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Abstract— In this paper an advanced site specific image-based 
ray-tracing model is developed that enables multi-element 
outdoor propagation analysis to be performed in a microcellular 
environment. Sophisticated optimization techniques such as pre-
processing the environment database using object partitioning, 
visibility determination, diffraction image tree pre-calculation 
techniques, and parallel processing are used to improve run time 
efficiency. A comparison of path loss prediction with multi-
element site specific measurements shows strong agreement, with 
a mean error of 3.6dB and a standard deviation of 3.2dB. The 
model is also shown to be capable of performing detailed MIMO 
analysis.  
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I.  INTRODUCTION 
The major drawback of deterministic modelling of the radio 

propagation channel has been the computational burden 
compared to that of statistical modelling. However, with the 
advancement of various modern communication systems, such 
as the growing use of MIMO [1], in-depth channel 
characteristic studies in site-specific environments are 
becoming increasingly important. The Geometrical Optics 
(GO) based ray-tracing technique has been commonly used in 
deterministic models and shown to have good agreement with 
measurement [2]. As with all deterministic models, this method 
requires a heavy computational load during the ray path finding 
process. 

Section II of this paper describes an overview of our ray 
tracing model. Section III describes numerous advanced 
optimization techniques that accelerate the ray path finding 
process. Section IV compares the prediction of path loss in an 
outdoor microcellular environment to that of a dedicated set of 
measurements. Section V describes the MIMO capability of the 
ray tracing model. 

II. OVERVIEW OF RAY TRACING MODEL 
Figure 1 shows an overview flowchart of the ray tracing 

model. Our image based ray tracing model can be divided into 
four main parts: 1) Pre-processing of database; 2) Creation of 
the image tree; 3) Creation of the ray tree; 4) Electromagnetic 
calculation. Pre-processing of the database is used to perform a 
one-time optimization of the environment database to 
accelerate the ray path finding process during run time. The ray 
path finding process is used to find all possible ray paths from 

the transmitter source to the receiver. This task includes the 
forward creation of the image trees and the creation of the ray 
tree through backward tracing.  Our ray tracing model is able to 
find extensive ray paths that capture major propagation 
mechanisms, such as building reflection, building roof top 
diffraction, building corner diffraction, building scattering and 
terrain scattering (and combinations of these various 
propagation mechanisms). These ray paths are calculated in full 
3D. A vertical plane diffraction model is also supported in our 
tool to approximate multiple building roof top diffractions for 
faster processing. The capability of our model to combine these 
key propagation mechanisms allows comprehensive analysis to 
be performed in an outdoor microcellular environment. The 
electromagnetic calculation stage applies various EM models to 
the generated ray paths, these include GO Fresnel for 
reflection, Uniform Theory of Diffraction (UTD) for 
diffraction, and synthetic aperture radar techniques for terrain 
scattering [3][4].  

The 3D object geometry used in the ray tracing model 
consists of polygons, polygon tiles, polygon horizontal edges, 
polygon vertical edges and terrain maps. This is similar to the 
definitions found in [5]. The difference here is that in [5], edges 
are divided into segments and all interactions (reflection and 
diffraction) occur at the centre of every visible tile and 
segment. In the ray tracing model discussed here, the visible 
centre of polygon tiles are used for scattering, polygons are 
used for reflection, polygon horizontal and vertical edges are 
used for diffraction and terrain maps are used for scattering. 
This avoids the need to break down the polygons into segments 
and tiles for reflection and diffraction purposes due to the 
nature of image-based ray tracing, and hence reduces the 
number of interaction objects. For example, when considering 
reflection from one potential visible polygon surface, [5] has to 
perform calculations at every visible centre of the tiles, whereas 
in our approach only one reflection calculation is needed.  

III. OPTIMIZATION OF RAY TRACING MODEL 
A number of advanced acceleration techniques have been 
implemented, including object space partitioning, visibility 
determination, pre-creation of edge diffraction trees and grid 
computing. Some of these techniques have greatly enhanced 
the efficiency of the ray tracing process [4-6]. These 
techniques can be performed during the database pre-
processing stage. 



 

     
Figure 1. Flow chart of ray tracing model. 

A. Object Space Partitioning 
Object space partitioning is an effective spatial partitioning 

method for creating powerful data structures that enable fast 
object spatial handling [8]. For databases with many objects, 
object space partitioning can greatly accelerate spatial 
operations such as proximity queries, ray casting and ray 
intersections. In object space partitioning, objects are 
hierarchically partitioned into various spatial cells, called 
‘leaves’, according to a set of partitioning ‘planes’. Each set of 
‘planes’ form a ‘node’. The leaves and nodes form a ‘tree’ 
structure that allows fast searching based on spatial coherency. 
An object space partitioning data structure is named according 
to the number of ‘planes’ in each ‘node’. A binary tree, 
quadtree and octree require two, four and eight ‘planes’ 
respectively. 

A hybrid intra-object BSP tree and inter-object quadtree 
data structure is implemented here for the ray tracing model. 
Each object (building and foliage) is partitioned into individual 
BSP trees. All the BSP trees in turn are partitioned into a single 
quadtree. The reason for using a hybrid spatial partitioning 
method arises from the fact that the use of a BSP in a 
complicated outdoor environment creates many 
implementation problems (especially floating point errors) and 
a volume bounding quadtree does not include information 
about the polygons in each object. Since the BSP tree is already 

constructed for each object for Constructive Solid Geometry 
purposes (i.e., for building a 3D world from the raw database) 
[8], the hybrid method is feasible to combine the powerful 
features of both a BSP and quadtree. This is different from [5-
7], where only one type of object space partitioning has been 
implemented. 

In order to see the improvement for line of sight tests using 
object space partitioning, a comparison was performed using 
1,000,000 sets of randomly generated start and end locations 
using the database described in Section IV. Three types of 
algorithm were examined. The first uses a simple ray box and 
ray plane intersection method, which checks against each 
object using a brute-force method. The second method uses the 
same testing algorithm except the data is now arranged in a 
quadtree. The third method uses the hybrid technique discussed 
previously. The results are shown in Table 1 below*. It can be 
seen that object space partition using the hybrid method 
improves the processing time by 192% and 44% compared to 
the simple intersection and quadtree methods respectively. 

TABLE I.   PROCESSING TIME FOR THREE DIFFERENT LOS ALGORITHMS. 

Method Simple 
Intersection 

Quadtree Quadtree 
+BSP 

Processing Time (s) 152 75 52 

B. Visibility Determination 
One way to improve the efficiency of a ray tracing 

algorithm is to reject objects early when ray intersection is 
impossible. The result of visibility determination can be stored 
in a data structure known as the Potential Visibility Set (PVS). 
A PVS is a set of potential visible information [9]. It is 
basically a table of simple ‘Yes’ or ‘No’ entries on object 
visibility. For ray tracing purposes, it is important to have a set 
of PVSs for inter-object and point-object visibility. Inter-object 
PVSs allows fast visibility determination for rays between 
objects. Point-object PVSs determine the visibility of objects 
from emitter points. These PVSs are compressed using simple 
zero-run-length coding [9] for optimal storage and fast access 
during run-time.  

 

Figure 2. Occlusion culling. 

The simplest form of visibility determination is back-face 
culling. Back-face culling is a method to cull away object 
geometry that is back-facing to the viewer. It is a simple 
algorithm that uses a vector dot product operation to determine 
the facing orientation. Hence it provides the fastest crude way 
to eliminate non-visible objects. A more effective form of 
visibility determination makes use of object occlusion culling 
                                                           

* All computing nodes are based on Windows Pentium-4 2.4GHz platform. 
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techniques [8]. This is a method that eliminates not only back-
facing object geometry, but also any occluded object geometry. 
Occlusion occurs when the object geometry is blocked by other 
object geometry. The occludee is the occluded object geometry 
and the occluder is the occluding object geometry (see Figure 
2). For the environment used here, the occludees include 
polygon horizontal edges, polygon vertical edges, polygon tile 
centres and terrain map centres. Occluders consist of a set of 
clip planes that enclose the shadow region. The culling process 
can be simplified by clipping the occludee against the clip 
planes. Practically, the clippling process can be performed 
using a memory filling method, where a buffer representing the 
physical layout of the geometry is created and the buffer 
representation of the geometry that falls within the shadow 
region is bit-invalidated. 

The crucial part of occlusion culling is to create a set of 
occluders that contain information on the shadow regions so 
that the visibility of the occludee can be checked. The 
occluders are created in the following manner: (i) Arrange all 
polygons in order of distance from the source to create a list of 
occludees. (ii) Choose the nearest polygon in the occludee list 
to be an occluder; create a set of clip planes from the source to 
the polygon; perform occlusion culling on the rest of 
unoccluded polygons in the occludee list; remove the occluded 
polygons from the occlude list. (iii) Each unoccluded polygon 
that remains in the occludee list is removed from the list and 
becomes an occluder in turn. Process (ii) is repeated until no 
polygons are left in the occludee list.  

 
Figure 3. Occlusion culling process. 

Four potential occluders are shown in Figure 3 as thick 
solid lines. The shaded area is the shadow region formed by the 
clipping planes. All objects are higher than the viewing point. 
From Figure 3a, during the first occlusion culling for the first 
occluder, parts of the second and third potential occluders are 
occluded as represented by the thick dotted lines. These 
correspond to the zero filling of the visibility bit sets. From 
Figure 3b, since the second potential occluder is not fully 
blocked, it becomes an occluder. Occlusion culling is 
performed for the second occluder. As a result, the third 
potential occluder is now fully blocked and hence discarded 
(not visible). A fourth potential occluder is only partly blocked 
and would next become an occluder.  

Figure 4 shows the complementary cumulative density 
function (CCDF) of the percentage visibility reduction between 
the simple back-face culling method and the more detailed 
occlusion culling method. The visibility reduction is calculated 
from the difference in the number of visible elements for the 

two schemes as a percentage of the total number of elements. 
The calculation is performed on the database described in 
Section IV for four different PVSs: 1) Polygon to polygon; 2) 
Vertical edge to vertical edge; 3) Polygon to terrain; 4) Vertical 
edge to terrain. It can be seen from Figure 4 that the visibility 
determination with occlusion culling reduces the number of 
visible elements significantly when compared to simple back 
face culling, with an average reduction in the number of visible 
elements of 21%, 57.5%, 48.2% and 76.2% for each of the four 
PVSs. A reduction in visibility results in an improvement in the 
speed of the ray tracing process as less object interactions are 
performed. Figure 5 shows the potential visible front facing 
polygons (shaded white) from a given view point, S. 
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Figure 4. CCDF of visibility error as a percentage for four 
different PVS calculations using occlusion culling and simple 

back face culling.  

  

Figure 5. Point to polygon visibility. 

C. Pre- creation of Diffraction Trees 
For image-based ray tracing, generating images and storing 

the image trees is computationally costly. An image tree is 
formed based on knowledge of the source position and an 
object database. The source can be either a transmitter or a 
vertical diffraction edge [2]. The overall image tree for each 
ray-tracing run consists of one transmitter image tree with 
branches of diffraction image trees at each visible diffraction 
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edge. As all diffraction edge source positions are static for each 
environment database, generating diffraction image trees for 
every ray-tracing run is redundant. Therefore, it is possible to 
pre-create all the diffraction image trees for each database. 
These pre-created diffraction image trees are dynamically 
linked at run-time. One constraint of this technique is that the 
maximum order of reflection after diffraction for each ray is 
limited by the order of the static diffraction image tree (as with 
all image trees). Nevertheless, if a high order of reflection after 
diffraction is needed, it is possible to expand the pre-created 
diffraction tree at run time at the expense of speed. 

 

Figure 6. Pre-creation of diffraction trees. 

Figure 6a shows an image tree with solid shaded circles 
representing reflection and dash shaded circles representing 
diffraction. Three of the diffraction nodes have the same 
diffraction edge and hence they have the same child tree. 
Figure 6b shows that this redundancy is removed by dynamic 
linking to a pre-created diffraction tree. 

D. Grid computing 
One advantage of image-based ray tracing is that the same 

image tree can be used in the creation of all ray trees with the 
same trace configuration. A typical ray tracing application has 
many receiver points (ray trees) and this provides a way to 
exploit parallel processing. The ray tracing model discussed 
here can split the creation of the ray trees into multiple 
subtasks, each handling a number of receiver points. Each 
subtask is capable of performing stand-alone ray tracing with 
the same image tree. Hence, the whole ray tracing process can 
be distributed into multiple subtasks for the grid computing 
process (see Figure 1). This greatly enhances the speed of the 
ray tracing process and makes it more feasible to perform rapid 
route and grid analysis. The only insignificant overhead 
incurred is the need to combine subtask results into a single 
structure. The speed of ray tracing can be improved linearly 
with the number of grid computing processors.  

Table 2 shows a comparison of the processing time needed 
in the ray tracing trial described in Section IV, for the case of a 
single processor and a grid with 10 processors. It can be seen 
here that grid computing has reduced the overall processing 
time by around 307% as compared to a single processor. By 
comparing the time of creation of ray tree, the use of grid 
computing has actually reduced run-time by around 850%.  

TABLE II.  PROCESSING TIME FOR SINGLE PROCESSOR AND GRID 
COMPUTING. 

Single Processor Grid Computing   (10 processors) 

110 mins 

(Including 13 mins of 
image tree creation, 
95 mins of ray tree 
creation and 2 mins 
of overhead). 

27mins 

(including 13 mins of image tree 
creation and a maximum of 10 
mins of ray tree creation for each 
sub processing task and 4 mins of 
overhead) 

IV. ROUTE COMPARISION OF WITH MEASUREMENTS 
The ray tracing model is now used to perform path loss 

prediction comparisons with outdoor SIMO measurements in 
the city of Bristol. The transmitter is mounted on a building top 
(approx. 30m from the ground) and 400 receiver points are 
placed along the three routes shown in Figure 7 (approx. 1.7m 
from the ground). An eight element ULA is used at the 
transmitter as (shown in Figure 8) and an omni antenna is used 
at the receiver. Reflection is performed up to the fourth order, 
diffraction up to the second order, and terrain scattering is also 
considered. The bandwidth is 20MHz at a centre frequency of 
1.92GHz, with a frequency resolution of 156.25 kHz. The 
database used in the ray tracing model consists of a 1km by 
1km area with 995 buildings, 174 foliage objects, 12,495 
building polygons, 12,495 building roof top edges, 7,921 
building vertical edges and 14,046 terrain pixels (sampled 
every 10m). 

 
Figure 7. Trial map of  1km by 1km in the city of Bristol 

   

Figure 8. Eight element ULA antenna. 

The results are shown in Figure 9 and summarized in Table 
3. The prediction results agree well with the measurement data, 
with a mean error of 3-4 dB. The correlation of each 
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transmission coefficient plays an important role in the capacity 
calculation of MIMO systems. Although the trial studied here 
only provides (8x1) SIMO results, a study of the complex 
correlation coefficient between each transmission sub channel 
provides a basis for the validation and implementation of 
MIMO systems. There are 8 sub element channels giving an 
8x8 symmetrical correlation coefficient matrix CM for each 
receiver point. A correlation coefficient error matrix CEM of 
(8x8) is calculated for each receiver point such that CEM is 
equal to the absolute difference of the measured CM and the 
modelled CM from the ray tracing output.  

TABLE III.  STATISTICAL SUMMARY OF PATH LOSS PREDICTION 
COMPARISON. 

Mean Error (dB) 3.57 

Std. Deviation (dB) 3.19 

Correlation 0.85 

TABLE IV.  STATISTICAL SUMMARY FOR CORRELATION COEFFICIENT 
ERROR MATRIX CEM. 

Mean Error (dB) 0.08 

Std. Deviation (dB) 0.18 

Table 4 shows a statistical summary of CEM. It can be seen 
that the ray tracing model produces a low mean correlation 
error between transmission sub channels and this promises 
accurate MIMO channel predictions. 
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Figure 9. Path loss prediction comparison of the ray tracing 

output with measurement. 

V. MIMO CAPABILITY 
The model is able to perform ray tracing using multiple 

antenna elements at the transmitter and receiver. The program 
also provides an effective data structure to store the ray tracing 
results for MIMO analysis. Figure 10 shows an example of the 
instantaneous normalized MIMO capacity for a 4x4 ULA 
MIMO system, with a signal-to-noise ratio of 20dB assumed at 
each receiver location. A 20 MHz bandwidth, a centre 
frequency of 5.2GHz, and a frequency resolution of 156.25kHz 
are assumed. A 4-element patch array antenna is used at the 
transmitter and a 4-element monopole antenna is used at the 
receiver. 

 
Figure 10. 4x4 ULA instantaneous MIMO capacity prediction. 

VI. CONCLUSION 
An advanced deterministic ray tracing model has been 

developed that combines various sophisticated optimization 
techniques to accelerate the ray path finding process. These 
features enable the model to perform fast propagation analysis 
in a complicated outdoor microcellular propagation 
environment. These features are especially important in the 
case of MIMO applications where exhaustive ray tracing is 
performed for all antenna element pairs. Results show a good 
agreement with measurements for the prediction of path loss 
and demonstrate the potential for high quality MIMO analysis. 
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