5,908 research outputs found

    Effect of pedestrian movement on MIMO-OFDM channel capacity in an indoor environment

    Get PDF
    Effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity have been investigated using experiment and simulation. The experiment was conducted at 5.2 GHz by a MIMO-OFDM packet transmission demonstrator using four transmitters and four receivers built in-house. Geometric optics based ray tracing technique was used to simulate the experimental scenarios. Changes in the channel capacity dynamic range have been analysed for different number of pedestrian (0-3) and antennas (2-4). Measurement and simulation results show that the dynamic range increases with the number of pedestrian and the number of antennas on the transmitter and receiver array

    Pedestrians effects on indoor MIMO-OFDM channel capacity

    Get PDF
    Temporal variations caused by pedestrian movement can significantly affect the channel capacity of indoor MIMOOFDM wireless systems. This paper compares systematic measurements of MIMO-OFDM channel capacity in presence of pedestrians with predicted MIMO-OFDM channel capacity values using geometric optics-based ray tracing techniques. Capacity results are presented for a single room environment using 5.2 GHz with 2x2, 3x3 and 4x4 arrays as well as a 2.45 GHz narrowband 8x8 MIMO array. The analysis shows an increase of up to 2 b/s/Hz on instant channel capacity with up to 3 pedestrians. There is an increase of up to 1 b/s/Hz in the average capacity of the 4x4 MIMO-OFDM channel when the number of pedestrians goes from 1 to 3. Additionally, an increment of up to 2.5 b/s/Hz in MIMO-OFDM channel capacity was measured for a 4x4 array compared to a 2x2 array in presence of pedestrians. Channel capacity values derived from this analysis are important in terms of understanding the limitations and possibilities for MIMO-OFDM systems in indoor populated environments

    An advanced multi-element microcellular ray tracing model

    Get PDF

    Automatic Wi-Fi Fingerprint System based on Unsupervised Learning

    Get PDF
    Recently, smartphones and Wi-Fi appliances have been generalized in daily life, and location-based service(LBS) has gradually been extended to indoor environments. Unlike outdoor positioning, which is typically handled by the global positioning system(GPS), indoor positioning technologies for providing LBSs have been studied with algorithms using various short-range wireless communications such as Wi-Fi, Ultra-wideband, Bluetooth, etc. Fingerprint-based positioning technology, a representative indoor LBS, estimates user locations using the received signal strength indicator(RSSI), indicating the relative transmission power of the access point(AP). Therefore, a fingerprint-based algorithm has the advantage of being robust to distorted wireless environments, such as radio wave reflections and refractions, compared to the time-of-arrival(TOA) method for non-line-of-sight(NLOS), where many obstacles exist. Fingerprint is divided into a training phase in which a radio map is generated by measuring the RSSIs of all indoor APs and positioning phase in which the positions of users are estimated by comparing the RSSIs of the generated radio map in real-time. In the training phase, the user collects the RSSIs of all APs measured at reference points set at regular intervals of 2 to 3m, creating a radio map. In the positioning phase, the reference point, which is most similar to the RSSI, compares the generated radio map from the training phase to the RSSI measured from user movements. This estimates the real-time indoor position. Fingerprint algorithms based on supervised and semi-supervised learning such as support vector machines and principal component analysis are essential for measuring the RSSIs in all indoor areas to produce a radio map. As the building size and the complexity of structures increases, the amount of work and time required also increase. The radio map generation algorithm that uses channel modeling does not require direct measurement, but it requires considerable effort because of building material, three-dimensional reflection coefficient, and numerical modeling of all obstacles. To overcome these problems, this thesis proposes an automatic Wi-Fi fingerprint system that combines an unsupervised dual radio mapping(UDRM) algorithm that reduces the time taken to acquire Wi-Fi signals and leverages an indoor environment with a minimum description length principle(MDLP)-based radio map feedback(RMF) algorithm to simultaneously optimize and update the radio map. The proposed UDRM algorithm in the training phase generates a radio map of the entire building based on the measured radio map of one reference floor by selectively applying the autoencoder and the generative adversarial network(GAN) according to the spatial structures. The proposed learning-based UDRM algorithm does not require labeled data, which is essential for supervised and semi-supervised learning algorithms. It has a relatively low dependency on RSSI datasets. Additionally, it has a high accuracy of radio map prediction than existing models because it learns the indoor environment simultaneously via a indoor two-dimensional map(2-D map). The produced radio map is used to estimate the real-time positioning of users in the positioning phase. Simultaneously, the proposed MDLP-based RMF algorithm analyzes the distribution characteristics of the RSSIs of newly measured APs and feeds the analyzed results back to the radio map. The MDLP, which is applied to the proposed algorithm, improves the performance of the positioning and optimizes the size of the radio map by preventing the indefinite update of the RSSI and by updating the newly added APs to the radio map. The proposed algorithm is compared with a real measurement-based radio map, confirming the high stability and accuracy of the proposed fingerprint system. Additionally, by generating a radio map of indoor areas with different structures, the proposed system is shown to be robust against the change in indoor environment, thus reducing the time cost. Finally, via a euclidean distance-based experiment, it is confirmed that the accuracy of the proposed fingerprint system is almost the same as that of the RSSI-based fingerprint system.|์ตœ๊ทผ ์Šค๋งˆํŠธํฐ๊ณผ Wi-Fi๊ฐ€ ์‹ค์ƒํ™œ์— ๋ณดํŽธํ™”๋˜๋ฉด์„œ ์œ„์น˜๊ธฐ๋ฐ˜ ์„œ๋น„์Šค์— ๋Œ€ํ•œ ๊ฐœ๋ฐœ ๋ถ„์•ผ๊ฐ€ ์‹ค๋‚ด ํ™˜๊ฒฝ์œผ๋กœ ์ ์ฐจ ํ™•๋Œ€๋˜๊ณ  ์žˆ๋‹ค. GPS๋กœ ๋Œ€ํ‘œ๋˜๋Š” ์‹ค์™ธ ์œ„์น˜ ์ธ์‹๊ณผ ๋‹ฌ๋ฆฌ ์œ„์น˜๊ธฐ๋ฐ˜ ์„œ๋น„์Šค๋ฅผ ์ œ๊ณตํ•˜๊ธฐ ์œ„ํ•œ ์‹ค๋‚ด ์œ„์น˜ ์ธ์‹ ๊ธฐ์ˆ ์€ Wi-Fi, UWB, ๋ธ”๋ฃจํˆฌ์Šค ๋“ฑ๊ณผ ๊ฐ™์€ ๋‹ค์–‘ํ•œ ๊ทผ๊ฑฐ๋ฆฌ ๋ฌด์„  ํ†ต์‹  ๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์ด ์—ฐ๊ตฌ๋˜๊ณ  ์žˆ๋‹ค. ๋Œ€ํ‘œ์ ์ธ ์‹ค๋‚ด ์œ„์น˜์ธ์‹ ์•Œ๊ณ ๋ฆฌ์ฆ˜ ์ค‘ ํ•˜๋‚˜์ธ Fingerprint๋Š” ์‚ฌ์šฉ์ž๊ฐ€ ์ˆ˜์‹ ํ•œ AP ์‹ ํ˜ธ์˜ ์ƒ๋Œ€์ ์ธ ํฌ๊ธฐ๋ฅผ ๋‚˜ํƒ€๋‚ด๋Š” RSSI๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•œ๋‹ค. ๋”ฐ๋ผ์„œ Fingerprint๊ธฐ๋ฐ˜์˜ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์žฅ์• ๋ฌผ์ด ๋งŽ์ด ์กด์žฌํ•˜๋Š” ๋น„๊ฐ€์‹œ ๊ฑฐ๋ฆฌ์—์„œ TOA ๋ฐฉ์‹์— ๋น„ํ•ด ์ „ํŒŒ์˜ ๋ฐ˜์‚ฌ ๋ฐ ๊ตด์ ˆ๊ณผ ๊ฐ™์ด ์™œ๊ณก๋œ ๋ฌด์„  ํ™˜๊ฒฝ์— ๊ฐ•์ธํ•˜๋‹ค๋Š” ์žฅ์ ์ด ์žˆ๋‹ค. Fingerprint๋Š” ์‹ค๋‚ด์˜ ๋ชจ๋“  AP์˜ RSSI๋“ค์„ ์ธก์ •ํ•˜์—ฌ Radio map์„ ์ œ์ž‘ํ•˜๋Š” ๊ณผ์ •์ธ ํ•™์Šต ๋‹จ๊ณ„์™€ ์ƒ์„ฑ๋œ Radio map์˜ RSSI๋“ค์„ ์‹ค์‹œ๊ฐ„์œผ๋กœ ์ธก์ •๋œ RSSI์™€ ๋น„๊ตํ•˜์—ฌ ์‚ฌ์šฉ์ž์˜ ์œ„์น˜๋ฅผ ์ถ”์ •ํ•˜๋Š” ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„๋กœ ๋‚˜๋ˆ„์–ด์ง„๋‹ค. ํ•™์Šต ๋‹จ๊ณ„์—์„œ๋Š” ์œ„์น˜๋ฅผ ๊ตฌ๋ถ„ํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ์šฉ์ž๊ฐ€ 2~3m์˜ ์ผ์ •ํ•œ ๊ฐ„๊ฒฉ์œผ๋กœ ์„ค์ •๋œ ์ฐธ์กฐ ์œ„์น˜๋“ค๋งˆ๋‹ค ์ธก์ •๋˜๋Š” ๋ชจ๋“  AP๋“ค์˜ RSSI๋ฅผ ์ˆ˜์ง‘ํ•˜๊ณ  Radio map์œผ๋กœ ์ œ์ž‘ํ•œ๋‹ค. ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ๋Š” ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ œ์ž‘๋œ Radio map๊ณผ ์‚ฌ์šฉ์ž์˜ ์ด๋™์— ์˜ํ•ด ์ธก์ •๋˜๋Š” RSSI์˜ ๋น„๊ต๋ฅผ ํ†ตํ•ด ๊ฐ€์žฅ ์œ ์‚ฌํ•œ RSSI ํŒจํ„ด์„ ๊ฐ€์ง€๋Š” ์ฐธ์กฐ ์œ„์น˜๊ฐ€ ์‹ค์‹œ๊ฐ„ ์‹ค๋‚ด ์œ„์น˜๋กœ ์ถ”์ •๋œ๋‹ค. ์„œํฌํŠธ ๋ฒกํ„ฐ ๋จธ์‹ (SVM), ์ฃผ์„ฑ๋ถ„ ๋ถ„์„(PCA) ๋“ฑ๊ณผ ๊ฐ™์ด ์ง€๋„ ๋ฐ ์ค€์ง€๋„ ํ•™์Šต๊ธฐ๋ฐ˜์˜ Fingerprint ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ Radio map์„ ์ œ์ž‘ํ•˜๊ธฐ ์œ„ํ•ด ๋ชจ๋“  ์‹ค๋‚ด ๊ณต๊ฐ„์—์„œ RSSI์˜ ์ธก์ •์ด ํ•„์ˆ˜์ ์ด๋‹ค. ์ด๋Ÿฌํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜๋“ค์€ ๊ฑด๋ฌผ์ด ๋Œ€ํ˜•ํ™”๋˜๊ณ  ๊ตฌ์กฐ๊ฐ€ ๋ณต์žกํ•ด์งˆ์ˆ˜๋ก ์ธก์ • ๊ณต๊ฐ„์ด ๋Š˜์–ด๋‚˜๋ฉด์„œ ์ž‘์—…๊ณผ ์‹œ๊ฐ„ ์†Œ๋ชจ๊ฐ€ ๋˜ํ•œ ๊ธ‰๊ฒฉํžˆ ์ฆ๊ฐ€ํ•œ๋‹ค. ์ฑ„๋„๋ชจ๋ธ๋ง์„ ํ†ตํ•œ Radio map ์ƒ์„ฑ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ง์ ‘์ ์ธ ์ธก์ • ๊ณผ์ •์ด ๋ถˆํ•„์š”ํ•œ ๋ฐ˜๋ฉด์— ๊ฑด๋ฌผ์˜ ์žฌ์งˆ, 3์ฐจ์›์ ์ธ ๊ตฌ์กฐ์— ๋”ฐ๋ฅธ ๋ฐ˜์‚ฌ ๊ณ„์ˆ˜ ๋ฐ ๋ชจ๋“  ์žฅ์• ๋ฌผ์— ๋Œ€ํ•œ ์ˆ˜์น˜์ ์ธ ๋ชจ๋ธ๋ง์ด ํ•„์ˆ˜์ ์ด๊ธฐ ๋•Œ๋ฌธ์— ์ƒ๋‹นํžˆ ๋งŽ์€ ์ž‘์—…๋Ÿ‰์ด ์š”๊ตฌ๋œ๋‹ค. ๋”ฐ๋ผ์„œ ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ด๋Ÿฌํ•œ ๋ฌธ์ œ์ ๋“ค์„ ํ•ด๊ฒฐํ•˜๊ณ ์ž ํ•™์Šต ๋‹จ๊ณ„์—์„œ Wi-Fi ์‹ ํ˜ธ์˜ ์ˆ˜์ง‘์‹œ๊ฐ„์„ ์ตœ์†Œํ™”ํ•˜๋ฉด์„œ ์‹ค๋‚ด ํ™˜๊ฒฝ์ด ๊ณ ๋ ค๋œ Unsupervised Dual Radio Mapping(UDRM) ์•Œ๊ณ ๋ฆฌ์ฆ˜๊ณผ ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ Radio map์˜ ์ตœ์ ํ™”๊ฐ€ ๋™์‹œ์— ๊ฐ€๋Šฅํ•œ Minimum description length principle(MDLP)๊ธฐ๋ฐ˜์˜ Radio map Feedback(RMF) ์•Œ๊ณ ๋ฆฌ์ฆ˜์ด ๊ฒฐํ•ฉ๋œ ๋น„์ง€๋„ํ•™์Šต๊ธฐ๋ฐ˜์˜ ์ž๋™ Wi-Fi Fingerprint๋ฅผ ์ œ์•ˆํ•œ๋‹ค. ํ•™์Šต ๋‹จ๊ณ„์—์„œ ์ œ์•ˆํ•˜๋Š” UDRM ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋‰ด๋Ÿด ๋„คํŠธ์›Œํฌ ๊ธฐ๋ฐ˜์˜ ๋น„์ง€๋„ ํ•™์Šต ์•Œ๊ณ ๋ฆฌ์ฆ˜์ธ Autoencoder์™€ Generative Adversarial Network (GAN)๋ฅผ ๊ณต๊ฐ„๊ตฌ์กฐ์— ๋”ฐ๋ผ ์„ ํƒ์ ์œผ๋กœ ์ ์šฉํ•˜์—ฌ ํ•˜๋‚˜์˜ ์ฐธ์กฐ ์ธต์—์„œ ์ธก์ •๋œ Radio map์„ ๊ธฐ๋ฐ˜์œผ๋กœ ๊ฑด๋ฌผ์ „์ฒด์˜ Radio map์„ ์ƒ์„ฑํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ๋น„์ง€๋„ ํ•™์Šต ๊ธฐ๋ฐ˜ UDRM ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ง€๋„ ๋ฐ ์ค€์ง€๋„ ํ•™์Šต์—์„œ ํ•„์ˆ˜์ ์ธ Labeled data๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š์œผ๋ฉฐ RSSI ๋ฐ์ดํ„ฐ ์„ธํŠธ์˜ ์˜์กด์„ฑ์ด ์ƒ๋Œ€์ ์œผ๋กœ ๋‚ฎ๋‹ค. ๋˜ํ•œ 2์ฐจ์› ์‹ค๋‚ด ์ง€๋„๋ฅผ ํ†ตํ•ด ์‹ค๋‚ด ํ™˜๊ฒฝ์„ ๋™์‹œ์— ํ•™์Šตํ•˜๊ธฐ ๋•Œ๋ฌธ์— ๊ธฐ์กด์˜ ์˜ˆ์ธก ๋ชจ๋ธ์— ๋น„ํ•ด Radio map์˜ ์˜ˆ์ธก ์ •ํ™•๋„๊ฐ€ ๋†’๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์˜ํ•ด ์ œ์ž‘๋œ Radio map์€ ์œ„์น˜์ธ์‹ ๋‹จ๊ณ„์—์„œ ์‚ฌ์šฉ์ž์˜ ์‹ค์‹œ๊ฐ„ ์œ„์น˜์ธ์‹์— ์ ์šฉ๋œ๋‹ค. ๋™์‹œ์— ์ œ์•ˆํ•˜๋Š” MDLP ๊ธฐ๋ฐ˜์˜ ์ž๋™ Wi-Fi ์—…๋ฐ์ดํŠธ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์ƒˆ๋กญ๊ฒŒ ์ธก์ •๋˜๋Š” AP๋“ค์˜ RSSI์˜ ๋ถ„ํฌํŠน์„ฑ์„ ๋ถ„์„ํ•˜๊ณ  ๊ทธ ๊ฒฐ๊ณผ๋ฅผ Radio map์— ํ”ผ๋“œ๋ฐฑํ•œ๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์— ์ ์šฉ๋œ MDLP๋Š” ๋ฌด๋ถ„๋ณ„ํ•œ RSSI์˜ ์—…๋ฐ์ดํŒ…์„ ๋ฐฉ์ง€ํ•˜๊ณ  ์ถ”๊ฐ€๋˜๋Š” AP๋ฅผ Radio map์— ์—…๋ฐ์ดํŠธํ•จ์œผ๋กœ์„œ ์œ„์น˜์ธ์‹์˜ ์„ฑ๋Šฅ์„ ํ–ฅ์ƒ์‹œํ‚ค๊ณ  Radio map์˜ ํฌ๊ธฐ์˜ ์ตœ์ ํ™”๊ฐ€ ๊ฐ€๋Šฅํ•˜๋‹ค. ์ œ์•ˆํ•œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ์‹ค์ œ ์ธก์ •๊ธฐ๋ฐ˜์˜ Radio map๊ณผ ์„œ๋กœ ๋น„๊ต๋ฅผ ํ†ตํ•ด ์ œ์•ˆํ•œ Fingerprint ์‹œ์Šคํ…œ์˜ ๋†’์€ ์•ˆ์ •์„ฑ๊ณผ ์ •ํ™•๋„๋ฅผ ํ™•์ธํ•˜์˜€๋‹ค. ๋˜ํ•œ ๊ตฌ์กฐ๊ฐ€ ๋‹ค๋ฅธ ์‹ค๋‚ด๊ณต๊ฐ„์˜ Radio map ์ƒ์„ฑ ๊ฒฐ๊ณผ๋ฅผ ํ†ตํ•ด ์‹ค๋‚ด ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๊ฐ•์ธํ•จ๊ณผ ํ•™์Šต ์‹œ๊ฐ„ ์ธก์ •์„ ํ†ตํ•œ ์‹œ๊ฐ„ ๋น„์šฉ์ด ๊ฐ์†Œํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋งˆ์ง€๋ง‰์œผ๋กœ Euclidean distance ๊ธฐ๋ฐ˜ ์‹คํ—˜์„ ํ†ตํ•˜์—ฌ ์‹ค์ œ ์ธก์ •ํ•œ RSSI๊ธฐ๋ฐ˜์˜ Fingerprint ์‹œ์Šคํ…œ๊ณผ ์ œ์•ˆํ•œ ์‹œ์Šคํ…œ์˜ ์œ„์น˜์ธ์‹ ์ •ํ™•๋„๊ฐ€ ๊ฑฐ์˜ ์ผ์น˜ํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค.Contents Contents โ…ฐ Lists of Figures and Tables โ…ฒ Abstract โ…ต Chapter 1 Introduction 01 1.1 Background and Necessity for Research 01 1.2 Objectives and Contents for Research 04 Chapter 2 Wi-Fi Positioning and Unsupervised Learning 07 2.1 Wi-Fi Positioning 07 2.1.1 Wi-Fi Signal and Fingerprint 07 2.1.2 Fingerprint Techniques 15 2.2 Unsupervised Learning 23 2.2.1 Neural Network 23 2.2.2 Autoencoder 28 2.2.3 Generative Adversarial Network 31 Chapter 3 Proposed Fingerprint System 36 3.1 Unsupervised Dual Radio Mapping Algorithm 36 3.2 MDLP-based Radio Map Feedback Algorithm 47 Chapter 4 Experiment and Result 51 4.1 Experimental Environment and Configuration 51 4.2 Results of Unsupervised Dual Radio Mapping Algorithm 56 4.2 Results of MDLP-based Radio Map Feedback Algorithm 69 Chapter 5 Conclusion 79 Reference 81Docto

    Terahertz Wireless Channels: A Holistic Survey on Measurement, Modeling, and Analysis

    Full text link
    Terahertz (0.1-10 THz) communications are envisioned as a key technology for sixth generation (6G) wireless systems. The study of underlying THz wireless propagation channels provides the foundations for the development of reliable THz communication systems and their applications. This article provides a comprehensive overview of the study of THz wireless channels. First, the three most popular THz channel measurement methodologies, namely, frequency-domain channel measurement based on a vector network analyzer (VNA), time-domain channel measurement based on sliding correlation, and time-domain channel measurement based on THz pulses from time-domain spectroscopy (THz-TDS), are introduced and compared. Current channel measurement systems and measurement campaigns are reviewed. Then, existing channel modeling methodologies are categorized into deterministic, stochastic, and hybrid approaches. State-of-the-art THz channel models are analyzed, and the channel simulators that are based on them are introduced. Next, an in-depth review of channel characteristics in the THz band is presented. Finally, open problems and future research directions for research studies on THz wireless channels for 6G are elaborated.Comment: to appear in IEEE Communications Surveys and Tutorial

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: โ€ข Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environmentsโ€ข Measurements, characterization, and modelling of radio channels beyond 4G networksโ€ข Key issues in Vehicle (V2X) communicationโ€ข Wireless Body Area Networks, including specific Radio Channel Models for WBANsโ€ข Energy efficiency and resource management enhancements in Radio Access Networksโ€ข Definitions and models for the virtualised and cloud RAN architecturesโ€ข Advances on feasible indoor localization and tracking techniquesโ€ข Recent findings and innovations in antenna systems for communicationsโ€ข Physical Layer Network Coding for next generation wireless systemsโ€ข Methods and techniques for MIMO Over the Air (OTA) testin

    Wireless location : from theory to practice

    Get PDF
    • โ€ฆ
    corecore