
 Ng, K. H., Tameh, E. K., & Nix, A. R. (2004). An advanced multi-element
microcellular ray tracing model. In International Symposium on Wireless
Communication Systems (ISWCS04). (Vol. 1, pp. 438 - 442). Institute of
Electrical and Electronics Engineers (IEEE). 10.1109/ISWCS.2004.1407285

Link to published version (if available):
10.1109/ISWCS.2004.1407285

Link to publication record in Explore Bristol Research
PDF-document

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms.html

Take down policy

Explore Bristol Research is a digital archive and the intention is that deposited content should not be
removed. However, if you believe that this version of the work breaches copyright law please contact
open-access@bristol.ac.uk and include the following information in your message:

• Your contact details
• Bibliographic details for the item, including a URL
• An outline of the nature of the complaint

On receipt of your message the Open Access Team will immediately investigate your claim, make an
initial judgement of the validity of the claim and, where appropriate, withdraw the item in question
from public view.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/29025457?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1109/ISWCS.2004.1407285
http://research-information.bristol.ac.uk/en/publications/an-advanced-multielement-microcellular-ray-tracing-model(d4a0d10f-8527-4e5a-978e-5f914d230c86).html
http://research-information.bristol.ac.uk/en/publications/an-advanced-multielement-microcellular-ray-tracing-model(d4a0d10f-8527-4e5a-978e-5f914d230c86).html

An Advanced Multi-Element Microcellular Ray
Tracing Model

K. H. Ng, E. K. Tameh, A. R. Nix
Centre for Communications Research

Merchant Venturers Building, Woodland Rd,
University of Bristol, Bristol, UK

k.h.ng@bris.ac.uk, tek.tameh@bris.ac.uk, Andy.Nix@bris.ac.uk

Abstract— In this paper an advanced site specific image-based
ray-tracing model is developed that enables multi-element
outdoor propagation analysis to be performed in a microcellular
environment. Sophisticated optimization techniques such as pre-
processing the environment database using object partitioning,
visibility determination, diffraction image tree pre-calculation
techniques, and parallel processing are used to improve run time
efficiency. A comparison of path loss prediction with multi-
element site specific measurements shows strong agreement, with
a mean error of 3.6dB and a standard deviation of 3.2dB. The
model is also shown to be capable of performing detailed MIMO
analysis.

Keywords –ray tracing, propagation, optimisation, MIMO

I. INTRODUCTION
The major drawback of deterministic modelling of the radio

propagation channel has been the computational burden
compared to that of statistical modelling. However, with the
advancement of various modern communication systems, such
as the growing use of MIMO [1], in-depth channel
characteristic studies in site-specific environments are
becoming increasingly important. The Geometrical Optics
(GO) based ray-tracing technique has been commonly used in
deterministic models and shown to have good agreement with
measurement [2]. As with all deterministic models, this method
requires a heavy computational load during the ray path finding
process.

Section II of this paper describes an overview of our ray
tracing model. Section III describes numerous advanced
optimization techniques that accelerate the ray path finding
process. Section IV compares the prediction of path loss in an
outdoor microcellular environment to that of a dedicated set of
measurements. Section V describes the MIMO capability of the
ray tracing model.

II. OVERVIEW OF RAY TRACING MODEL
Figure 1 shows an overview flowchart of the ray tracing

model. Our image based ray tracing model can be divided into
four main parts: 1) Pre-processing of database; 2) Creation of
the image tree; 3) Creation of the ray tree; 4) Electromagnetic
calculation. Pre-processing of the database is used to perform a
one-time optimization of the environment database to
accelerate the ray path finding process during run time. The ray
path finding process is used to find all possible ray paths from

the transmitter source to the receiver. This task includes the
forward creation of the image trees and the creation of the ray
tree through backward tracing. Our ray tracing model is able to
find extensive ray paths that capture major propagation
mechanisms, such as building reflection, building roof top
diffraction, building corner diffraction, building scattering and
terrain scattering (and combinations of these various
propagation mechanisms). These ray paths are calculated in full
3D. A vertical plane diffraction model is also supported in our
tool to approximate multiple building roof top diffractions for
faster processing. The capability of our model to combine these
key propagation mechanisms allows comprehensive analysis to
be performed in an outdoor microcellular environment. The
electromagnetic calculation stage applies various EM models to
the generated ray paths, these include GO Fresnel for
reflection, Uniform Theory of Diffraction (UTD) for
diffraction, and synthetic aperture radar techniques for terrain
scattering [3][4].

The 3D object geometry used in the ray tracing model
consists of polygons, polygon tiles, polygon horizontal edges,
polygon vertical edges and terrain maps. This is similar to the
definitions found in [5]. The difference here is that in [5], edges
are divided into segments and all interactions (reflection and
diffraction) occur at the centre of every visible tile and
segment. In the ray tracing model discussed here, the visible
centre of polygon tiles are used for scattering, polygons are
used for reflection, polygon horizontal and vertical edges are
used for diffraction and terrain maps are used for scattering.
This avoids the need to break down the polygons into segments
and tiles for reflection and diffraction purposes due to the
nature of image-based ray tracing, and hence reduces the
number of interaction objects. For example, when considering
reflection from one potential visible polygon surface, [5] has to
perform calculations at every visible centre of the tiles, whereas
in our approach only one reflection calculation is needed.

III. OPTIMIZATION OF RAY TRACING MODEL
A number of advanced acceleration techniques have been
implemented, including object space partitioning, visibility
determination, pre-creation of edge diffraction trees and grid
computing. Some of these techniques have greatly enhanced
the efficiency of the ray tracing process [4-6]. These
techniques can be performed during the database pre-
processing stage.

Figure 1. Flow chart of ray tracing model.

A. Object Space Partitioning
Object space partitioning is an effective spatial partitioning

method for creating powerful data structures that enable fast
object spatial handling [8]. For databases with many objects,
object space partitioning can greatly accelerate spatial
operations such as proximity queries, ray casting and ray
intersections. In object space partitioning, objects are
hierarchically partitioned into various spatial cells, called
‘leaves’, according to a set of partitioning ‘planes’. Each set of
‘planes’ form a ‘node’. The leaves and nodes form a ‘tree’
structure that allows fast searching based on spatial coherency.
An object space partitioning data structure is named according
to the number of ‘planes’ in each ‘node’. A binary tree,
quadtree and octree require two, four and eight ‘planes’
respectively.

A hybrid intra-object BSP tree and inter-object quadtree
data structure is implemented here for the ray tracing model.
Each object (building and foliage) is partitioned into individual
BSP trees. All the BSP trees in turn are partitioned into a single
quadtree. The reason for using a hybrid spatial partitioning
method arises from the fact that the use of a BSP in a
complicated outdoor environment creates many
implementation problems (especially floating point errors) and
a volume bounding quadtree does not include information
about the polygons in each object. Since the BSP tree is already

constructed for each object for Constructive Solid Geometry
purposes (i.e., for building a 3D world from the raw database)
[8], the hybrid method is feasible to combine the powerful
features of both a BSP and quadtree. This is different from [5-
7], where only one type of object space partitioning has been
implemented.

In order to see the improvement for line of sight tests using
object space partitioning, a comparison was performed using
1,000,000 sets of randomly generated start and end locations
using the database described in Section IV. Three types of
algorithm were examined. The first uses a simple ray box and
ray plane intersection method, which checks against each
object using a brute-force method. The second method uses the
same testing algorithm except the data is now arranged in a
quadtree. The third method uses the hybrid technique discussed
previously. The results are shown in Table 1 below*. It can be
seen that object space partition using the hybrid method
improves the processing time by 192% and 44% compared to
the simple intersection and quadtree methods respectively.

TABLE I. PROCESSING TIME FOR THREE DIFFERENT LOS ALGORITHMS.

Method Simple
Intersection

Quadtree Quadtree
+BSP

Processing Time (s) 152 75 52

B. Visibility Determination
One way to improve the efficiency of a ray tracing

algorithm is to reject objects early when ray intersection is
impossible. The result of visibility determination can be stored
in a data structure known as the Potential Visibility Set (PVS).
A PVS is a set of potential visible information [9]. It is
basically a table of simple ‘Yes’ or ‘No’ entries on object
visibility. For ray tracing purposes, it is important to have a set
of PVSs for inter-object and point-object visibility. Inter-object
PVSs allows fast visibility determination for rays between
objects. Point-object PVSs determine the visibility of objects
from emitter points. These PVSs are compressed using simple
zero-run-length coding [9] for optimal storage and fast access
during run-time.

Figure 2. Occlusion culling.

The simplest form of visibility determination is back-face
culling. Back-face culling is a method to cull away object
geometry that is back-facing to the viewer. It is a simple
algorithm that uses a vector dot product operation to determine
the facing orientation. Hence it provides the fastest crude way
to eliminate non-visible objects. A more effective form of
visibility determination makes use of object occlusion culling

* All computing nodes are based on Windows Pentium-4 2.4GHz platform.

occludee

occluder Viewing point

Clip planes

Start

Image tree
creation

World
database

Read trace
configuration

Diffraction
trees

information

Image
trees

Ray tree
creation

Pre-
created
PVSs

Electromagnetic
calculation

Ray
 trees

End

Splitting of
subtasks

Data transfer

Sequence flow

Ray tree
creation

Electromagnetic
calculation

Ray
 trees

Combine
subtasks

Pre-
created

diffraction

Stand alone

Final
ray

trees

techniques [8]. This is a method that eliminates not only back-
facing object geometry, but also any occluded object geometry.
Occlusion occurs when the object geometry is blocked by other
object geometry. The occludee is the occluded object geometry
and the occluder is the occluding object geometry (see Figure
2). For the environment used here, the occludees include
polygon horizontal edges, polygon vertical edges, polygon tile
centres and terrain map centres. Occluders consist of a set of
clip planes that enclose the shadow region. The culling process
can be simplified by clipping the occludee against the clip
planes. Practically, the clippling process can be performed
using a memory filling method, where a buffer representing the
physical layout of the geometry is created and the buffer
representation of the geometry that falls within the shadow
region is bit-invalidated.

The crucial part of occlusion culling is to create a set of
occluders that contain information on the shadow regions so
that the visibility of the occludee can be checked. The
occluders are created in the following manner: (i) Arrange all
polygons in order of distance from the source to create a list of
occludees. (ii) Choose the nearest polygon in the occludee list
to be an occluder; create a set of clip planes from the source to
the polygon; perform occlusion culling on the rest of
unoccluded polygons in the occludee list; remove the occluded
polygons from the occlude list. (iii) Each unoccluded polygon
that remains in the occludee list is removed from the list and
becomes an occluder in turn. Process (ii) is repeated until no
polygons are left in the occludee list.

Figure 3. Occlusion culling process.

Four potential occluders are shown in Figure 3 as thick
solid lines. The shaded area is the shadow region formed by the
clipping planes. All objects are higher than the viewing point.
From Figure 3a, during the first occlusion culling for the first
occluder, parts of the second and third potential occluders are
occluded as represented by the thick dotted lines. These
correspond to the zero filling of the visibility bit sets. From
Figure 3b, since the second potential occluder is not fully
blocked, it becomes an occluder. Occlusion culling is
performed for the second occluder. As a result, the third
potential occluder is now fully blocked and hence discarded
(not visible). A fourth potential occluder is only partly blocked
and would next become an occluder.

Figure 4 shows the complementary cumulative density
function (CCDF) of the percentage visibility reduction between
the simple back-face culling method and the more detailed
occlusion culling method. The visibility reduction is calculated
from the difference in the number of visible elements for the

two schemes as a percentage of the total number of elements.
The calculation is performed on the database described in
Section IV for four different PVSs: 1) Polygon to polygon; 2)
Vertical edge to vertical edge; 3) Polygon to terrain; 4) Vertical
edge to terrain. It can be seen from Figure 4 that the visibility
determination with occlusion culling reduces the number of
visible elements significantly when compared to simple back
face culling, with an average reduction in the number of visible
elements of 21%, 57.5%, 48.2% and 76.2% for each of the four
PVSs. A reduction in visibility results in an improvement in the
speed of the ray tracing process as less object interactions are
performed. Figure 5 shows the potential visible front facing
polygons (shaded white) from a given view point, S.

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CCDF of Visibility Reduction

Visibility Reduction (%)

P
ro

ba
bi

lit
y

(V
is

ib
ili

ty
 R

ed
uc

tio
n

>
A

bs
ci

ss
a) Poly-Poly

Edge-Edge
Poly-Terrain
Edge-Terrain

Figure 4. CCDF of visibility error as a percentage for four
different PVS calculations using occlusion culling and simple

back face culling.

Figure 5. Point to polygon visibility.

C. Pre- creation of Diffraction Trees
For image-based ray tracing, generating images and storing

the image trees is computationally costly. An image tree is
formed based on knowledge of the source position and an
object database. The source can be either a transmitter or a
vertical diffraction edge [2]. The overall image tree for each
ray-tracing run consists of one transmitter image tree with
branches of diffraction image trees at each visible diffraction

Viewing point

1

2

3

1

3

Viewing point

(a) (b)

4
4

2

edge. As all diffraction edge source positions are static for each
environment database, generating diffraction image trees for
every ray-tracing run is redundant. Therefore, it is possible to
pre-create all the diffraction image trees for each database.
These pre-created diffraction image trees are dynamically
linked at run-time. One constraint of this technique is that the
maximum order of reflection after diffraction for each ray is
limited by the order of the static diffraction image tree (as with
all image trees). Nevertheless, if a high order of reflection after
diffraction is needed, it is possible to expand the pre-created
diffraction tree at run time at the expense of speed.

Figure 6. Pre-creation of diffraction trees.

Figure 6a shows an image tree with solid shaded circles
representing reflection and dash shaded circles representing
diffraction. Three of the diffraction nodes have the same
diffraction edge and hence they have the same child tree.
Figure 6b shows that this redundancy is removed by dynamic
linking to a pre-created diffraction tree.

D. Grid computing
One advantage of image-based ray tracing is that the same

image tree can be used in the creation of all ray trees with the
same trace configuration. A typical ray tracing application has
many receiver points (ray trees) and this provides a way to
exploit parallel processing. The ray tracing model discussed
here can split the creation of the ray trees into multiple
subtasks, each handling a number of receiver points. Each
subtask is capable of performing stand-alone ray tracing with
the same image tree. Hence, the whole ray tracing process can
be distributed into multiple subtasks for the grid computing
process (see Figure 1). This greatly enhances the speed of the
ray tracing process and makes it more feasible to perform rapid
route and grid analysis. The only insignificant overhead
incurred is the need to combine subtask results into a single
structure. The speed of ray tracing can be improved linearly
with the number of grid computing processors.

Table 2 shows a comparison of the processing time needed
in the ray tracing trial described in Section IV, for the case of a
single processor and a grid with 10 processors. It can be seen
here that grid computing has reduced the overall processing
time by around 307% as compared to a single processor. By
comparing the time of creation of ray tree, the use of grid
computing has actually reduced run-time by around 850%.

TABLE II. PROCESSING TIME FOR SINGLE PROCESSOR AND GRID
COMPUTING.

Single Processor Grid Computing (10 processors)

110 mins

(Including 13 mins of
image tree creation,
95 mins of ray tree
creation and 2 mins
of overhead).

27mins

(including 13 mins of image tree
creation and a maximum of 10
mins of ray tree creation for each
sub processing task and 4 mins of
overhead)

IV. ROUTE COMPARISION OF WITH MEASUREMENTS
The ray tracing model is now used to perform path loss

prediction comparisons with outdoor SIMO measurements in
the city of Bristol. The transmitter is mounted on a building top
(approx. 30m from the ground) and 400 receiver points are
placed along the three routes shown in Figure 7 (approx. 1.7m
from the ground). An eight element ULA is used at the
transmitter as (shown in Figure 8) and an omni antenna is used
at the receiver. Reflection is performed up to the fourth order,
diffraction up to the second order, and terrain scattering is also
considered. The bandwidth is 20MHz at a centre frequency of
1.92GHz, with a frequency resolution of 156.25 kHz. The
database used in the ray tracing model consists of a 1km by
1km area with 995 buildings, 174 foliage objects, 12,495
building polygons, 12,495 building roof top edges, 7,921
building vertical edges and 14,046 terrain pixels (sampled
every 10m).

Figure 7. Trial map of 1km by 1km in the city of Bristol

Figure 8. Eight element ULA antenna.

The results are shown in Figure 9 and summarized in Table
3. The prediction results agree well with the measurement data,
with a mean error of 3-4 dB. The correlation of each

Same diffraction edge

Reflection

Diffraction

Emitter source
Dynamic link

(a) (b)

transmission coefficient plays an important role in the capacity
calculation of MIMO systems. Although the trial studied here
only provides (8x1) SIMO results, a study of the complex
correlation coefficient between each transmission sub channel
provides a basis for the validation and implementation of
MIMO systems. There are 8 sub element channels giving an
8x8 symmetrical correlation coefficient matrix CM for each
receiver point. A correlation coefficient error matrix CEM of
(8x8) is calculated for each receiver point such that CEM is
equal to the absolute difference of the measured CM and the
modelled CM from the ray tracing output.

TABLE III. STATISTICAL SUMMARY OF PATH LOSS PREDICTION
COMPARISON.

Mean Error (dB) 3.57

Std. Deviation (dB) 3.19

Correlation 0.85

TABLE IV. STATISTICAL SUMMARY FOR CORRELATION COEFFICIENT
ERROR MATRIX CEM.

Mean Error (dB) 0.08

Std. Deviation (dB) 0.18

Table 4 shows a statistical summary of CEM. It can be seen
that the ray tracing model produces a low mean correlation
error between transmission sub channels and this promises
accurate MIMO channel predictions.

50 100 150 200 250 300 350 400
-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50
Prediction of Path Loss

Receiver points

P
at

h
Lo

ss
 (d

B
)

Measurement
Ray tracing

P1

P2

P3

P4

P5

P6

Figure 9. Path loss prediction comparison of the ray tracing

output with measurement.

V. MIMO CAPABILITY
The model is able to perform ray tracing using multiple

antenna elements at the transmitter and receiver. The program
also provides an effective data structure to store the ray tracing
results for MIMO analysis. Figure 10 shows an example of the
instantaneous normalized MIMO capacity for a 4x4 ULA
MIMO system, with a signal-to-noise ratio of 20dB assumed at
each receiver location. A 20 MHz bandwidth, a centre
frequency of 5.2GHz, and a frequency resolution of 156.25kHz
are assumed. A 4-element patch array antenna is used at the
transmitter and a 4-element monopole antenna is used at the
receiver.

Figure 10. 4x4 ULA instantaneous MIMO capacity prediction.

VI. CONCLUSION
An advanced deterministic ray tracing model has been

developed that combines various sophisticated optimization
techniques to accelerate the ray path finding process. These
features enable the model to perform fast propagation analysis
in a complicated outdoor microcellular propagation
environment. These features are especially important in the
case of MIMO applications where exhaustive ray tracing is
performed for all antenna element pairs. Results show a good
agreement with measurements for the prediction of path loss
and demonstrate the potential for high quality MIMO analysis.

ACKNOWLEDGEMENT
This work was performed under the IST-2001-32549

ROMANTIK project. The authors would like to thank Prof.
Mark Beach, Mythri Hunukumbure and Sze Ern Foo for
performing the channel measurements used in this study.

REFERENCES
[1] G. J. Foschini, “Layered space-time architecture for wireless

communication in a fading environment when using multi-element
antennas,” Bell Labs Techn. J., pp. 41–59, Autumn 1996.

[2] G.E. Athanasiadou, A.R.Nix and J.P.McGeehan, “A microcellular ray-
tracing propagation model and evaluation of its narrow-band and wide-
band predictions,” IEEE Journal on Selected Areas in Communications,
vol 18., No.3, pp.322- 335, March 2000.

[3] D. A. McNamara, C. W. I. Pistorius, and J. A. G. Malherbe, Introduction
to the Uniform Geometrical Theory of Diffraction. Norwood, MA:
Artech House, 1990.

[4] T.Brook, P.F.Driessen, R.L.Kirlin, “Propagation measurements using
synthetic aperture radar techniques”, Vehicular Technology Conference
1996, IEEE 46th,vol 3, pp. 1633 – 1637, 28 April-1 May 1996.

[5] R.Hoppe, P.Wertz, G.Wolfle, and F.M. Landstorfer, “Fast and enhanced
ray optical propagation modeling for radop network planning in urban
and indoor scenarios,” MPRG Wireless Personal Communications
Symposium 2000, Blacksburg (Virginia USA), 9-14 April 2000.

[6] F.Aguado Agelet, F.Perez Fontan, and A.Formella, “Fast Ray Tracing
for Microcellular and Indoor Environments,” IEEE Transactions on
Magnetics, 33(2):1484-1487, March 1997.

[7] R.P.Torres, L.Valle, M.Domingo, S.Loredo, “An efficient ray-tracing
method for radiopropagation based on the modified BSP algorithm,”
IEEE Vehicular Tech. Conf., Amsterdam, Sept 1999.

[8] Mark Deloura, Game Programming Gems. Massachusetts,USA:Charles
River Media, 2000.

[9] Adam Hoult and Gary Simmons. Engine Programming with BSP Tree.
URL: http://www.gameinstitute.com [06-May-2004].

