ∗

∂β
= −

∂ΛA(θ∗,p)
∂β

∂
∂θ∗

(ΛA(θ∗,p) + ΛB(−θ∗))
= −

1
ρ
u(1)T

DHv(1)

u(1)T v(1)

∂
∂θ∗

(ΛA(θ∗,p) + ΛB(−θ∗))
, (41)

The denominator of this expression goes to zero for p
I1→ r, as discussed above. But the numerator

goes to zero as well, since:

lim
p
I1→r

1

ρ

u(1)TDHv(1)

u(1)T v(1)
= lim

p
I1→r

1

ρ

∑

i,j

dijηj(θ
∗)

u
(1)
i v

(1)
j

u(1)T v(1)
=

∑

i,j

dijp1(i) =
∑

i

p1(i)
∑

j

dij = 0

It can be proven using De L’ Hôpital’s theorem that the limit of all directional derivatives towards

directions pointing into I1 as p
I1→ r is zero. However, the proof is quite lengthy and is omitted

due to space limitations.

Thus, the necessary and sufficient (due to convexity) condition for a point p∗ ∈ I to be the global
minimum of θ̄(p) can be written as:

lim
a↓0

θ̄(p∗ + ad)− θ̄(p∗)

a
≥ 0, ∀d ∈ D(p)

Lemma IV.1 The direction sequence {d(m)} = {p∗
p(m)−p(m)} is gradient related to {p(m)} in I1∪

I2, that is for any subsequence {p(m)}m∈M such that p(m) /∈ I3, that converges to a non-stationary
point p(0) ∈ I of θ̄(p), the corresponding subsequence {d(m)}m∈M is bounded and satisfies

lim sup
m→∞, m∈M

∇θ̄(p(m))′d(m) < 0

Proof : By definition, p∗
p(m) ∈ I which is bounded. Therefore, {d(m)} is bounded, too.

Note that for all p(m), ∇θ̄(p(m)) = ∇θ̄app
p(m)(p

(m)).

By definition:

∇θ̄app
p(m)(p

(m))′(p∗
p(m) − p(m)) = lim

a↓0

θ̄app
p(m)(p

(m) + a(p∗
p(m) − p(m)))− θ̄app

p(m)(p
(m))

a
(42)
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Now note that θ̄app
p(m)(·) is a strictly convex function whose global minimum is p∗

p(m) . Thus,

θ̄app
p(m)(p

(m) + a(p∗
p(m) − p(m)))− θ̄app

p(m)(p
(m))

a
= (43)

θ̄app
p(m)((1− a)p(m) + ap∗

p(m))− θ̄app
p(m)(p

(m))

a
<

(1− a)θ̄app
p(m)(p

(m)) + aθ̄app
p(m)(p

∗
p(m))− θ̄app

p(m)(p
(m))

a
=

−aθ̄app
p(m)(p

(m)) + aθ̄app
p(m)(p

∗
p(m))

a
= θ̄app

p(m)(p
∗
p(m))− θ̄app

p(m)(p
(m))

Equations (42) and (43) imply that:

∇θ̄app
p(m)(p

(m))′(p∗
p(m) − p(m)) ≤ θ̄app

p(m)(p
∗
p(m))− θ̄app

p(m)(p
(m))

Therefore:

lim sup
m→∞, m∈M

∇θ̄app
p(m)(p

(m))′(p∗
p(m) − p(m)) ≤ lim sup

m→∞, m∈M
θ̄app
p(m)(p

∗
p(m))− θ̄app

p(m)(p
(m))

We now distinguish between two cases: p(0) ∈ I3 and p(0) /∈ I3.

If p(0) /∈ I3 then by continuity arguments we can conclude that:

lim sup
m→∞, m∈M

θ̄app
p(m)(p

∗
p(m))− θ̄app

p(m)(p
(m)) = θ̄app

p(0)(p
∗
p(0))− θ̄app

p(0)(p
(0))

But θ̄app
p(0)(·) is also a strictly convex function whose global minimum is p∗

p(0) and therefore unless

p(0) = p∗
p(0) (in which case p(0) is the global minimum of both θ̄app

p(0)(·) and θ̄(·)), θ̄app
p(0)(p

∗
p(0)) −

θ̄app
p(0)(p

(0)) < 0.

If p(0) ∈ I3, we have three sub-cases:

1. ∃m1 ∈ M s.t. ∀m ∈ M with m > m1, p
(m) ∈ I2.

In this case ∀m ∈ M with m > m1we have p∗
p(m) = qf which yields θ̄app

p(m)(p
∗
p(m)) = 0 and

θ̄app
p(m)(p

(m)) = Î3(p
(m)). Hence:

lim sup
m→∞, m∈M

θ̄app
p(m)(p

∗
p(m))− θ̄app

p(m)(p
(m)) = −Î3(p

(0))

But this is always less than zero, since qf ∈ I1 and p(0) ∈ I3.
2. ∃m2 ∈ M s.t. ∀m ∈ M with m > m2, p

(m) ∈ I1.
Consider a function ϕ̄(p) which is equal to θ̄(p), ∀p ∈ I4 = I1 ∪ I3 and continuously differentiable
at any r ∈I3. Define ϕ̄app

p(m)(p) in the same way that θ̄app
p(m)(p) is defined. Then:

lim sup
m→∞, m∈M

θ̄app
p(m)(p

∗
p(m))− θ̄app

p(m)(p
(m)) = ϕ̄app

p(0)(p
∗
p(0))− ϕ̄app

p(0)(p
(0))
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But ϕ̄app

p(m)(p) is also strictly convex (by definition) and therefore ϕ̄app

p(0)(p
∗
p(0)) − ϕ̄app

p(0)(p
(0)) < 0

unless p(0) is the global minimum of ϕ̄app

p(m)(p). In that case p(0) would also be the global minimum

of ϕ̄(p) which in turn would make it the global minimum of θ̄(p) in I4. But as seen in the proof
of Lemma III.2 the global minimum of θ̄(p) is always in I4 which means that p(0) should be the
global minimum of θ̄(p) in I. This clearly contradicts our assumption that p(0) is not a stationary
point of θ̄(p). Hence, ϕ̄app

p(0)(p
∗
p(0))− ϕ̄app

p(0)(p
(0)) is always less than 0.

3. M can be partitioned into two unbounded sets M1 and M2 with p(m) ∈ I1, ∀m ∈ M1 and
p(m) ∈ I2, ∀m ∈ M2. Then:

lim sup
m→∞, m∈M

θ̄app
p(m)(p

∗
p(m))− θ̄app

p(m)(p
(m)) =

= max[ lim sup
m→∞, m∈M1

θ̄app
p(m)(p

∗
p(m))− θ̄app

p(m)(p
(m)),

lim sup
m→∞, m∈M2

θ̄app
p(m)(p

∗
p(m))− θ̄app

p(m)(p
(m))]

But each one of these two limits superior belongs to the special cases analyzed above. Therefore,
each one is less than zero and the maximum is always less than zero.

This completes the proof.

Lemma IV.1 can be used to prove that the following algorithm always converges:

Algorithm B:

1-3. Steps 1-3 are exactly the same as in Algorithm A.
4. Set p(m+1) = p(m)+a(m)(p∗

p(m)−p(m)) where a(m) is the stepsize. Use a slightly modified Armijo

rule [Ber95] to select the stepsize. To implement this rule, fixed scalars β ∈ (0, 1) and σ ∈ (0, 1)
are chosen and we set a(m) = βl′ , where l′ is the first nonnegative integer l for which

p(m) + βl(p∗
p(m) − p(m)) /∈ I3

and
θ̄(p(m))− θ̄

(
p(m) + βl(p∗

p(m) − p(m))
)
≥ −σβl∇θ̄(p(m))′(p∗

p(m) − p(m))

Such a stepsize is guaranteed to exist since the set of stepsizes that satisfy the above inequality
will always contain an interval of the form [0, δ] with δ > 0 and p(m) /∈ I3 ⇒ ∃ε > 0 s.t. ∀0 ≤ a <
ε, p(m) + a(p∗

p(m) − p(m)) /∈ I3. Return to step 2.

Note that for l = 0, p(m+1) = p∗
p(m) and therefore if the above conditions are satisfied at first

trial, Algorithm B behaves exactly as Algorithm A. Thus, Algorithm B guarantees convergence
without sacrificing much in performance.

Theorem IV.2 Let {p(m)} be a sequence generated by Algorithm B. Then {p(m)} converges to p∗,
the global minimum of θ̄(p).

Proof : (based on the proof of Proposition 1.2.1 in [Ber95]):
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Assume that p0 is a limit point of {p(m)} that is not the global minimum, i.e.,

∃d ∈ D(p) s.t. lim
a↓0

θ̄(p0 + ad)− θ̄(p0)

a
< 0 (44)

Note that since {θ̄(p(m))} is monotonically non-increasing, it either converges to a finite value or
diverges to -∞. Since θ̄(p) is continuous, θ̄(p0) is a limit point of {θ̄(p(m))} and it follows that the
entire sequence {θ̄(p(m))} converges to θ̄(p0). Hence, θ̄(p

(m))− θ̄(p(m+1)) → 0.

By the definition of the stepsize selection rule in Algorithm B, we have that all p(m) /∈ I3
(although p0 can belong to I3) and:

θ̄(p(m))− θ̄(p(m+1)) ≥ −σa(m)∇θ̄(p(m))′d(m)

Hence, a(m)∇θ̄(p(m))′d(m) → 0. Let {p(m)}M be a subsequence converging to p0. From Lemma IV.1,
we have

lim sup
m→∞, m∈M

∇θ̄(p(m))′d(m) < 0

and therefore {a(m)}M → 0.

Now, by the definition of the stepsize selection rule and the fact that {a(m)}M goes to zero,
there must be some m̄ such that the initial stepsize s will be reduced for at least two times for
all m ∈ M, m ≥ m̄. But due to the shape and dimension of I3, its intersection with the line
segment connecting p(m) and p∗

p(m) can be at most a single point. Therefore, at most one of the

stepsize reductions occurs because p(m) + βl(p∗
p(m) − p(m)) ∈ I3, and at least one of the following

two inequalities holds:

θ̄(p(m))− θ̄(p(m) + (a(m)/β)d(m)) < −σ(a(m)/β)∇θ̄(p(m))′d(m) (45)

or
θ̄(p(m))− θ̄(p(m) + (a(m)/β2)d(m)) < −σ(a(m)/β2)∇θ̄(p(m))′d(m) (46)

Let us denote by M1 the set of m’s for which Eq. (45) holds and by M2, the set of m’s for which
Eq. (45) does not hold and therefore Eq. (46) does hold. Define:

x(m) =
d(m)

∥∥d(m)
∥∥

and

ā(m) =





a(m)‖d(m)‖
β

if m ∈ M1

a(m)‖d(m)‖
β2 if m ∈ M2

Since {d(m)} is gradient related, {
∥∥d(m)

∥∥}M is bounded and therefore {ā(m)}M → 0. Since∥∥x(m)
∥∥ = 1 for all m ∈ M, there exists a subsequence {x(m)}M̄ of {x(m)}M such that {x(m)}M̄ → x̄

where x̄ is some vector with ‖x̄‖ = 1 (see Prop. A.5(c) in Appendix A of [Ber95]).
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Given the above definitions, Eq. (45) and (46) can be combined into:

θ̄(p(m))− θ̄(p(m) + ā(m)x(m))

ā(m)
< −σ∇θ̄(p(m))′x(m), ∀m ∈ M̄,m ≥ m̄

Since θ̄(p) is a convex and continuous function there must be some ã(m) ∈ [0, ā(m)] with p(m) +
ã(m)x(m) /∈ I3 such that:

−∇θ̄(p(m) + ã(m)x(m))′x(m) ≤
θ̄(p(m))− θ̄(p(m) + ā(m)x(m))

ā(m)

< −σ∇θ̄(p(m))′x(m), ∀m ∈ M̄,m ≥ m̄

Taking limits in the above equation we obtain

− lim
a↓0

θ̄(p0 + ax̄)− θ̄(p0)

a
≤ −σ lim

a↓0

θ̄(p0 + ax̄)− θ̄(p0)

a

or

0 ≤ (1− σ) lim
a↓0

θ̄(p0 + ax̄)− θ̄(p0)

a

And since σ < 1, it follows that

lim
a↓0

θ̄(p0 + ax̄)− θ̄(p0)

a
≥ 0

But this contradicts Eq. (44) and therefore p0 can only be the global minimum of θ̄(p).

V. Conclusions

Building on our earlier work on suitable estimators for a wide set of Large Deviation approx-
imations for the probabilities of rare events, we have analyzed the non-linear multi-dimensional
optimization problems that need to be solved in order to calculate these estimators. The special
structure of the objective function of the optimization problems at hand, suggests that a custom-
made algorithm can be much more efficient than any generic non-linear optimization algorithm.
However, proving that such an algorithm always converges is not straightforward. In order to
do so, we had to modify the simpler algorithm presented in our earlier work so that its selected
step size follows a modified Armijo rule. This modified algorithm is proven to exhibit guaranteed
convergence.

The LD estimators considered in this paper have found many applications in real-time problems
such as Call Admission Control through buffer overflow probability prediction, adaptive modula-
tion and coding with QoS constraints for transmission of data over wireless links, make-to-stock
manufacturing systems and supply chains, and traffic anomaly detection in high data rate commu-
nication networks. In all the above applications, the existence of efficient and provably convergent
algorithms for solving the estimation problem is a prerequisite for using the proposed LD estimators
for real-time decision and control. The algorithm developed in this paper meets these requirements.
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