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A b s tra c t

Locating and tracking targets using wireless-waves can be traced back more than 
sixty years, with early applications in radar and sonar. Recently, the Federal 
Communications Commission (FCC), together with the European recommenda­
tion El 12, required wireless communication systems to locate a E911/E112 caller’s 
position to within tens of meters accuracy. This has stimulated research interest 
in how to achieve such high accuracy wireless location. In this thesis, we have en­
deavored to analyse wireless location problem in both the theoretical and practical 
aspects.

Improving location accuracy is a topic of great interest in wireless location re­
search. Our objective, in the theoretical aspects of developing a wireless location 
system, is to determine the fundamental limits of wireless location accuracy and 
resolution. Towards this goal, we define “location signature” and “location resolu­
tion” in our research, using methods derived from wave propagation and functional 
representations including spherical harmonic decompositions for the 3D angular de­
pendence. We investigate the performance limits (resolution) of a mobile terminal’s 
location under such an arbitrary wireless wave propagation environment. In partic­
ular, we analyze the effect of multipath propagation, generally the bane of wireless 
communication, on the wireless location resolution. Curiously, our findings reveal 
that richer multipath in a wireless terminal’s spatial region can be beneficial to im­
proving the location resolution, assuming the incoming multipaths are correlated 
in angle.

In the practical aspects of developing a wireless location system, we begin with 
a “virtual” radio wave propagation model for the wireless environment. With 
this we can predict the spatial distribution of the radio signal. We proposed an 
adaptive algorithm to learn this “virtual” environment based on the wireless signal 
strength measured in actual field measurements. Also, we introduced a Channel 
Impulse Response (CIR) fingerprint location solution, which takes advantages of the 
features of fixed wireless network. Through pattern matching a practical solution 
is determined for the location problem.
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Chapter 1

Introduction

1.1 Background

Wireless localization technology aims at determining and estimating the number of 
targets and their geometrical position and velocity with the aiding of one or multiple 
reference points (RP). The RPs’ positions are generally known in a wireless location 
system. Location sensitive parameters of wireless waves traversing between the 
targets and RPs, such as time of arrival (TOA), time difference of arrival (TDOA), 
direction of arrival (DOA), signal strength, signal noise ratio/signal interference 
ratio [1,2], and even the message borne in wireless waves, are measured (sampled 
and stored) and available to help solve localisation problems. Such applications 
of localization based on wave propagation parameters are primarily, though not 
strictly, limited to radio waves and acoustic waves. The locating process could be 
implemented either at target side or at the RP side, and thereby categorised as 
either a target-side based system or a network-based system.

Among various location systems, radar is perhaps the most well known wireless 
localization system. The word “radar” is the abbreviation for “RAdio Detection 
And Ranging” which emphasizes the goal of localization. Early radar systems 
used radio frequency waveforms and directive antennas to transmit electromagnetic 
energy into the surrounding environment to detect target. Targets within a specihc 
volume will reflect part of electromagnetic energy (echo) back to radar. The echo 
is detected by radar and used to extract the target’s position information such as 
traverse time, incident azimuth, amplitude attenuation, phase and velocity, etc. 
These types of radar systems are called “active” systems since they send out radio 
wave energy actively. Other types are ’’passive” systems, which detect targets by 
electromagnetic waveforms emitted by the target. This type of radar system, such 
as most military radars, is “silent” without transmitting any waveform in a way

1



2 Introduction

that protects its own position from detection.

1.2 L iterature R eview

Traditional radar systems demonstrate the principle of wireless localization which 
is to measure location sensitive parameters of the wireless waveform propagating 
between target and RP. Real or relative position of the target is estimated based 
on the measurement results.

Wireless location technology is becoming more and more relevant and popular 
in today’s social daily life. Depending on different categorizing criteria, location 
systems could be grouped in cellular network versus ad hoc sensor network systems 
or indoor versus outdoor systems [3]. In a cellular network the mobile subscriber 
(MS) is the target and the Base Stations (BS) are acting as RPs. Cellular networks 
are generally characterised by large signal range coverage per BS and delicate device 
structures at both of MS/BS sides; in wireless Local Area (WLAN) networks, access 
points are RPs in general. It is assumed that RPs’ position are known in a location 
system. Other standard wireless location systems include Loran-C system, Omega 
system, Global Position System (GPS), etc.

Time of Arrival (ToA) and Time Difference of Arrival (TDOA) are range mea­
surement methods for wireless location using a time domain approach.

In order to measure TOA, the clock in the target and RPs must be synchronized. 
That means TOA needs a fully synchronized network. It is expensive for the 
operator to synchronize MS with all involved BSs fully [4]. Instead, it is more 
feasible to synchronize the BSs clock excluding the target. The target’s clock bias 
is treated as a parameter when implementing TOA. One example is in GPS where 
only the satellites are accurately synchronized. TOA performance is affected by 
synchronization accuracy, chip rate and chip sample rate. In the two-dimension 
(2D) case, at least three RPs are necessary to produce an unique target position.

One solution to cut the implementation cost is to adopt Time Difference of 
Arrival (TDOA). In this scenario the MS clock bias with respect to the network 
can be neglected. Three or more BSs measure the transmitted signal from a target 
and calculate the arrival time difference between any two BSs pair-wisely. For 
any two BSs, the target is located geometrically on a hyperbola related with the 
observed time difference. The crossing points of multiple hyperbolas indicate the 
most probably target’s location. An example is the GSM network using existing 
observed time difference (E-OTD) [5]. Since the GSM network is not synchronous 
it is required to compute the clock differences between involved BSs by the Location
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Service Centre (LSC). In 2D location estimation E-OTD has accuracy from 50 ms 
to 500 ms.

Another variation is Observed TDOA (OTDOA) which is designed to oper­
ate in wideband-code division multiple access (WCDMA) networks. Due to the 
inherent characteristic of CDMA, OTDOA encounters challenges such as inband 
interference, the “Near-Far” problem, and unsynchronized BSs in FDD mode [6].

In the spatial domain, a wireless waveform’s incoming angles are detected by 
smart antennas installed at BS in cellular network [7]. A smart antenna consists of a 
multiple sensor-elements array whose antenna elements are located in an aperture- 
limited receiver region. This makes it possible to detect incoming waveform’s power 
and phase spatial distributions [8]. The target’s position is determined by the in­
tersection of at least two bearings. More than two BSs are necessary for calculating 
the target’s position, especially in dense multipath propagation environments. The 
antenna elements are constrained in the receiver region. The authors in [9] demon­
strate that the performance of a direction of arrival (DoA) estimator is intrinsically 
limited by the aperture of the region over which the incoming wavefield is mea­
sured. The principle is based on analyzing the information contained in the receiver 
region. This leads the research approach, for the problem of wireless localization, 
by considering the spatial aspects of the incoming wavefield coupled to the receiver 
region. More details will be presented in the first portion of this thesis.

Compared to cellular networks, Wireless Local Access Networks (WLAN) and 
Ad Hoc Sensor Networks have a much simpler system structure, with less system 
capacity and lower number of users. They can utilize economical localisaiton meth­
ods which suit their network structure. As we know, received Radio Signal Strength 
(RSS) is inverse proportional to the traversed distance from transmitter to receiver 
in free space. Thus range estimation is available through the RSS attenuation. The 
research in [10] is one of the first and most comprehensive studies of 801.11 local­
isation using RSS—theoretical prediction of the RSS and manual calibrations are 
considered. A correlation between orientation and measured signal strength was 
established. Several improved power attenuation models were introduced in [11] 
which considers wall and floor effects.

Another way to locate a MS in WLAN and/or sensor networks is to utilize a 
radio signal spatial distribution map (RSSDM). A RSSDM contains MS’s radio 
signal spatial distribution characteristic when MS is at a certain position. For 
example, in WLAN, several access points (AP) can measure a MS’s RSS when the 
MS is at a known position. The measured RSSs (of multiple APs) are recognized 
as the MS’s location fingerprint at that particular position. The fingerprints at
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multiple positions are recorded and thus set up a RSSDM. This is implemented 
during an offline training stage. In the online stage, when the MS comes in an 
unknown position, the measured RSS (possibly from multiple BSs) is used to search 
the database to find most probable position using a pattern matching technique [12, 
13]. The fingerprint technique provides a method for mitigating the effects of non 
line-of-sight (NLOS) propagation, given an appropriate sample grid size during the 
offline training stage. The training process is generally a considerable amount of 
work typically due to the dense sample grid and size required.

When multiple RPs are lying on one line, solving the range estimation equation 
array is relatively simple. Optimized solutions are given in [14]. In reality the 
RP is randomly placed and this means solving a nonlinear equation array. Smith 
and Abel proposed a closed-form solution based on a spherical interpolation esti­
mator in [14]. Taylor series method [15] is commonly used for improved accuracy. 
When the TDOA error is small, Chan’s estimation for hyperbolic location [16] is 
an approximation of maximum likelihood (ML) estimator. Straight line of position 
represents range estimation replaces the normal circle in TOA in the method by 
Caffery [17]. This method has better anti-NLOS ability when statistical character­
istic of measurement error is unknown.

In practical location systems, algorithms based on probabilistic models have 
better accuracy than deterministic models because they are able to account for un­
certainty and inaccuracy. This is roughly analogous to performance improvements 
of decoder with soft-output comparing with hard-decision.

The maximum likelihood estimator (MLE) is a commonly employed (optimal) 
technique in case of limited prior knowledge: Om l e  =  arg maxofz (z\6) where 6(x, y ) 
is the position of MT, #(•) is the position estimation, z is measurement and f z(z\9) 
is the conditional probability density function (PDF) of z. MLE has difficulty in 
real applications since f z(z\6) is unknown. An estimated f z(z\0,P) can be given 
with the assistance of a propagation model P. Location estimation accuracy is 
dependent on the estimated PDF and propagation model. With prior knowledge, 
the optimal method is the Minimum Mean Square Error (MMSE) estimator:

where fe(0\z) is the conditional PDF of position 9 given measurement 2 , S is the 
region the MS resides in [18]. The term fe(9\z) dominates the estimation accuracy 
and relies on reliability of prior knowledge. Bayesian technique is applied where

Om m s e  — E(0\z)

(1.1)
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RSSI path loss is predicted by the Okumura model.

Since it is hard to take perfect measurements of the location sensitive parame­
ters and the multipath (reflection/diffraction) propagation characteristics of wire­
less waveforms, it is better to represent the uncertainty by localization algorithms 
and combine measurement results from different types of sensor. The Bayesian 
filtering technique is a strong candidate to manage measurement uncertainty and 
perform multi-measurement fusion, where Kalman filtering is the most widely ap­
plied variant of Bayesian filtering due to its computational simplicity. However, it 
requires the target evolves through a linear dynamic model and unimodal Gaussian 
distributed noise in state evolution and observation [19].

Multi-hypothesis tracking (MHT) extends Kalman filters to multi-modal be­
liefs [20]. MHT models the belief' by combinations of multiple Gaussians. The 
prediction accuracy is considered as an indicator of the weight of a hypothesis. 
One apparent advantage of MHT compared to Kalman filter is the representing of 
multimodal belief.

Furthermore, sequential Monte Carlo methods known as particle filters, ex­
tends MHT’s capacity to represent arbitrary distributions [21]. It is adopted in 
describing nonlinear state space with Gaussian or non-Gaussian noise. One of the 
key techniques in particle filter is sequential importance sampling with resampling. 
The disadvantage is its computational complexity increases exponentially with the 
dimensionality of the state space.

Traditional localization methods work well if the target is within the line-of-sight 
of the RP. This is not usually the case since in cellular and indoor environments 
propagation is often non line-of-sight (NLOS). In the NLOS scenario, the measured 
location parameters are biased, and mitigation algorithms need to develop in im­
proving poorer location accuracy. In ToA estimation, the NLOS error is always 
significant. In the IS-95 CDMA network the error is studied and could be as large 
as 1300m [22]. In [22] a LOS-reconstructed algorithm is proposed while NLOS 
statistical knowledge and time history of received waveform are required. Better 
performance is achievable for this algorithm if the target is moving. The authors 
of [23] present a new algorithm by using a new variable to replace the square term 
and adding loose variables. This algorithm requires no prior knowledge with con­
strained estimation accuracy since it depends on the initial estimation value of 
Chan’s algorithm [16]. This is similar to the simulation in [15] where an iterative 
linear method based on Taylor series is proposed. The method converges well if the 
initial guess is not far way from the true position. To overcome this constraint, [24] 
presents an approach to ameliorate the effect of the NLOS exploiting the redundant
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time measurements in scenarios with more than the minimum number of RPs. A 
sound detection principle for the selection of the best hypothesis was proposed, 
instead of averaging the results of all hypothesis as in other approaches.

Besides using signal strength for building RSS, the channel impulse response 
(CIR) is adopted in labelling a target at a particular position [25]. Estimation 
of CIR is implemented by the demodulator of receiver for mitigating the effect 
imposed by wireless channel upon received radio signal.

One advantage of using CIR as location signature is it does not need any hard­
ware modification on current existing wireless communication system. The only 
modification is to feed the CIR information from physical layer to location determi­
nation application. Since CIR contains information of multipath profile of wireless 
channel, it has stronger ability in determining a geographical position uniquely 
compared with RSS. In general, the advantages of CIR as location fingerprint 
makes it feasible to design a location system requiring less BSs.

In fixed wireless networks (FWN) each BS has a wide coverage. One example is 
in WiMax network, a BS covers a region with radius of almost 10 km. This makes 
it hard to estimate a MS’s position with the information shared by multiple BSs. 
We would like to take advantage of a feature of FWN. There are numerous fixed 
users in FWN with their positions already known. The CIRs from these users are 
sample points to set up the RSSDM, which saves much working effort.

1.3 D esign  and Structure o f T hesis

In this thesis we study and research on wireless localisation problems from both 
theoretical and practical aspects.

In theoretical aspect, we extend the normal research focus from location accu­
racy to location resolution. The concept of “location resolution’" is proposed here 
and it is interpreted as the minimum detectable geometrical displacement of tar­
get. (It is feasible to classify location resolution as a mobility sensitivity detection 
problem.) We analyse the effect of multipath richness imposed on wireless location 
resolution. To address problems on wireless localisation and wavefield high fidelity 
reproduction, we articulate the essential number and optimal position of sensors 
for wavefields coupled to an aperture-limited region, from a spatial information 
theory viewpoint.

Following the theoretical work, we provide practical wireless location solutions 
focused on fingerprint technology. As we know, hngerprint technology is most 
widely adopted in existing location systems due to its simplicity and robustness.
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It has no requirements for clock synchronisation between base stations when tem­
poral parameters are measured and antenna elements' calibration when AoA is 
measured. Unlike other location techniques which need multiple base stations, 
single base station works well for fingerprint technology. It has stable location esti­
mation performance and is robust to the impact of multipath propagation, channel 
fading condition and the relative positions of target and base stations. The success­
ful example of fingerprint technology is Ekahau’s Real Time Localization System 
(RTLS) and Site Survey Solutions (SSS). RTLS and SSS have been selected as Nor­
tel, Simens, 3M and the London Clinic’s provider of location tracking solutions. 
To contribute to fingerprint technology, in this thesis, we use an idea of build­
ing a “virtual propagation environment” for predicting radio signal strength in 
wireless LANs and exploit the already available channel impulse response of fixed 
wireless terminals as location fingerprints to assist wireless localisation in fixed 
wireless networks. (In this thesis, we apply adaptive radio signal prediction and 
pattern matching algorithms to improve wireless location accuracy.) In our work, 
radio wave real field measurements and propagation simulations are implemented 
to support the applied algorithms.

The thesis is structured as follows: the theoretical analysis part is composed of 
Chapter 2 and Chapter 3. and the practical solution part is composed of Chapter 
4 and Chapter 5. In Chapter 2 a wavefield coupled to source-free space is modeled 
with the assistance of Hilbert space technique. Chapter 3 analyses the effect of 
multipath richness numerically by introducing an angular correlated spatial scat­
tering model based on the general theoretical framework set up in Chapter 2. In 
the later part of Chapter 3 the essential number and optimal position of sensors for 
sampling a wavefield coupled to anaperture-limited region are addressed. Chapter 4 
proposes an adaptive radio signal strength prediction method with its applications 
in Wireless LAN localisation. In Chapter 5, a novel pattern matching technique, 
using support vector machine, is applied in wireless location for fixed wireless com­
munication networks. In the final chapter, Chapter 6, we summarise our work in 
this thesis and possible future research investigations are developed.



C h ap te r 2

W avefields in a S patia l B ounded  
R egion

Wireless signals rely on space as the physical medium to propagate and thus trans­
fer information. The propagation is characterized by multipath due to reflection, 
diffraction, and scattering by obstacles in the propagation environment [26]. The 
spatial aspects of multipath have also drawn research attention from an information 
theory perspective [27,28]. These works inaugurated the study of the fundamental 
physical limits that space imposes on the dynamics of multipath wave propagation 
and wireless information transfer. Further work in [29] defined the intrinsic limits 
on the dimension or degrees of freedom for multipath fields when they are observed 
in, or coupled to, a source-free region of space. Multiple sensors are constrained to 
be placed in the region of space to sample the multipath field for communication 
or signal processing purposes.

In the literature, a central result in information theory relates to time-frequency 
concentration and the essential dimensionality of time-frequency signals governed 
by the Fourier Transform [28]. When constrained in both time and frequency 
there is a limit to the degree of concentration, as measure by fraction-out-of-band, 
of energy simultaneously possible in the two domains (FOBE). This is a form of 
uncertainty principle where the criterion for time-frequency concentration differs 
from the classical Heisenberg formulation which expresses signal concentration in 
terms of root mean square deviation (RMS). The FOBE criterion considers the 
minimization of energy outside some region and imposes no constraints on the en­
ergy distribution within the region. This type of criterion is more appropriate in 
engineering applications where, for example, signals need to be confined to inde­
pendent frequency bands so as to not interfere with adjacent bands. In contrast, 
there is no advantage or meaning with the Heisenberg type concentration which

9
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would favor concentrating the energy to the center of the band which is not likely 
to be an optimal use of the frequency resources.

Uncertainty principles and essential dimensionality results can be interpreted as 
the natural consequences of broad classes of operator equations where the operator 
is either self-adjoint, normal or unitary.

This thesis intends to analyse wireless location fundamental limits in relation to 
the use of free-space as an information bearing resource. Wireless communications 
involves the exploitation of space to achieve communication. The extent to which 
this is fundamentally possibly is constrained by the wave equation in free space. 
That is, the degree to which data, in an abstract sense, can be borne on information 
bearing wave-fields in space is limited by the essential dimensionality of such wave- 
fields [28]. In this thesis we develop the results for narrowband and in this regard 
frequency plays no role nor does the Fourier Transform. Specially we analyse 
the spatial diversity of multipath since the received multiple paths occupies a wide 
range of incident angles in azimuth and elevation. We also investigate the potential 
advantages and applications of this spatial diversity. This work provides a novel 
understanding of the impact of multipath on wireless localization.

As we know, a wavefield can be interpreted as the functional solution to the 
wave equation. It is convenient to analyse wavefield in Hilbert space since Hilbert 
space makes it feasible to treat sets of objects such as functions in a similar way 
as we do points and vectors as in Euclidean space and notions of orthogonality 
are well formulated. So we will adopt results from Hilbert space to address the 
spatial diversity of multipath wavefield. We review basic concepts and principles 
of Hilbert space in the next section prior to moving onto our original contributions.

2.1 H ilbert Space R epresentation

Hilbert space is a means to extend the experience of Euclidean concepts meaning­
fully beyond geometry into the idealised constructions of more abstract mathemat­
ics. In this case we are interested in functions as these will represent our wavefields 
that characterize signal propagation in physical space.

The elements of Euclidean geometry such as points, lines, vectors, distances and 
angles are abstracted in Hilbert space in a way that we can treat sets of objects 
such as functions in a similar manner as we do points, etc., in Euclidean space. 
Hilbert space is defined as a complete inner product space. To have a further more 
precise understanding, it is essential to address vector space, inner product and the 
adjective “complete”. A (linear) vector space is a nonvoid set S  for which addition
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and scalar multiplication is defined. Addition is commutative and associative. 
Scalar multiplication is associative and distributive. A vector space encapsulates 
operations on its elements typically of the form

(xi , . . . ,  xN) +  a(yu . . . ,  yN) = (xx +  ayu . . . , x N + ayN)

where a  is a scalar (complex or real).

Let PL be a complex vector space (by which we mean the scalars are complex). 
A function mapping x  G PL into K is called a norm if it satisfies the following 
conditions:

||x|| = 0  if and only if x = 0 (2-1)

||Ax|| =  |A|||x|| for every x G PC and A G C (2-2)

||x + y || < ||x|| + \\y\\ for every x ,y  G PL (2.3)

Let If be a complex vector space. A complex bilinear function/mapping (•,•): 
PL x PL C is called an Inner Product if for any /, g,g\,g 2 £ PC and a i ,a 2 € C 
the following conditions are satisfied:

(/, g )  =  ( g,  f )

(a i / i  +  «2/2, g) — g) 4- <a2(/2> g)

( f j ) >  0
(/, / )  =  0 implies /  =  0. (2.4)

Given an inner product (•, •) in a vector space, the norm can be defined by

||x|| =  (x, x)z (2.5)

or more succinctly || • || =  (•, -)^. That is, it is sufficient to have an inner product 
to define a norm.

Vector space, norm, inner product and completeness are the four pillars of 
Hilbert space. Further, the concept of Cauchy Sequence is helpful in understanding 
Hilbert space. It is defined as a sequence {xn}^L0 m a normed space is called a 
Cauchy sequence if Ve > 0, 3N  such that ||xm — xn|| < e, Vm,n > N. A normed 
space hi is called complete if every Cauchy sequence in PL converges to a vector 
in PL. A complete normed space is called a Banach space. A vector space PL 
with an Inner Product is called an Inner Product space or a Pre-Hilbert space. A 
complete inner product space is called a Hilbert space. Based on Hilbert space, the
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Scatterers

Scatterers

Figure 2.1: Wireless Wave Propagation Environment.

analysis in this thesis considers multipath fields as the function solutions to the 
wave equation [30].

The multipath fields are constrained in a region of interest. All scatterers are 
assumed to be beyond the region, that is, at a sufficient distance. This region 
can be thought of as the region bearing the receiver antenna elements. However, 
the notion of antenna elements is not strictly needed here because equally well 
the description holds true for hypothetical continuous sensors and more general 
distributions of sensors. As shown in Figure 2.1, all sources are assumed beyond 
the outer ball of radius S  and receiver antenna elements are limited in the inner 
ball of radius R < S.

Let x  represent a vector in M3 or M2 space, and let r = ||cc|| denote the Euclidean 
distance of x  from the origin, which is the center of some region of interest. The 
unit vector in the direction of non-zero vector x  is denoted x  = x/\\x\\. In our 
case the region of interest is described by ||x|| < R. Furthermore, x  with Cartesian 
coordinate (x, y , z) is denoted by spherical coordinate (r, 9, 0) as in Figure 2.2 and 
they are related by:

x — r sin 9 cos (j) 

y = r sin 9 sin (f)

z = rcos9 (2-6)

We denote the wavefield as F(x, t) at position x  and at time t. All source-free
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X-Axis r sin 0d(f)

Figure 2.2: Relationship between Cartesian coordinate and Spherical coordiante. 

wavefields in the source free ball of radius S  satisfy the scalar wave equation [31]:

V 2F(x , 1 82F(x, t) 
c2 dt2 (2.7)

where V2 is the Laplacian operator and c is the propagation speed of the wave in 
a medium. V2 can be expanded in the appropriate coordinate system, either in 
Cartesian or spherical system. We expand the Laplacian into spherical coordinates:

1  2^  1 d . a F 1 d2F
c2 dt2 r 2 dr dr ^  r2 sin 6 dO d6 r 2sin 02 dcf)2

(2 .8)

Applying the method of separation of variables, we assume the solution of (2.8) is

F(x, t ) =  F(r, 0, 0, t) = Ä(r)©(0)$(0)T(t). 

Solve the differential equation for the temporal variable, t, we have

i  i 2
T(t) c2 dt2

whose solution is
T(t) = Tie'“1 + T2e~i“t

(2.9)

(2.10)

( 2 . 11)

Here u = 2n f = kc is the frequency. Since e lu}t denotes wave propagating back-
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wards in time so
T(t) = T1eiut (2.12)

Substituting (2.9) and (2.12) into (2.8) we have the so called Helmholtz equation

V2F (x ) + k2F(x)  = 0, ||x|| < S. (2.13)

The homogeneous Helmholtz equation is known as the reduced form of the 
complete Helmholtz equation. In the following we are mainly interested in the 
region of interest, that is, the field in ||a;|| < R. Two broad classes of representation 
of the solution to (2.13) will be considered. The first class is based on plane wave 
synthesis and is considered in Section 2.2.1. The second class is based on orthogonal 
solutions to the wave equation.

All solutions to (2.13) for a given source-free region define a linear subspace of 
functions which follows from the linearity and homogeneity of (2.13). That is, if 
U\(x) and u2{x) are solutions to (2.13) in a region then ^iUi(x) +  £2^2(2?) is also 
a solution in the same region, where £ C. We formalize and develop this
interpretation as follows.

We begin with the complex separable Hilbert space of complex valued square 
integrable functions, L2(Bs), defined in Ms for some radius S  (which later will be 
identified with any radius that excludes all sources), equipped with inner product

( f ,9)BS -  /  f (x)g{x)dv(x)  (2.14)
J Bs

with induced norm

ll/llis -  /  I (2.15)
J B§

The volume element dv(x)  is given by

dv(x)  = r2 sin 6 d0d(f)dr (2.16)

in three dimension space where 0 and 9 are the azimuth and elevation respectively; 
equivalently in two dimension space we have

dv(x) = r d(f)dr (2-17)

The solutions to (2.13) that form a strict linear subspace of L2(Bs) is a separable
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Hilbert Space and denoted

Qs =  {/  € L2(Bs ) : V 2 + k2f(x)  =  0} (2.18)

Both L2(®s) and its subspace Qs have inner product (2.14). Since Qs is separable, 
there exist orthonormal sequences {(Pp} =̂o> which are complete in Qs, that is, for 
all f  e Qs oo

/  =  £ < / . 4 >> »»^» (2-19)
p = 0

where convergence is in the mean (strong convergence in the norm) and

ßp =  if, </>P>Bs (2-20)

is the Fourier Coefficient. By completeness we have Parseval’s Relation

\\f\\ls =  m l-  (2.2i)

So now we may apply this general theorem to study the spatial diversity of multi- 
path wavefield by identifying elements of Hilbert space with wavefield.

2.2 2D M ultipath  Field  R epresentation

2.2.1 M u ltip le  P la n e  W ave R ep resen ta tion

A standard multipath model involves modeling every distinct path explicitly as a 
plane wave. That is,

F{x) = apeikx ip (2.22)
P

where the plane wave of index p has complex amplitude ap G C, the propagation 
direction is denoted by the unit vector y p =  (1,</>P), and x • y  denotes the scalar 
product between vectors x and y. We interpret representation (2.22) as encoding 
the field with a countable number of pairs {ap, y p} enumerated by p.

A generalization that subsumes (2.22) is the supervision of plane waves from 
all azimuth directions 0 as

/*27T

F(x)  =  /  A(<p)eikxi{4,)d<p, ||x|| < R (2.23)
Jo

where A(cf)) is the complex multipath scattering gain, the complex amplitude of a
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multipath originating from each direction 0, y(ß) is a unit vector in the direction ß. 
A((/>) implicitly represents a specific geometrical distribution of far-field scatterers.

2.2 .2  O rthogonal R ep resen ta tion  and Effect o f  R egion  Size

Equation (2.23) implicitly requires that any sources be in the farfield. In quanti­
fying degrees of freedom a Fourier expansion of F(x)  is better suited than (2.23). 
With an orthonormal expansion (using the natural inner product defined over the 
region of interest B^) the degrees of freedom can be determined by the significant 
Fourier coefficients which we write as ßUiR, n E Z.

As we know an orthonormal sequence is required for determining the Fourier 
coefficients uniquely. One orthogonal sequence in 2D disk of radius R (B#) is given 
for its best finite dimensional approximation as follows:

inJn(k\\x\\)ein't'{x) (2.24)

Jn(-) is the integer order Bessel function of the first kind [32],
The spatial normalisation of this sequence in 2D disk region Mr is implemented 

by introducing the factor y/2nJ'n(R) into (2.24) where

J n ( R )  = (2.25)

is a normalizing term for the region of interest Br. Thus we have the natural 
orthonormal basis functions defined as:

$n;R(x) —
inJn(k\\x\\)ein,t’{:c)

i /2 7 r j„ ( i? )
(2.26)

To verify s orthonormality we note that

r2 n  r R  /‘Zn / * r t

/  /  ^n;jR r d(f) dr = / <f>n;/?(x)<f>m;jR(cc)* r dr d<f) = S(m -  n). (2.27)
Jo Jo Jo Jo

So, we rewrite (2.23) as

F(x)  = ^ 2  ßn\R  ^n;ß(*), 11*11 < R  (2-28)
n= —oo

where ßn-R is calculated according to inner product of (2.14). In a simpler method, 
we combine the field expression (2.23), natural basis functions (2.26) and Jacobi-
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Anger expansion [30, p. 32],

oo

ei x y = inJn(k\\x\\)ein[4’[x)- 4’[i'l\  (2.29)
n = —oo

and comparing with (2.28) we find

ß n -R  =  v ^ T rJn{R) an (2.30)

where an G C is the nth Fourier series coefficient of A{<j>) defined as

(2.31)

and
oo

A(4>)= £  (2.32)
n = —oo

In quantifying the degrees of freedom a Fourier expansion of F(x)  is better suited 
than (2.23). With an orthonormal expansion (using the natural inner product 
defined over the region of interest B/?) the degrees of freedom can be determined 
by the significant Fourier coefficients which we write as ß n -R, n € Z in (2.28). A 
natural set of basis functions for multipath (which are optimal only in the special 
case of isotropic multipath) is introduced in (2.26), which is helpful to characterize 
the influence of region size on degrees of freedom. The properties of (2.25) capture 
precisely the low pass, albeit non-ideal, action in the angular domain. Increasing 
R increases the effective bandwidth of the low pass action increasing the DoF. 
The equivalent filtered multipath scattering gain A(0), (2.31), yields an effective 
multipath scattering gain,

QLn A{<p)e-in,>d<j).

1 OO

Ar(4>) =  V
V  27r _

(2.33)

which is directly amenable to standard degree of freedom analysis [29]. The ero­
sion of the Fourier coefficients with decreasing region size, /?, directly decreases the 
degrees of freedom. We conclude the effect of the region, parameterized by radius 
i?, is equivalent to a filtering (convolution) of A(0). In the transform domain this 
is given by the multiplication (2.30). To conclude, (2.33) is a key equation which 
theoretically determines the effect of the size of a circular region on the degrees of 
freedom. It is shown that the effect of changing the radius of the region is equiva­
lent to filtering the angular multipath distribution, A(cj)), with a specific non-ideal
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low pass filter. In summary, the key equations in this section also include (2.28) 
and (2.30). Given the natural orthonormal basis functions of a region of aperture 
R. $ n.R(x), the couple wavefiled is uniquely represented by the Fourier coefficients 
ßn-,R, where n — — oo,. . . ,  oo. We note the basis functions are functions of the re­
gion only and contained no intrinsic information of the wavefield. All information of 
the wavefield is represented by ßn.R completely. Next, we extend the deterministic 
equations (2.28) and (2.30) to describe multipath fields in a uncertain (stochastic) 
representative style.

2.2.3 Random M ultipath Fields

It is better to represent the wavefields in a random way. The main reason is 
accurate information about scatterers that generate the multipath field F(x)  is 
usually limited. Therefore, it is reasonable to represent multipath field F(x)  as a 
random process.

Referring to (2.23), the scattering gain A(<f>) is random and so is an in (2.31). 
The angular power spectrum (APS) is given by

P'(<p)=£{A(<p)A'(ip)}, (2-34)

Under the APS limited measurement case the only available information is APS 
defined in (2.34). This indicates we have no information regarding the phase term 
of The APS can be thought of as describing in which directions and at what
strength the multipath power is coming from (without regard for phase informa­
tion). Hence the APS has a direct physical interpretation. However, in this section 
we shall see there is a second physical interpretation in terms of spatial correlation 
in the region of interest and this relates closely to the normalized APS.

The normalised APS is given by

g{A(y)A'(y)} 

f o *  £ { A (<P)A *(<P)}d <P

The spatial correlation is defined in [33] as

p(x i , x 2)
£{F( Xl ) f (  X2}}
S i F i x J F ' i x J }
C  Jo”
j f  /o'£{^(v?)^4*(^)}ei f c a : i v^dipdtp’

(2.36)

With the assumption that A(ip) and A(cp') are uncorrelated in (2.36), we have
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£{A(tp)A*(ip')} =  6(ip — if'), where <$(•) is the Kronecker Delta function. Thus

/*27T

p(x2,Xi) = p(x2 -  Xi) =  / P((p)elk{X2~Xl) y{^ dip. (2.37)
Jo

where y(ip) is the unit vector in the direction of y?, shows the spatial correlation 
is spatially stationary (under the uncorrelatedness assumption). So p(x2 — Xi) is 
the only information available from the receiver region in the 2D disc of radius R. 
Furthermore, the Jacobi-Anger expansion [30, p.32] states

e i x y
00

inJ„(k\\x\\)einMx)- fii)'1
n = — OG

(2.38)

where ip(x) and ip{y) are the angles of x and y , respectively. By substituting (2.38) 
into (2.37) we obtain

00
p{x2 - x  1) =  inlnJn(k\\x2 -  aJii|)em<P21. (2.39)

n = —00

where p>2 \ in the difference in angles between x 2 and *1, and

7 n P(p)e~inipdip. (2.40)

In (2.37) x 2 and X\ are two arbitrary points within the 2D disc of radius R. 
Thus z  = x 2 — X\ can take values in any direction but is restricted to separations 
of 2R (being the maximum separation of two point in a disk of radius R). This 
suggests a countable set of orthonormal basis function over the 2D disc of radius 
2 R given by

^ u ;2r { z )
inJn{k\\z\\)ein̂ z)

y/2irJn(2R)~
z\\ < 2R. (2.41)

We can rewrite (2.39) in its orthonormal expansion form

00

PiZ) = lrv,R$n,2R{z). (2.42)
n——oo

where 7n.R is defined as yj2TtJn{2R)^n.

To model angular correlated multipath we can augment the APS, (2.34), by 
introducing an angular correlation function p(<j>i,</>2 ) between two incoming multi-
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path directions <f>\ and </>2:

p ( < P u f o )  =  . . .

y/e{\Afa)\*)£{\A{4* ) \ 2 }
(2.43)

To summary, we consider the spatial scatterer gain A(0) is random and so is 
ßn.R in (2.30). We note that in (2.28) a sequence of Fourier coefficients ßn.R of 
infinite length is required to represent the wavefield F(x).  But, is it possible to 
represent the wavefield by finite elements of the sequence ßn:R without significant 
information losing of the wavefield? This leads the concepts of Degree of Freedom 
and multipath richness of wavefield in the next section.

2.3 D egrees o f Freedom  of M ultipath  W avefield

A wavefield in a bounded region of interest in space can be accurately described 
with a small number of parameters. These parameters capture the notion of degrees 
of freedom (DoF). As shown in Figure 2.1 the inner part is a circular region for our 
bounded region

®R = {x : M  < R}

where R is the radius, x  represents the 2D vector of spatial variables an || • || 
is the Euclidean norm. This special shaped region admits a simpler formulation 
and can be regarded as a natural 2D analog of either the time interval, [0, T], or 
the frequency interval, [—W, W], used in the bandlimited waveform channel case. 
Alternatively, an arbitrary bounded shape can be contained within such a circular 
region and the DoF thereby bounded. For antenna arrays such a continuous region 
is better suited to bounding the performance of circular arrays than linear arrays.

If all wavefields in the region of interest Br can be accurately expressible with 
a finite number of parameters {ßn} ^ _ N multiplying some orthonormal basis func­
tions <Fn(cc), we say the wavefield possesses 2N  + 1 DoF with respect to that basis. 
Such a basis and coefficients can be regarded as truncation of a generalized Fourier 
Series representation.

Previously we qualitatively linked DoF with the number of significant Fourier 
coefficients. Here we make the connect explicit. Consider a particular realization 
F(x)  of a random wavefield. Let F^{x)  be the N  truncation of wavefield, (2.28), 
retaining the 2V+1 lowest order terms. The normalized mean square error between
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F(x)  and Fj^(x) over MR can be written

I bJ F ( x ) -  FN(x)\2dx
et ’ > JBR\F(xWdx  £ ~ - J Ä , Ä|2

(2.44)

where the denominator is the total energy in the receiver region. We define the 
DoF as the number of parameters required for which the error between truncated 
and actual wavefields is below an acceptable threshold level cq:

DoF =  2 x argminje^v,/? < Co} +  1 (2.45)

Conventionally one takes eo = 0.01. DoF measures the number of parameters 
with respect to the natural basis functions (2.26). A stochastic notion of degrees 
of freedom can be obtained by inserting expectations around the numerator and 
denominator of (2.44) and estimated by averaging over a number of trials.

In [29] an upper bound is derived on the MSE sense of multipath field trunca­
tion error when the field is represented by the natural choice of orthonormal basis 
in (2.26). The authors show that a general dimensionality of 2D multipath coupled 
to a disk with radius i?, is

D2f  =  2N + 1 = 2[7ri?e/A] +  1, (2.46)

regardless of stochastic scattering characteristics.
Referring back to (2.45) it is interesting to consider the question of what choice 

of basis leads to the least number of parameters. This question is answered in the 
next section and captures the notion of multipath richness.

2.4 D egrees of Freedom  of A PS L im ited M ulti- 
p a th  W avefield

When restricting the knowledge of a multipath wavefield to a region of interest, 
this is equivalent to restricting knowledge of the spatial correlation. With this 
spatial correlation the question arises as to whether it can be well approximated by 
a limited (finite) number of terms as this will characterize the degrees of freedom. 
The approximate spatial correlation Pat(x2 — X\) is defined by the finite sum

N

Pn {x i  -  %i) =  inj nJ(2.47)
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The error between the approximate and real spatial correlation is given by

ejv(z) =  \p(z)~ pN(z)\

= I J 2  inlnJn(k\\z\\yn̂ %  ||z|| < 2R  (2.48)
|n|>AT

Since |7„| < 1 in (2.48)2, then

eN(z) < £  \U k\\z\\)\ = 2 £  I (2.49)
|n|>JV n > N

As shown in [27],

\J»W\*\\)\ <
q(N, 2R)n

y /2 7 r (N  + 1)
n > N, \\z\\ < 2R

where
q(N, 2R)

2neR /\
W + i ) ’

We can obtain a bound on the error for given values of N  and 2R

(2.50)

< w ( z )  <
2 q(N, 2R)N+1 

(N T 1)7T l - q ( N , 2 R )

The restriction on q(N, R) provides an upper bound on n, given by N,  such that the 
error is small and exponentially decreasing with n increasing. The critical bound 
is given by

N  > (ne)2R/X — 1.

and 2[(7re)2/?/A — 1] -f 1, the number of terms in (2.47), is taken as the dimension­
ality of the region interest whose radius in R  based on APS limited measurements 
only. Note that since the APS limited case is less restricted than the deterministic 
case which needs to satisfy the homogeneous Helmholtz equation then the degrees 
of freedom are higher. This less restricted case results in a factor of 2 increase in 
the degrees of freedom.

2.5 M u lt ip a th  R ichness

In a random wavefield, each wavefield coefficient ßn.R is a random variable. In [29] 
an upper bound is derived on the MSE of multipath field truncation error when

2Note that j n =  P(<p)e inip dip and |7„| < 7 0  =  1.
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the field is represented by the natural choice of orthonormal basis in (2.26). The 
authors show that a general dimensionality of 2D multipath coupled to a disk with 
radius Z?, is D j f  = 2N +  1 = 2\7rRe/X] + 1, regardless of stochastic scattering 
characteristics.

Depending upon the statistical class of wavefield, the wavefield coefficients are 
generally correlated (which represents redundancy). The intrinsic reasons are lim­
ited angle of arrival of wavefield and angular correlation of the spatial scatterer 
gain.

It is possible in this case to express the wavefield in a different set of basis 
functions with a lesser number of parameters that are uncorrelated (to the same 
truncation accuracy).

The optimal representation (in terms of covariance) of a wavefield is given by 
the Karhunen-Loeve (KL) expansion

oo

F(x) = ^ 2  \AXi ^n(x),  (2.52)
n = l

(which can be truncated to the desired finite number of terms) where the orthonor­
mal basis (eigen-)function set {Tn} represents the optimal set for a stochastic mul­
tipath field, An > 0 represents an eigenvalue associated with eigenfunction Tn(x) 
and £n are new uncorrelated wavefield coefficients (random variables) of unit vari­
ance. In the 2D case given the spatial correlation in (2.36) we have

2n

p (x i , x2)tyn{xi)rldrld(j)i =  Antfn(®2) 

where Xi =  (r*, </>*), for i — 1, 2.

We define multipath richness in analogy to (2.44) as follows. Assume indexes n 
are arranged in descending order of An. The field in Mr is said to have a multipath 
richness of N  when the normalized eigenvalue residual is less than some threshold

h  < e0. (2.53)
Z ^n=0

Again conventionally one takes eo = 0.01. Under this framework, given the Z2 
formulation, the N  in (2.53) tightly lower bounds the N  in (2.44) for the same 
error threshold and, thereby, the richness is a tight lower bound on the degree of 
freedom for any basis.
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S ystem atic  N um erical M eth od  for E igenvalue C alcu lation  

A lgorithm
Systematic Numerical Calculation of An in (2.52):

1. Based on (2.46), truncate the random sequence yj2tt J n{R)an with truncation 
length N > |~e7ri?/A"|, to obtain the random vector

2. Using (2.64), form the covariance matrix for the random vector v  defined as
r 2AT+i = £ { v v H}.

3. The eigenvalue of the covariance matrix T2n+i give the first 2N+1 eigenvalues

To calculate the elements in the covariance matrix T2N+i , it is critical to calcu­
late £{ana*,}, n, n' =  —N , . . . ,  N. We define 7m_n as the (m — n)th Fourier series 
coefficients of the normalised APS P((J)):

Substituting (2.31) into (2.54) and assuming that A(cf)) is angular non-correlated, 
we have

v  — \/27rJ'-i\r(R)a_N • • • y/2iLj^{K)a^

of the spatial correlation p(x 1, x 2). □

(2.54)

(2.55)

(2.56)
/ o27r£{A(0)A(0)*}#

Thus
(2.57)

We note that £ {A{(j))A^Y)dcf) is a constant for determined A(0). In case of
angular non-correlated A(0 ), the definition

(2.58)
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From (2.43) it is straightforward tha t

£{A(<t>)A'(V)} =

where .4 =  £ {\A{ifi)\2}d(t>. In this way we have

/•27T r2lX
£ { a na ’n,}=A/ P(cßW

Jo Jo
(2.59)

In addition, we would like to consider the m th Fourier series coefficient 
defined through

of sJP(

1 oo

Vm = ̂  E ^
m=—oo

(2.60)

and

p2tV
=  / x / P W e - ^ # .

Jo
(2.61)

We also consider the double Fourier expansion

 ̂ oo oo

=  (2n Y  E E
' m~—oo m'=—oo

(2.62)

p2tt r2nr
W = /  / p{4:u4>2)e-l(m4' - m'M d^dcl,2

Jo Jo
(2.63)

By substituting (2.61) (2.63) into (2.59) we have the explicit form:

oo oo
£{d:nQ:n/} (2n )2 ^  v ^  ^

' m=-oom'=-oo
(2.64)

Equations (2.57) and (2.64) are essential equations to provide a straight for­
ward solution to calculate m ultipath richness as far as angular correlated or non- 

correlated spatial scatterer gain are concerned. We will give out numerical results 
of DoF and m ultipath richness regarding to specified APS in next chapter. DoF and 
m ultipath richness lay theoretical foundations for analysing the effect, of m ultipath 

richness on wireless localisation.
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2.6 C ontributions

The technical contributions of this chapter were:

1. To theoretically determine the effect of the size of a circular region on the 
degrees of freedom. It is shown that the effect of changing the radius of 
the region is equivalent to filtering the angular multipath distribution with a 
specific non-ideal low pass filter.

2. To provide an explicit solution to calculate multipath richenss as far as an­
gular correlated or non-correlated spatial scatterer gain are concerned. This 
lays theoretical foundation for analysing the effect of multipath richness on 
wireless localisation resolution.

3. To theoretically determine the degrees of freedom for APS limited wavefield. 
Since the APS limited case is less restricted than the deterministic case which 
must satisfy the homogeneous Helmholtz equation, the degrees of freedom is 
increased by a factor of 2.



C h ap te r 3

Effect of M u ltip a th  R ichness on 
W irless L ocation  R eso lu tion

As we know wireless signals propagate in space through a multipath environment 
due to the presence of reflectors and scatterers. It is widely reckoned that wire­
less communication systems are adversely affected by this multipath propagation 
because of the various levels of synchronization and high estimation accuracy re­
quirements to keep track of the random variations of propagation complex gains of 
multipath.

On the other hand, multipath provides a form of spatial diversity since the 
incident waves occupy multiple incoming angles. Therefore, it is less likely that 
different points in space have similar fading characteristics. This raises the ques­
tion of whether this spatial diversity of multipath could be beneficial to wireless 
localisation. This motivates us to address this question through an appropriate 
analytical framework.

We think it is feasible to consider wavefield as a function in Hilbert space. In 
Hilbert space, the multipath wavefield is regarded as an extended “vector” object 
as in Euclidean space. We have identified elements of Hilbert space with multipath 
wavefield in Chapter 2. Specially, the multipath wavefield is studied as solutions to 
the wave equation in an infinite-dimensional vector space as in (2.28). This provides 
a feasible solution to describe the wavefield by a limited number of parameters with 
tolerable information loss.

In this chapter we start by introducing the concept of wireless location resolution 
with the notion of “location signature”. A model of A((f>) is proposed for simplifying 
introduction of angular correlation. Then we demonstrate the impact of multipath 
richness on wireless location resolution numerically. We base our study on the 
spatial aspects of multipath: the degrees of freedom (DoF) and multipath richness

27
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in spatial multipath coupled to a aperture limited, source-free region of space (2D 
or 3D). We consider two cases: firstly we assume either we have complete knowledge 
of the spatial scatterer gain both the amplitude and phase terms or we have
statistical knowledge of A(<t>) only, which is the expectation of the amplitude |j4(0)|.

Our research results demonstrate richer multipath has a tendency to decrease 
the DoF of wavefields coupled to an aperture limited region. This indicates energy 
is more likely concentrated among the lower order Fourier coefficients (the energy is 
more isotropic) of the wavefield when the incoming multipath waves become richer. 
This energy concentration to lower order coefficients phenomenon provides insight 
to demonstrate positive effect multipath can have on wireless location resolution.

3.1 Location Signature

Before defining the concept of wireless location resolution, we introduce the notion 
of a location signature.

We assume a target of interest stays at a certain position for a time and the 
far-held scatterers have a specific geometrical distribution. The distribution is 
described by a specific A(<J>) in (3.1):

The propagation scenario is shown in Figure 3.1 where each position has an unique 
spatial scatterer gain A(<fi) observed from the region:

Since all sensors are constrained in region i?, the target’s location is completely

< R. We emphasize that F(x)  contains all information available to us.

In this scenario location signature is based on information contained in receiver 
region R, as shown in Figure 3.1. We may select a set of natural basis functions as

(3.1)

Mr = { x : ||x|| < R}.

determined by the information contained by the wavefield F(x)  in (3.1) where

(3.2):

(3.2)
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Scatterers

Aperture-limited 2D
circular receiver region

Position 2

Position 1

Figure 3.1: Propagation Scenario

to decompose F(x)  and we have:

oo

F{x) = ^ 2  ßn\R  ||x|| < R
n= —oo

where the set of Fourier coefficients { ß n,Ft) is defined in (3.4).

0n-,R =  \ / 2 7 r

(3.3)

(3-4)

The set of basis functions is related with the region of space only and has relation­
ship with A{<f>). The {/?„,/?} sequence captures the properties of A{(j>) by component 
an and the spatial filtering effect of the region by J n(R).

It is straightforward that the natural basis functions have no contribution in 
determining a target’s position when the region of space is determined. On the 
other hand, {/?n;/?} holds complete information on location of the target since for 
every A((f>) there exists a unique {Ph:r } sequence. This makes it feasible to identify 
the position of the target by the information in the Fourier sequence, namely {ßn-Ft}-  

Hence {P^r}, corresponding to a specified A((j)), is defined as location signature of 
the target. Different positions of the target has a corresponding location signature. 
The above discussion is based on comprehensive knowledge of the wavefield coupled



30 Effect of Multipath Richness on Wirless Location Resolution

to the circular region. In case of APS limited wavefield, sequence {7 n;/?} in (3.5) 
takes the role of {PH;r}-

p(z) =  inJn(k\\z\\)ein̂ ln
oo

= 'ln;R$n;2R(z). (3.5)
T I —  —  O C

where 7 n.Ris defined as v/27rJ/u(2/?)7n and the orthonormal basis function over 
the 2D disc of radius 2 Ris given by

$n;2R(z)
in Jn(k\\z\\)ein^immr (3.6)

The location signature determines a target’s position uniquely in the far field 
observed from the region of interest. There is a specified spatial scatterer gain 
A(<J>) corresponding to the target when it stays at a certain position. If the target 
has a position displacement in space, the incident A(<j>) observed from the region 
of interest changes. This leads to the discussion of wireless location resolution in 
the next section.

3.2 W ireless L ocation R esolu tion

In the literature, location accuracy has attracted significant interest and much 
effort. Improved location accuracy and accuracy lower bound analysis are most 
frequently studied. In this framework researchers are focussed on determining the 
real position of target with low estimation error.

In some scenarios it is hard to locate the transmitter accurately. For example, 
it is expected to have large location estimation error in a dense multipath envi­
ronment without LOS component. Instead of seeking way to know the unreliable 
estimation of the position of the target, we intend to study the mobility detection 
of target. We could have knowledge of a target’s approximate location and we are 
more interested in detecting the target’s mobility. In wireless localisation research, 
location resolution is a different concept to location accuracy. In RADAR tech­
nologies this is referring as moving-target indication (MTI) problem. MTI radar is 
a type of simple pulse doppler radar. It uses low doppler pulse repetition rate (e.g., 
300 Hz) to distinguish moving targets from stationary clutter based on accurate 
range measurement.

Note in our case the target is assumed to have the tendency of moving to
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Aperture-limited 2D 
circular receiver region

Figure 3.2: Location Resolution Cell

another position with slow speed.1 Another signature is available regarding to 
the new location. We make comparison of the two location signatures. If the 
comparison result is larger than a threshold we consider the target has a 
significant geographical displacement.

Suppose there is a target moving from position 1 to 2 then we have the corre­
sponding location signatures of {iß n-R.} and {2ßn-R\- The decision of the target’s 
displacement is made based on whether

y i  \ l ßn ;R  — 2ß n;R \2 < €L R ■ 
n

That is, once the signature difference reaches the target’s current position is 
distinguishable from previous one. The threshold €l r  has significant impact on 
location resolution for the given receiver region aperture and system noise. As 
shown in Figure 3.2, the location signature difference is smaller than clr if the 
target (mobile handset) is roaming within one cell. In the case when the target has 
shifted to other cell, it must have a new distinguishable location signature which 
has a difference larger than clr compared with the original cell. To summarise, 
clr determines the size of the cell with a positive proportion relation.

'In this thesis we will not consider Doppler effect on location signature.



32 Effect of Multipath Richness on Wirless Location Resolution

Figure 3.3: Location Resolution

With the assistance of the location signature, we can separate an arbitrary 
region in space into cells as shown in Figure 3.3(a), each with a digital label. The 
region is divided into cells with appropriate size decided by clr, receiver region 
aperture R and system noise level. Comparing Figure 3.3(a) with Figure 3.3(b), 
fewer number of cells are required to label the region completely relative to the 
bigger cell size. Subsequently, each cell’s label requires less number of digits to 
identify it.

A smaller cell size defines a finer location resolution, which determines the tar­
get’s position with less ambiguity. We may ask if there are other factors influencing 
cell’s size. This leads to our study on achieving finer location resolution for fixed 
Clr, receiver region aperture R and system noise level. In next section we analyse 
the effect of multipath richness imposed by the DoF which is determined through 
the Fourier sequence, either {7n;/?} or {Pu-r }. With the concept of location signa­
ture it becomes feasible to address the problem of the effect of multipath richness 
on wireless location resolution.

3.3 Effect of M u ltip a th  R ichness on DoF of A PS 
L im ited W avefield

The degrees of freedom relate closely with the notion of multipath richness and 
related concepts [29]. We focus our attention on how energy is distributed over the
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coefficients in an expansion representation of multipath or equivalently the spatial 
correlation. Towards this end we formulate the following problem.

3.3.1 P rob lem  S ta tem en t

As we know spatial correlation p(z) where z = x 2 — x i is the only information 
available from the region region of radius R for APS limited wavefield. We refer to 
equations (3.5) (3.6) to study energy distribution over the coefficients in the serial 
expansion representation of spatial correlation. The effect of multipath richness on 
DoF is exposed by studying the energy contained by the total 2N + 1 components 
in (3.5) while the total energy in the receiver region is assumed constant. Since 
different angular power spectrum dominates multipath richenss, we need to find 
the angular power spectrum, P(<p), for fixed value of N. This achieves

J2n=-Nin7nJn(k\\x2 ~  ®i | |) e ^ 21
SUP E Z - o o ^ n J n ( k \ \ x 2 ~ X l \ \ ) e ^

E ! L - V i n 7 n J n f f l l z | | ) e iny?(2:)

_SUP En=-ooin^nJn(k\\z\\)ein^

E n = - i V  ( ^ R ) l n ^ n  ( z ) f ^= sup——------- = = = = = -----------. (3.7
ES U oo V/2^7n(2P)7n<hn(z)

3.3 .2  S olu tion

According to Parseval’s theorem, we can use the Fourier transform coefficients 
{7n;/?} to represent wavefield’s energy. It is straightforward that (3.7) is well ap­
proximated by

£ “=-00 2 * a (2 fi) |7 „ r
where the natural orthogonal basis function ^ n.2r (z ) is dropped.

In this thesis we provide investigation into the notion of richness by numerical 
methods. We find that the concentration level of low-order modes of spatial cor­
relation increases when multipath richness increases. This is demonstrated by the 
numerical simulation results that follow. We note the approach to mathematically 
quantify multipath richness is defined in [29].

3.3 .3  N um erica l R esu lts

In our numerical simulation environment the receiver region is a 2D disk of R = A. 
Some popular APS are selected to verify the effect of multipath on low-index modes
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Figure 3.4: Numerical analysis of ratio —N ^ f°r von-Mises APS with
different multipath richness. The horizontal axis is the different truncation lengths 
N  in (3.10). The receiver region is of R = A.

concentration of spatial correlation in the receiver region. These APSs are von- 
Mises [34], extended Laplacian and extended Gaussian APS [33].

von-M ises A P S

The von-Mises APS is described in (3.9):

P(v)  =  — L - Te'tc“ <»-'»), (3.9)27T1q[K,)

where we can tune the parameter n to affect multipath richness (width of the von 
Mises distribution). With smaller value of n the incoming waves should have richer 
multipath. The ratio of

E n = -N 2 ^ Jn (2 fl) |7 n |2
E “ -oo2^n(2 /? ) |7n |2 ' 1 J

is shown in Figure 3.4.
From the results in the figure it appears N  need to be as large as 8 in order 

for ^2n=_N 2nsJn(‘2R)\^n\2 to contain more than 90% of the total energy of the 
spatial correlation fourier coefficients {7n;/?} when the incoming wave has multipath 
richness of 2. The total energy of the spatial correlation fourier coefficients {7n;/?} 

S^L-oc ^^n{2R )\^n \2■ This indicates 2N + 1 — 17 components of {7n:/?} are
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needed. If the incoming wave has multipath richness of 4 and 6, N  is expected to 
be no less than 5 and 3, which requires 11 and 7 components of {7n;/?}, respectively. 
In case that multipath richness is 14, only 3 (N — 1) components of {7n;/?} are 
needed.

Modified Laplacian APS

The Modified Laplacian APS is

P{v) =  - 5 - e - ^ w l / . ,  -  Vo| < * (3.11)
V 2(7

for normalization constant Q, a determines the angular width and ipo is the direc­
tion of the peak. The ratio of

E n =- W27Tjn(2fl)l7re|2
E 7 - o c 2 ^ , ( 2 i ? ) | 7np '  ^  J

is shown in Figure 3.5. N  needs to be as large as 10 in order for

N

F  27rJ„(2i?)|7„|2
n = —N

to contain more than 90% of the total energy of the spatial correlation fourier 
coefficients {7n;i?} when the incoming wave has multipath richness of 2. This 
indicates 2N  + 1  = 21 components of {7n;^} are needed. If the incoming wave has 
multipath richness of 4,6, 8,10 and 12, N  is expected to be no less than 9, 8, 7, 6 
and 5, which requires 20,17,15,13 and 11 components of {7«;/?} respectively. In 
case that multipath richness is 14, 5 (N =  2) components of {7n;^} are needed.

Modified Gaussian APS

The Modified Gaussian APS is described in (3.13):

P (+) =  —SL-e- (<̂ ° ) 2/2a2, I<p -  (p0\ < 7T (3.13)
V 2na

where a is the angular variance, ipo is the direction of the peak/mean, and Q is 
a normalization to account for the finite truncation of the Gaussian distribution 
(which is normally of infinite support).

The ratio of
E n = - A f  27T,y„(2i?)|7t,|2 
E ” -oo27rJ„(2fi)|7„ |2-
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Figure 3.5: Numerical analysis of ratio E ^ = _ N 2^ n ( 2 f i ) | 7n | 2 for modified Laplacian
APS with different multipath richness, 
tion lengths N  in (3.12). The receiver region is of R  =  A.

E ^ = - Oo 2 7 r j n (2 f i ) |7 n |2
The horizontal axis is the different trunca-

is shown in Figure 3.6. N  needs to be as large as 10 in order for

N

E  27rJ„(2fi)|7n|2
n = —N

to contain more than 90% of the total energy of the spatial correlation fourier 
coefficients {7n;i?} when the incoming wave has multipath richness of 2. This 
indicates 2N + 1 = 21 components of {7n;/?} are needed. If the incoming wave has 
multipath richness of 4, 6, 8,10 and 12, N  is expected to be no less than 6, 4, 3, 2 
and 2, which requires 13,9,7,5 and 5 components of {7n;/?} respectively. In case 
that multipath richness is 14, 3 (TV = 1) components of {7n;/?} are needed.

3.4 E ffect o f M u lt ip a th  R ich n ess  on  D oF

We address the problem of effect of multipath richness in the cases of uncorrelated 
spatial scatterers and correlated environments.
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Figure 3.6: Numerical analysis of 27T J n(2i?)|7n|V 2^i-oo  ^ J n i^ P )\ln \2
for modified Gaussian APS with different multipath richness. The horizontal axis 
is the different truncation lengths N  in (3.14). The receiver region has radius 
R = A.

3.4.1 D oF  in U ncorrelated  S patia l S catterer E nvironm ent

In an uncorrelated spatial scatterer environment we have

£{A(4>i)A'(<h)} = £{M<MI2W i  -

We use a statistical method to study the effect of multipath richness on DoF. 
To introduce uncorrelated scattering, for a prescribed APS P(<f>), we propose a 
model (which is not unique) by assuming A{<j>) is circularly complex Gaussian and 
generated according to

A(</>) = XW  +  *\J— y{4>) (3-15)

where x((p) and y((ß) are independent stationary Gaussian random processes of 
zero mean and variance one. Note that, P{(j>) shapes the angular distribution 
independent of the component process correlations.

In our statistical method, we work with a sampled version of (3.15) which sim­
plifies the introduction (in the next Section) of the angular correlation of 
Evaluating A(<f>) at a number of angles (pi, </>2, • • •, 0n, define the vectors of cor­
related Gaussian random variables x  = [x(0i), • • •, x((pn)]T and y  = [y(<pi), • • •,
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Table 3.1: Relation of n and Multipath Richness with angular uncorrelated A(<f.!>), 
namely as =  0

K, 0.1 2 3 3.5 5.5 11.5 64
Multipath Richness 14 12 10 8 6 4 2

DoF 15 15 15 15 15 15 15

y((j)n)}T. Sequences x  and y  both have the same n x n identity covariance matrix.
A circular region whose radius R = A is adopted as receiver region. Discrete 

samples of A((f>) at angles (f)i, (/>2, • • •, 0n are generated and the Fourier sequence 
{Pu,r} is calculated through numerical integration. This process is repeated for a 
large number of trials and the final statistical DoF is achieved according to (2.44) 
and (2.45). We may change the angular spread of APS to tune multipath richness 
of the wavefield. For a uni-modal APS P(<f>) the von-Mises power distribution is 
the most common choice:

P W  = TT|0 -  0oI < Tr, (3.16)27Tio [KJ

where n describes the angular spread of multipath power, 0O is the central angle 
of arrival and 70(/c) is the modified Bessel function of the first kind. Given an 
uncorrelated A((p) environment, the multipath richness is determined by k, which 
is shown in Table 3.1. From our simulation results, the circular region with radius 
R = X has DoF of 15, which is irrelevant with what the multipath richness is 
because of the lack of angular correlation in the model.

3.4 .2  D oF  in C orrelated  Spatia l S catterer E nvironm ent

A. C orrelated Scatterers M odel

To introduce correlated scattering, for a prescribed APS P(</>), we propose a simple 
model by assuming A(4>) is circularly complex Gaussian and generated according 
to

A (<f) = x{4>) + i ^ J -  2/(0) (3.17)

where x(</>) and y(<j>) are independent stationary Gaussian random processes of 
zero mean and variance one. Note that, P(<j>) shapes the angular distribution 
independent of the component process correlations.

We shall work with a sampled version of (3.17) which simplifies introduction 
of the correlation. Evaluating A((f)) at a number of angles </q, 02, • • •, 0n, define 
the vectors of correlated Gaussian random variables x  = [x((f>i), • • •, x(0n)]7 and
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Sequences x and y  both have the same n x n covariance matrix p where a 
component at the zth row and j th column is identified with p(<f>i, (f)j). p  can be 
decomposed by Cholesky factorization [35]

where L  is a lower triangular matrix.

We generate a vector of independent standard normal random variables z  =  
[z{(j)i), • • • , z{(j)n)}T then define

Here x  is correlated Gaussian random vector with covariance matrix p. In a sim­
ilar way we can generate correlated random vector y. Generating such correlated 
random vectors is standard, e.g., as given in [36, p. 215].

In a real multipath environment we expect that there should be correlation 
whenever the two angles </>* and <f>j are close because they are likely to be coming 
from the same physical scatterer illuminated by the same source. Further, as the 
separation between the angles increases we expect decreasing correlation and so we 
adopt a simple model

where as > 0 is a correlation spread factor, another important system parameter. 
Varying as changes the amount of multipath correlation and hence the DoF. This 
correlation modeling is made independently of the APS P(<j>).

For a uni-modal APS P{<f>) the von-Mises power distribution is the most com­
mon choice

where k describes the angular spread of multipath power and <po is the central angle 
of arrival.

Decreasing as increases the level of correlation between close angles in the phase 
of A{(j>). In Figure 3.7 and 3.8 we verify our model exhibits correlation. Plotted 
are samples of A((j>) at </> = 0° and cj) = 5° which show greater concentration for 
lesser as .

X  = [x(0l), • ■ ■ ,x(0„)]7 = Lz.

p(<f>i,4>j) = i, j  = 1,2, . . . ,  n (3.18)

(3.19)
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Phase Term of A( 0 = 0°)

Figure 3.7: Plot of phase term of A(<f>) at 0 = 0° versus ß — 5° for as =  0.4.

B. D oF  in C orrelated Spatial Scatterer E nvironm ent

With angular correlation of A(<j>) as shown in (3.18) the random wavefield is more 
constrained (relative to the uncorrelated case) and, therefore, this reduces the 
degrees of freedom we can expect. As shown in Table 3.1, 3.2 and 3.3, angular 
correlation not only decreases the degrees of freedom but also reduces richness. 
In uncorrelated wavefield, richness is 14 and DoF is 7 when k = 0.1. In a slight 
correlated wavefield (<75 =  0.4), richness turns to be 11 and DoF is 5 given same 
APS angular spread (k = 0.1). If we continue to augment the angular correlation 
by setting as — 1, richness is only 5 and DoF is reduced to 3 only.

In detail, Figure 3.9 demonstrates the effect of multipath richness showing the 
ratio 5 -ge~'v in our specific receiver region. The horizontal axis is the trim-
cation length N. We see the ratio intends to increase as richness increases. The 
energy of the wavefield concentrates to low-order coefficients of {ßn,R} sequence 
with richer multipath. The DoF is decreased correspondingly. We further in­
crease the angular correlation by increasing as from 0.4 in Figure 3.9 to 1.0 in 
Figure 3.10. With a stronger correlated A((j>), {Ph,r} sequence indicates a more 
intense concentration to low-order Fourier coefficients. In this situation, each unit 
richness increase brings more percentage energy concentration, though the range 
of richness is more constrained.

We conclude that richer multipath has a tendency to concentrate its energy in 
the low-order modes of its corresponding Fourier sequence {/3n;/?}, given an angular
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Figure 3.8: Plot of phase term of A{<j>) at (f) =  0° versus </> =  5° for as — 1.0.

Table 3.2: Relation of ac, multipath richness and DoF with angular correlated A{<j>) 
where as =  0.4 _______________________________________

At 0.1 2 3 4 11
Multipath Richness 11 9 7 5 3

DoF 11 11 11 11 13

correlated spatial scatterer gain A((f>). This discovery has direct application in 
addressing wireless location resolution. We will discuss this application in the next 
section in detail.

Table 3.3: Relation of At, multipath richness and DoF with angular correlated A(<j>) 
where as =  1 _________________________________

At 0 .1 3 4 8.5
Multipath Richness 5 4 3 2

DoF 7 7 9 9
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°s = 04

Multipath richness = 11, k = 0.1 
Multipath richness = 9, k = 2 
Multipath richness = 7, k = 3 
Multipath richness = 5, k = 4.5 
Multipath richness = 3, k = 11

Truncation Length N

J 2 N_  \ß n  12Figure 3.9: Numerical analysis of ratio .T 2- for von-Mises APS with different
2-< n=  —oo \P n  I

multipath richness. crs = 0.4. X-axis is different truncation length N  in (2.45). 
The receiver region is of R — A.

3 .5  A p p lic a tio n s

Using the noise model in [9] the optimal estimator of the Fourier coefficients ßn.R 
will be a normally distributed random process:

The noise term in ßn.R is spatial white and independent of the term index n. The 
target’s position information is contained in the Fourier sequence {ßn-R}. As we 
demonstrated in previous section, {ßn-R} will have low-order modes concentration 
with richer incoming multipath wavefields. This indicates the ratio of the energy 
°f {ßn-R} to noise power can be increased by richer multipath.

The assumption is that location resolution is related with the above ratio value 
in a noisy case. In a noise free case, low-order modes concentration will also con­
tribute to finer location resolution. The point is to demonstrate how the magnitude 
of {Pu-r } or the ratio affects location resolution.
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°s = 1

-A—  Multipath Richness = 5, k  = 0.1 
Multipath Richness = 4, k  = 3 

-E*—  Multipath Richness = 3, k  = 4 
Multipath Richness = 2, k  = 8.5

Truncation Length N

y N  IO |2

Figure 3.10: Numerical analysis of ratio ^£r~N ^ j 2 for von-Mises APS with differ­
ent multipath richness, as = 1- X-axis is different truncation length N  in (2.45).
The receiver region is of R = A.

3.6 C ontributions

The technical contributions of this chapter were:

1. To theoretically determine the effect of angular correlation for a given angular 
power spectrum on the degrees of freedom and multipath richness.

2. To develop a model for generating random wavefields according to a given 
angular correlation characteristic which permits a numerical investigation 
into the effects of correlation modeling.

3. To theoretically determine the effect of multipath richness on wireless location 
resolution.



C h ap te r  4

A dap tive  R ad io  Signal P red ic tio n  
and  A pplication

4.1 Introduction

In this and the next chapter, we provide practical wireless location solutions fo­
cused on fingerprint technology. As we know, fingerprint technology is most widely 
adopted in existing location systems due to its easy deployment and cost-efficiency. 
It operates over Wi-Fi infrastructure without the need for any additional propri­
etary hardware. It has no requirements for system clock synchronisation between 
base stations when temporal parameters are measured and antenna elements cal­
ibration when AoA is measured. Unlike other location techniques where multiple 
base stations are necessary, single base station even works well for fingerprint tech­
nology. It has accurate location estimation performance (enabled location of assets 
or people with up to 1 to 3 meter accuracy in Wi-Fi infrastructure) and is robust to 
the impact of multipath propagation, non line-of-sight propagation, channel fad­
ing condition and the relative positions of target and base stations. One of the 
successful application examples of fingerprint technology is Ekahau’s Real Time 
Localization System (RTLS) and Site Survey Solutions (SSS). RTLS and SSS have 
been selected as Nortel, Simens, 3M and the London Clinic’s provider of location 
tracking solutions. To contribute to fingerprint technology, in this chapter, we use 
an idea of building a “virtual propagation environment” (VPE) for predicting radio 
signal strength in Wireless LAN. Radio signal strengths at a number of (relatively 
sparse) sample points are measured and utilised to build VPE. In return, VPE 
provides a fingerprint database with finer resolution of spatial radio signal distri­
bution. This advantage could be taken by WLAN localisation system to improve 
location accuracy. To verify and analyse the impact of finer spatial sample resolu-

45
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tion on location accuracy, radio signal real field measurements are implemented in 
our work. Before addressing radio propagation prediction and its applications, we 
list the technical contributions of this chapter:

1. To adopt the concept of VPE to predict radio signal strength spatial distri­
bution in WLAN.

2. VPE is applied in improving localisation accuracy in WLAN.

3. A novel “stochastic position” method is applied in real field radio signal 
strength measurement for mitigating small scale fading.

In the next chapter, we will exploit the already available channel impulse re­
sponse of fixed wireless terminals as location fingerprint to assist wireless locali­
sation in fixed wireless networks. (In this thesis, we apply adaptive radio signal 
prediction and pattern matching algorithms to improve wireless location accuracy.) 
In our work, radio wave real field measurements and propagation simulations are 
implemented to support the applied algorithms.

As we know, prediction of radio propagation in indoor environments is a diffi­
cult problem, due to reflection, diffraction and scattering of radio waves. Numerous 
statistical and deterministic radio propagation models are available for predicting 
wireless signal spatial arid temporal distributions [37-40]. The performance of these 
models is unsatisfactory due to their accuracy and/or computational complexity, 
especially in propagation environments with dense multi-path such as indoor sce­
narios.

Many predictive methods use ray-tracing as a foundation [26]. Ray-tracing is a 
well known, and widely used radio propagation model, based upon the approxima­
tion of wireless signals as linear rays emanating from a point-like source. The rays 
are straight lines, perpendicular to the wavefront, possibly augmented with reflec­
tions and/or scattering [26,41]. The model has been used in several scenarios, for 
example [37,42] and takes its intuition from physical optics. Although ray-tracing 
is an effective tool for indoor/outdoor wireless environments [43], a fine spatial res­
olution of propagation environment is required for accurate prediction. The cost of 
computation increases with increasing sample resolution and the electromagnetic 
details of structures along radio propagation path are critical to final prediction 
results.

At high resolution, ray-tracing typically incorporates so-called “small scale" 
fading which varies on the order of a few wavelengths. However, for point-like 
receivers small scale fading is essentially not predictable for ranges beyond half-
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wavelength [44]. Moreover, including small-scale fading does not provide useful 
predictive information.

For these reasons, we develop a ray-tracing like model which attempts to accu­
rately match large-scale fading effects in the channel. We define large-scale fading 
as variations which are temporally and spatially coherent over a non-negligible 
range. Specifically, for a “position” in space-time {r,t}, we expect that the fad­
ing at a “nearby” position {r  + Ö, t} will have similar characteristics, for 5 A. 
Monte Carlo integration is adopted in averaging the received signal strength over 
this range. A corresponding field measurement based on Monte Carlo integration 
is developed.

The detail of the idea is to produce a “virtual propagation environment” to im­
plement radio signal prediction based on sampled radio signal in the real environ­
ment. The idea comes from the intuition that key features of the real environment 
are contained in the radio signal samples and hence details of the real environment 
are not necessary for prediction. Instead, the “virtual propagation environment” 
will be built whose features are consistent to what is contained by the radio signal 
samples. In detail, dominant environment features such as reflective walls and scat­
tering bodies in VPE are manipulated as model parameters according to the radio 
signal samples and relative geometrical displacement between transceivers. We ap­
ply adaptive nonlinear least square algorithm and feature based neural network to 
“learn” features of the real environment and predict radio signal distribution as a 
function of position r.

To illustrate the concept of VPE, two radio propagation models are given in 
section 4.2 as preliminaries. Section 4.3 and 4.4 present a feature based neural 
network and adaptive nonlinear least square algorithm for building VPE based on 
radio signal samples in a WLAN environment. Section 4.5 introduces the imple­
mentation of fingerprint technology in detail, such as nearest neighbor method and 
kernel method. To support our analysis, we build a WLAN localisation system 
based on a PC laptop running Linux. Details of the system is described in 4.6, 
where the normal static and the novel “stochastic position” measurement meth­
ods are also discussed. Section 4.7 presents three experimental results. The first 
experiment shows the advantage of the “stochastic position” method compared 
with the normal “static method”. The second aims to demonstrate the prediction 
performance of VPE using one-dimensional radio signal samples. Without loss of 
generality, VPE trained by feature based neural network is shown. The last experi­
ment demonstrates the location accuracy improvement achieved by the application 
of VPE while two-dimensional radio signal samples are provided.
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4.2 R adio Propagation  M odels

We introduce two radio propagation models in this section, non-coherent and co­
herent power component models. Consider a frequency-flat fading environment, 
where the channel is given by

and y is the receive symbol, x is the transmit symbol with (complex scalar) channel 
gain a and AWGN sample n. The channel comprises L paths, and the signal 
received is a weighted sum of signals from each path without ISI. This is the well- 
known discrete model for multipath channels [45,46], such that

For any channel model, we must trade off prediction reliability with computa­
tion expense, and measurement resolution. In our case, we are limited to signal 
strength (real power) measurements. We consider two simple models for the power 
received at a particular point r  in space.

• Propagation model 1: the signal received is a phasor sum of complex signals, 
which result in a particular real power. In this way, the common phasor 
model for electric signals provides a hidden model for the received power.

• Propagation model 2: all received power is assumed to be a weighted sum of 
coherent power blocks (no phasor component) -  so the underlying electrical 
source of the power measurement is ignored. The name “coherent power” 
reminds the reader that the underlying signals are effectively all in phase.

4.2 .1  P rop agation  M od el 1: e lectric  signal

Consider a single path, of a multi-path environment. An electric signal arrives at 
the receiver with phase (and amplitude) determined by path length and reflection 
characteristics. The electric field with distance di to transmitter at time t is given

y =  ax + n

L

a = ^ 2 \ a i\e j<t>l

by [26]

(4.1)

where E0 is the electric field (V/m) at a reference point with distance d0 to trans­
mitter, A is the wavelength of the radio wave. The constant Tj is the reflected
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field strength, in the case that the wave is reflected. For multiple waves the total 
electric field at a position is the scalar sum of all the components (LOS and/or 
NLOS) given by

E (r) = Y t Ei(r)(4.2)
i

The corresponding received signal power at the position r  is [26]

P(r) \E(r)\2Gr\ 2
480-7T2 Watts (4.3)

This model includes small scale fading, as is typically used for scattering models. 
Note that the power P  is the “model parameter” which will be measured, not E.

4.2 .2  P rop agation  M od el 2: coherent pow er

Prediction of small-scale fading statistics is known to be an ill-posed problem [44]. 
Given the power measurements available at the receiver, we wish to estimate the 
value of a “large-scale” fading process: ie, one which may be modeled without 
recourse to phase information. For a multi-path signal, each path contributes to 
the power at receive location r. The power contributed by the kth path is [43]

r p
(4.4)

where Pk(r) is given directly from signal-strength measurements. Here a  is a con­
stant, related to the antenna pattern, carrier frequency and initial path direction, 
P0 is the transmitter power, /*(r) is the length of the unfolded path from transmit­
ter to location r via path k , cq is the transmission or reflection coefficient of the 
ith wall along the path. We assume only a single reflection per path in this thesis, 
so the total power at a position is given by

-p (r ) =  E no  =  n§2 (4-5)
k k=l k' ’

Model 2 assumes no phasor effects in the field received: all signals arrive at the 
receiver coherently. We conjecture model 2 may be arranged to perform equally 
well with the full phasor sum of model 1, under the relaxation that a may take on 
negative values.

Given the above two propagation models, it is feasible to build VPE using either 
the feature based neural network or adaptive nonlinear least square algorithm which
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are introduced in the following sections.

4.3 N eural N etw orks and Learning A lgorithm s

Artificial neural networks are well-developed for learning functional relationships, 
see [47], and comprehensive reviews exist, such as [48]. Artificial neural networks 
arise from imitations of biological neural systems, providing a simple application 
of parallel computation and have been extended to solve system learning and op­
timization problems [49,50].

Any function may be approximated by a piece-wise linear function, which we 
shall denote as a “basis function”. Let 4>(k,p) be the general basis function used 
for approximation, where k is the index of the function and p is the state. We may 
consider the state in terms of function samples, where the function is evaluated
at a finite set of “states” p*, i — 1 ,2 ,__  Where there is no ambiguity, we shall
interchange the state pi and in index i. A function J(p) can be approximated by a 
basis:

K

J(i,r) =  (4-6)
k—0

where r = {t*i , . . .  r#} are the weights associated with the basis set {0o(i), • ••, 0/c(i)}. 
The best approximation, in an MMSE sense, for a given set of basis functions may 
be obtained via solving:

■ ___ 2
r — arg min > \J(i) — J(i,r) . (4.7)

r e R K+l  I

Equation (4.6) represents a single layer neural network. For more complex 
(or higher dimensional) functions, multiple layers may be used. Such multi-layer 
neural networks are said to contain “hidden layers” which are composites of two 
or more single layer networks such as:

r(k)<7
k= 1

where the base function a(s) is a smooth monotonic function taking values in (0,1) 
or such a function taking values in (—1,1). i.e., or tanh(s).

Sometimes, there are functions of the state known to be important or useful 
in the prediction. In these cases, intermediate functions, called features, are intro­
duced to capture the important aspects of the current state. Let the feature vector

r(fc,
1=1

(4.8)
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associated with state i be denoted as /(z), the single layer network now can be 
written as J(z, r) = r(k)(f)k(f{i)). Features can be obtained by prior-knowledge
of the network or heuristic policies. In this thesis, the radio propagation models 
are used as feature functions.

4.3 .1  F eature-B ased  N etw ork  D esign

Both generic and kernel-based neural networks have been applied to the study 
of signal strength measurement and prediction issues, see for example [51,52]. 
However, previous work has focussed on the application of generic learning methods 
to the special class of the signal strength of wireless communication. In this paper, 
we use the feature-based learning method, which incorporates the special feature 
of the signal strength model under consideration. Rather than choose the usual 
sigmoidal function, as the basis, we use either radio propagation model 1 or model 
2 instead. As such, the neural network itself has a strong physical meaning. In 
addition, because the neural network basis is selected closely with the real model, 
it is expected the resulted method can be more efficient and effective.

At the off-line stage we measure the received signal at given positions and 
use this data to train the feature weights of the neural network, which are in 
the the hidden layer. The features are the position and reflection coefficient of 
reflectors (walls) or scatters. The output layer is the Neural Network cost function 
J, the difference between the measured power distribution and the estimated power 
distribution.

The parameters of walls are adjusted according to the given power distribution 
map of a certain area, which has a certain grid size. In the one dimensional case, 
P(m)  is the power at position rm where m = 1,2, . . . ,  M.  There are M  known 
positions stored in database, and each rm is a labeling of a physical location. Since 
m uniquely specifies rm we may consider P  as a function of m. We assume we know 
the position and reflection coefficient of N  ideal walls, either from an iteration or 
an initial guess.

Each wall will reflect its incident wave and contribute a signal component to a 
certain position rm. We either use propagation model 1 or model 2 to calculate 
the estimated power distribution P(m, R) at the position rm. Here R is the array 
of the parameters of the N  walls. The cost function J  is defined as



52 Adaptive Radio Signal Prediction and Application

and minimized by the fixed point equation:

d J
FU’+i =  R/c — 7 ox} (4-10)

O ttk

We set a threshold e for the cost function J, and for J  < e the fixed point iterations 
are terminated.

4.4 A daptive N onlinear Least Square A lgorithm s

Given m radio signal samples ( rm, P(m. R)), m = 1, . . . ,  M, where m  is the 
sample (position) index, we wish to find the parameter matrix R  that best fits in 
the least square sense to the propagation model, either model 1 or model 2. This 
leads the nonlinear least square algorithm. In detail, the residual vector function 
s(R)  is defined as [si(-R) s2(R) . . .  s m (R)}7 where

sm{R) = P (m ,R)  -  P{rm), ra = 1, . . . ,  M.

We intend to minimize the cost function defined as g(R) = \ s 1 (R)s(R). Gauss- 
Newton method is applied in solving this problem by introducing the gradient vector 
and Hessian matrix of g{R):

Vg(R) = J t (R)s (R )

and
M

H g(R) =  J t (R)J(R) + Y ,  sm( R) H m(R).
m — 1

Note that J(R)  is the Jacobian matrix of s(R)  and H m(R) denotes the Hessian 
matrix of the component function sm(R). Suppose at an iteration k we have R k 
as an approximate solution which is not far from the true value, the Newton step 
rik is given by the linear system

M

[Jr (Rk)J {Rk) + ^2  sm{Rk)Hm(Rk)}nk = -  J 1 (Rk)s(Rk) (4.11)
771=1

Appropriate Rk prompts that the fit of the model function to the sample data is 
reasonably good. This case leads that the residual component function sm is small, 
which makes it an reasonable approximation to drop the second-order term in the 
left-hand-side of (4.11). This approximation avoids the expensive and inconvenient 
computation of the m Hessian matrices H m. This motivates the Gauss-Newton
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method for solving the nonlinear least squares problem and we have the linear 
system

J r(Rk) J ( R k)nk = - J r (Rk) s(Rk)

The approximate Newton step n k at iteration k is for updating R k+\ at next itera­
tion, namely R k+\ = R k + n k. The iteration process is repeated until convergence 
criteria is satisfied or maximum iteration number has reached.

In principle, the Gauss-Newton method solves a sequence of linear least squares 
problems whose solutions converge to the solution of the original nonlinear problem. 
In case of large residual component function sm, the approximation in Gaussian- 
Newton method is not accurate and this could cause slow convergence rate or 
convergent not to global minimum. It is better to consider a robust nonlinear 
minimization method which takes into account of the Hessian Matrix in (4.11).

4.5 A p p lica tio n s  in  W ire le ss  L A N  L o ca liza tio n

The feature based neural network and nonlinear least square algorithm lay the 
foundation for building VPE from the measured radio signal samples. In this sec­
tion, we show how measured radio signal is applied in wireless LAN localization. 
The popular technology is mostly based on fingerprint technology. Target’s loca­
tion is estimated by searching in the training database set up during offline stage. 
The most robust and simple algorithms are nearest neighbour (NN), K  nearest 
neighbour (KNN) and K  weighted nearest neighbour (KWNN) [53].

By NN the vector difference between measured radio signal and items in database 
is calculated. The position of the nearest neighbour in the database is reckoned as 
the target position. For KNN, we like to take into account more neighbours around 
the nearest neighbour, the estimate of the MS position is the averaged coordinates 
of the total K  neighbours, as in (4.12):

Xr - EN  v
»=1 ^
N

(4.12)

where X* (z =  1, . . . ,  N) are the N  neighbours. KNN is a special case of KWNN, 
with the weight to each neibhbour is equal to each other.

In KWNN, the MS position is estimated by the weighted average of the coor­
dinates of the K  neighbours (4.13).

Xr = EN
v —'./V
E i = i  Wi

(4.13)
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The weight is selected according to certain rule to achieve better performance. In 
our case the weight is equal to inverse of the radio signal vector/matrix distance.

In the kernel method a probability mass function is described by a “kernel" 
regarding to each of the observations in the training data set. The resulting prob­
ability estimation for observed signal strength o on position /, denoted as p(o\l) is 
a combination of all probability mass functions of the available observations on l. 
We assume that there are N  observations at /, namely cq, 0 2 , . . . ,  o^- Then it is 
reached that

1 N
P(o\l) = j r ^ 2 K {°\°i) (4.14)

i=1
where o*) denotes the kernel function. In this thesis the most widely Gaussian 
kernel function is used with definition in (4.15):

^ {0;0i) =  i e x p (_ ^ L )  (4-15)

where a is a parameter dominating the width of the kernel function.

The above listed methods are not accurate models. The “radio signal dis­
tance” between the target and a RP has no linear relation with their geographical 
distance. The hidden relationship is dominant by the specified radio wave propa­
gation environment. As we know, the principle of fingerprint technology is that the 
geographical space, where the target is inside, is partitioned into cells consisting of 
all points closer to a given training point r' than to any other training points. All 
points is thus labeled by the category of the training point. The cells are called 
Voronoi cells in two dimensions location space. In three dimensions, the cells are 
three-dimensional and the decision boundary resembles the surface of a crystal. 
From the above analysis, it comes that the aperture of the cells dominates location 
resolution, or accuracy. It provides a solution to improve location accuracy by 
decreasing aperture of the cells. It can predict radio signal strength at points other 
than the training points. This means it has denser training points thus decreases 
aperture of the cells. Thus the location accuracy is improved, which is verified by 
our real field measurement results in the follow. In the literature, Motley-Keenan 
propagation model [54]:

Preceived(d̂ )\dBTYl\ Preceivedî ô) [dßm] 10oTog(-~)
Uo

(4.16)
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and the improved wall attenuation model [10]:

Preceived{d)[dBm] = Preceived(d0)[dBm\ -  10alog(—) -  nW  x W A F  (4.17)
do

have been applied in radio signal prediction and WLAN localisation. However, 
their performance is not satisfactory since they cannot cover details of the propa­
gation environment. The VPE method describes the properties of the propagation 
environment by fitting its model parameters to training radio signal samples.

4.6 E xperim ental M easurem ent Setup

To support our analysis, we build a WLAN localisation system based on a PC 
laptop running Linux. Details of the system is described in this section, where 
the normal static and the novel “stochastic position” measurement methods are 
also discussed. For field measurements a Compaq Evo N800C laptop installed with 
Lucent ORINOCO Gold 802.11b WLAN adaptor [55] was used as a measurement 
device. The Operating System (OS) for the laptop was Redhat 9.0 with kernel 
updated to 2.4.27. The adaptor driver version is 0.13-d [56] patched the scanning 
patch by Pavel Roskin [57,58], Wireless Extension and Wireless tools [59] provide 
the received signal strength from different APs. The laptop uses Wireless Tools 
v.26 and Wireless Extensions v.16. The field measurements were taken at the 
National ICT Australia Canberra Node.

4.6.1 Static M ethod

The receiver was placed at a position and the distance between receiver and trans­
mitter measured. Then we ran a TCL/TK script to scan all the available APs in 
the neighborhood and store their signal strengths in database. After one second, 
we repeated the scanning again until the Maximum Scanning Number (MSN) is 
reached. The mean and maximum values of the MSN signal strengths at each po­
sition was stored. During the measurement cycle, the receiver position was held 
fixed.

In the static measurement experiment small scale fading is observed. In Fig­
ure 4.1 we take M SN  = 20 samples at a position. T / R  distance means the distance 
between the transmitter and receiver. The unit of received signal power at the re­
ceiver is dBm. The measurement step size within distance from 380cm to 550cm 
is 5cm. Experiment results show the signal strength is stable in the temporal 
scale while suffering severe (and unpredictable) fading in the spatial scale. This is



56 Adaptive Radio Signal Prediction and Application

p -45

500 600
T/R Distance (cm)

Figure 4.1: Small scale fading, from measured data along corridor. Note scale is in 
cm. A ~  12cm

because small scale fading is typically due to phase effects and occurs on spatial 
scales smaller than a wavelength (A ~  12cm). In dense multi-path, prediction of 
the fading characteristics is ineffective for extrapolation beyond approximately one 
wavelength A [44], under the experimental setup used. Similar observations have 
been made in the temporal case [60]

4.6 .2  L arge-scale Fading S ignal M easu rem en t B ased  on M on te  

C arlo M eth od

In WLAN localisation system, in order to make an unique fingerprint of a certain 
location, small-scale fading is helpful. But it is hard to repeat the same signal 
pattern even at the same position. It is much easier to repeat the same patter 
at the same position using large-scale faded signal. However, in this case, the 
uniqueness is not well enough. In order to solve this dilemma, one solution based 
on Monte Carlo integration method is “fuzzy” z measurement, which is discussed 
here.

Monte Carlo methods are defined as statistical simulation methods, where sta-
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tistical simulation is defined in quite general terms to be any method that utilizes 
sequences of random numbers to perform the simulation [61]. One application of 
Monte Carlo methods is Monte Carlo integration. For example, the integration of 
an arbitrary function in a closed variable range from a to b can be approximated 
by drawing numerous samples in the variable space [a, b\. This idea is brought into 
WLAN localisation to measure large scale fading in this thesis.

Given only simple power measurements, a metric is desirable which estimates 
the large scale fading characteristics of the field, without inappropriate emphasis 
on the small scale, local effects. A natural (statistical) approach would be to take 
a number of samples within a nearby region and to perform an averaging over 
the samples. We may ask “Why ignore small scale fading?” the answer to this 
comes from well known results in extrapolation of functions, such as the Nyquist 
sampling result, and [44]: if we wish to predict small scale fading, we must sample 
at well above the maximum rate of change in the fade, which requires known 
calibration points at a sampling density greater than A/2. However, large scale 
fading is dominated by the free-space distance loss in power, and thus has a much 
lower rate of change over a local area, by comparison, \E(r)\ is (approximately) 
wavelength invariant, and varies at a rate of —2d-3.

For each calibration position r, we apply the Monte Carlo integration method 
and measure the received signal strength at a set of positions in the near neigh­
borhood of a sample point by simply moving the receiver within a nearby region 
during the MSN scanning process. We use the area-averaged signal strength as the 
fingerprint of the position. It is called “stochastic” method. Note that the position 
is not a point but a small area.

With our PC-based WLAN location system, we design three experiments to 
support our analysis and demonstrate the points in WLAN location. The follow 
section presents three experimental results. The first experiment shows the ad­
vantage of the “stochastic position” method compared with the normal “static 
method”.

4.7 E xperim ents R esu lts and A nalysis

4.7 .1  E xp erim en t 1

Three Access Points (AP) were deployed in the office, which are shown in Figure ?? 
as red dots. The right one in the middle is the first AP, simply as API. There are 
7 measurement points along the yellow line. Point 1 to 7 have approximately 
6, 8, 9, 10, 11, 12, 14 meters from API. At every point, we measured radio signal
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Table 4.1: Neighbor Distance
Method /  Pos 6 m 8 m 9 m 10 m 11 m 12 m 14 m

StaMean 7.2 13.9 14.0 6.9 8.5 3.7 9.0
StaMax 7.6 10.4 13.9 5.7 8.8 4.6 11.0

FuzMean 8.3 7.9 7.4 1.3 2.5 4.0 3.3
FuzMax 3.7 10.6 10.6 2.2 1.4 1.4 2.4

strength from the three APs, using normal (static) and fuzzy (dynamic) method. 
The MSN is set as 30. The standard data set collected at a position looks like:

S S li ( l ) SSh(2)  SSh{3)
SS12(1) SS12{2) SS12(3)

S S 1 m s n {1) S S I m s n (2) S S 1 m s n (3)

where SSx y(z) means received signal strength at position x from AP z during the 
yth scanning.

Regarding to each data set collected by the two methods, we either select the 
averaged or the maximum signal strength value vector from the three APs as the 
fingerprint for the position. This stage is called off-line training stage in WLAN 
localization system. In this stage radio signal distribution at known positions are 
recorded in database and processed as the fingerprints for these positions. In the 
online stage, radio signal from different APs at an unknown position are received, 
which has the format as

S S x ^ l )  SSxx(2) SSx!(S)
S Sx 2{ 1) SS x2{ 2) SSx 2( 3)

S S x m s n (1) S S x m s n ( 2) S S x m s n ( 3)

Comparing this signal with fingerprints stored in database, the nearest neighbor 
is decided as the most possible position (MPP). In our experiment, radio signal 
at 10 meter is measured as the unknown position. Euclidean distance is used in 
comparing newly measured signal with fingerprints in database. Totally there are 
four models existing, which are mean value with with static method (Model 1), 
maximum value with static method (Model 2), mean value with fuzzy method 
(Model 3)and maximum value with fuzzy method (Model 4). The distances are 
calculated and shown in Table 4.1:

Model 1 shows point 6 has closest distance to this unknown point, which is 2
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Table 4.2: Model combinations
Small scale 

model 1 
(static)

Large scale 
model 2 
(fuzzy)

Reflective walls la Ha
Scattering bodies lb lib

meters away from the true location. Model 2 shows the same calculation result. 
Model 3 indicates that point 4 has closest distance, which is the truth. Model 4 
suffers from selecting one best candidate from point 4, 5, 6, 7. From Table 4.1 it 
is shown that Model 3 has better performance in finding nearest neighbor, which is 
consistent with our previous analysis. We will use Model 3 measurement method 
in the following experiments.

The next experiment aims to show the prediction performance of VPE. Without 
loss of generality, VPE trained by feature based neural network is shown.

4.7 .2  E xp erim en t 2

In this experiment, a single Lucent ORINOCO AP-1000 Access Point (AP) was 
deployed as the transmitter. The transmitter was located at the end of a corridor 
and measurements were taken along the length of the corridor. Our objective in 
this section is to evaluate several model combinations, toward providing a robust 
and sufficiently accurate modeling procedure. We have four combinations, which 
we summarize in Table 4.2. In each case the neural network was trained with mea­
surement data at a collection of data points, and the resulting prediction compared 
with additional points.

P ropagation  M odel 1 results

Firstly we use reflectors as the neural network nodes in the hidden layer. The 
statically measured signal is shown in Figure 4.2. The transmitter is deployed at 
the origin. The measurements are performed at distances of lm, 1.5m, 2m, . . . ,  16m 
from the transmitter, among which the step size is 0.5m. We use the first radio 
propagation model with eight reflectors. The circles are the training signal strength 
at known positions, namely at positions with distances of lm, 2m, . . . ,  16m, from the 
transmitter. The position of the zth reflector is represented by a*X + biY + c* = 0. 
Including the reflection coefficient <jj, the weight vector of the zth reflector is defined 
as [cii bi Ci a*]. All weight vectors constitute the weight matrix for the neural
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x Measured Power 
Final Estimated Power 

0  Initial Estimated Power

T/R Distance (m)

Figure 4.2: 8 Reflectors with Propagation Model 1. Crosses denote measurements, 
circled crosses mark training points.

network. With knowledge of position of the reflector, we can calculate the unfolded 
length from the transmitter to the receiver, based on image theory. Here we only 
consider simple one-bounce scenario.

In the training process, the converging is rather slow when the cost function is 
approximately equal to 650. The cost function is bounded above 640 as shown in 
Figure 4.6. It is shown in Figure 4.2 that the final estimated power distribution 
doesn’t match the measured power well. It differs little with the initial estimated 
power distribution.

Given the same measured signal power distribution, we use sixteen scatterers 
as the hidden nodes. For each node the weight vector is [a* 6* cr*], where (a*, 6*) 
is the X-Y axis of the scatter and cq is the reflection coefficient of the scatter. 
With phase term included in propagation model, this neural network is efficient 
in decreasing cost function, which demonstrates the first propagation model has 
strong capability in fitting the training data. In order to prevent overfitting, the 
cost function in Figure 4.3 is 18, though this neural network can converge its cost 
function close to zero. This figure shows that while the phasor addition model can 
be easily matched to the trained data, it suffers from wild fluctuations away from
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x Measured Power 
Final Estimated Power 

0  Initial Estimated Power

T/R Distance (m)

Figure 4.3: 16 Scatterers with Propagation Model 1. Crosses denote measurements, 
circled crosses mark training points. Note dominance of small-scale fading.

the measured data when used to predict signal strength. The reason is simple: 
small scale fading is highly reliant on local channel parameters, and thus sampling 
must be performed at or above the Nyquist sampling rate. Sadly, the sampling 
rate is bounded from above by A/2 which requires a sampling density of greater 
than 3 samples per wavelength. Based on the learned features of the wireless 
propagation environment, it is possible to predict signal strength at other positions. 
We use measured signal strength distribution at 0.5m, 1.5m,. . . ,  15.5m to validate 
the predicted values. The prediction result matches the measured data well within 
a distance of 4 meters from transmitter as shown in Figure 4.3.

P ropagation  M odel 2 results

The prediction accuracy with the second radio propagation model can be improved 
by using a “stochastic” measurement method. We apply the radio propagation 
model 2 in our algorithm to train the neural network until the cost function J  is 
relatively small. Once the training process is finished, we apply the weight matrix 
to calculate signal strength distribution at unknown positions.

In Figure 4.4 four ideal reflectors are acting as the neural network hidden nodes
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p  -30
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Figure 4.4: 4 Reflectors with Propagation Model 2. Crosses denote measurements, 
circled crosses mark training points.

with a final value of cost function around 17. Training signal strength is measured 
at positions with distances of lm, 2m ,. . . ,  17m to the transmitter. The signal 
fluctuates smoothly, comparing with Figure 4.3 and Figure 4.2. We estimate signal 
distribution at positions of 1.5m, 2.5m,. . . ,  15.5m. The error between predicted 
values and measured values is reasonably small.

With the same training signal strength distribution, we used eight scatters as 
the hidden layer in Figure 4.5 giving eight nodes. In this figure the final value of cost 
function is around 14. The prediction can achieve the same level of accuracy as that 
by reflectors. In Figure 4.6 the computation complexity for the above four neural 
networks are given. Entry “la” in Table 4.2 suffers from the convergence bound 
of the cost function. “Ha” has similar problems but its bound is much smaller. 
“Ib” has good performance in converging to the training data but it is poor in 
signal prediction. “lib” demonstrates its ability in predicting signal distribution 
with reasonable computation cost.

The last experiment will demonstrate the location accuracy improvement achieved 
by the aiding of VPE. According the results in Experiment 2, scatterer modeled 
neural network with propagation model 2 is adopted in the following WLAN loca-
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Figure 4.5: 8 Scatterers with Propagation Model 2. Crosses denote measurements, 
circled crosses mark training points.

tion implementation.

4.7 .3  E x p e r im e n t 3

This experiment aims to verify the practical applications of the virtual environment 
concept in WLAN localisation. The real filed radio signal measurement was imple­
mented in NICTA’s office. At the offline stage training data was measured at a grid 
size of 2 by 2m. The approximate area of the available region is 250 square meters. 
Numerous testing data was measured randomly in the same measurement field. 3 
weighted nearest neighbour (3WNN) and a Gaussian kernel method are utilised in 
calculating location error distance. As seen in Figure 4.7, the ninety percentage 
error distance is at about 6.5 m for the original 3 W N N  method while the average 
error is 3.50 m. With the aiding of the “learned” virtual environment, the ninety 
percentage error distance is around 6 m and the average error is 2.25 m. Figure 4.8 
shows that the ninety percentage error distance is at about 5.8 m for the original 
Gaussian Kernel method while the average error is 3.00 m. With the aiding of the 
virtual environment, the ninety percentage error distance turns to be around 4.2 m 
and the average error is 2.50 m. The performance comparison between these two
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figures indicates that the virtual environment works effectively in improving local­
isation accuracy in both the nearest neighbour and the Gaussian Kernel method. 
We note there is a performance cross-point in Figure 4.8. This demonstrates the 
VE could bring localisation accuracy degrading in small error distance range. This 
reminds us to utilise the VE method carefully in real applications.

4.8 C ontributions

The technical contributions of this chapter were:

1. To develop new algorithms to predict wireless signal propagation environ­
ment, using feature-based neural network and adaptive nonlinear least square 
was presented. These algorithms constructed a virtual propagation environ­
ment which reasonably represented the real environment. Our experiment 
showed the VPE is helpful in improving WLAN localisation accuracy.

2. To apply a new method -  “stochastic position” method -  in real field sig-
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3WNN without the aiding of VE 
3WNN with the aiding of VE

Error Distance (m)

Figure 4.7: Cumulative distribution of localization error using 3 Weighted Nearest 
Neighbour Method.

nal strength measurement, based on Monte Carlo method. This method 
mitigates the effect of small scale fading when examining signal strength val­
ues and has better performance in making radio fingerprint of a position in 
WLAN localization system.
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Kemel Method without the aiding of VE 
Kemel Method with the aiding of VE

Error Distance (m)

Figure 4.8: Cumulative distribution of localization error using Gaussian Kernel 
Method.



C h ap te r 5

W ireless L ocation  U sing P a tte rn  
M atch ing  Techniques

5.1 In troduction

One popular technology to locate a MS in WLAN and/or sensor networks is to assist 
the localization with the aid of radio signal spatial distribution map (RSSDM). This 
is also known as fingerprint technology. RSSDM contains MS’s radio signal spatial 
distribution characteristic when the MS is at a certain position. For example, 
in WLAN, several access points (AP) can measure a MS's radio signal spatial 
distribution when the MS is at a known position. The measured radio signal spatial 
distributions (of multiple APs) are recognized as the MS’s location fingerprint at 
that particular position. The fingerprints at multiple positions are recorded and 
thus set up in a RSSDM database, which is implemented during an off-line training 
stage. In the online stage, when the MS goes to an unknown position, the measured 
RSS (possibly from multiple BSs) is used to search the database to find most 
probable position using pattern matching techniques [12] [13]. Normally the radio 
signal strength (RSS) is adopted in setting up the RSSDM. The RADAR location 
system by Micorsoft Research [10] is one of the first and most comprehensive studies 
of 801.11 localization using the radio signal spatial distribution. Several improved 
power attenuation models are introduced in [11] which considers wall and floor 
effects.

The fingerprint technique provides a method for mitigating non line-of-sight 
(NLOS) effects, given an appropriate sample grid size during the offline training 
stage. However, the training process requires a heavy working-load typically due 
to the dense sample points. Further, frequent training is necessary for acceptable 
location accuracy in dynamic propagation environments.

67
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The channel impulse response (CIR) is also adopted in identifying a MS’s posi­
tion [25]. Estimation of the CIR is implemented by the demodulator of the receiver 
designed for mitigating the effect imposed by wireless channel upon received radio 
signal. This brings the main advantage of using CIR as a location signature since it 
does not need any significant hardware modification to the current existing wireless 
communication system. Firmware is modified to feed the CIR information from 
physical layer to application layer. With comparison to RSS, CIR has a greater 
ability in determining a geographical position uniquely since it records the multi- 
path profile of wireless channel specific to a location. These advantages of CIR as 
location fingerprint make it possible to design a location system with less BSs.

Recently WiMAX (World Interoperability for Microwave Access), has drawn 
much attention of researchers, service providers and manufacturers. It is based on 
the IEEE 802.16X standard and is expected to enable true broadband speeds over 
wireless networks at a cost point to enable mass market adoption. There are two 
WiMAX applications: fixed and mobile. Fixed WiMAX applications are point- 
to-multipoint enabling broadband access to homes and businesses. In this type of 
fixed wireless networks (FWN), each BS has a wide coverage. In current standard 
a BS covers a region with radius of almost 10 km. ref here! This makes it hard 
to estimate a MS’s position with the information sharing of multiple BSs. On the 
other hand, one feature of FWN is there are a number of fixed users in FWN with 
their positions known. The CIR vectors from these users could be reckoned as 
natural sample instances to set up the RSSDM, which saves much effort.

We intend to take advantage of this feature of FWN and design a novel local­
ization system for FWN in this chapter. We will introduce a fingerprint location 
method based on CIR only. This method has minimum requirement for the number 
of RPs, which is one. General algorithms and support vector machine (SVM) will 
be applied in location estimation. The remainder of this chapter is arranged as 
follows. In section 5.2 CIR models are given as preliminaries and “CIR” distance 
is defined. Section 5.3 provides general algorithms and SVM for location in FWN. 
Rule of thumb in tuning SVM is presented in detail. Section 5.4 shows how to im­
plement CIR measurements to have training and testing data sets using Radioplan. 
Performance of different algorithms is also given. The last section is devoted to 
conclusion and discussion of future work.
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Table 5.1: Fingerprint Data Format
Position Path Index a a Delay AoA

Path Index | a a Delay AoA

5.2 CIR M odel and “CIR Distance” Calculation

One CIR model is the tapped-delayed-line model which utilizes a tapped-delay- 
filter to represent multipath channel as

L

h(t) =  ^ ~2aiö(t -  Ti). 
i = i

Here l is the multipath index and there are L multipaths in total, ot\ is the complex 
gain of the Ith path, TJ is the relative time delay relative to the first path (T0 =  0). 
This filter structure describes the multipath profile (MP) of radio signal coming 
from a source position.

There is an improved spatial tapped-delayed-line channel model which includes 
the radio signal incident bearing <!>/ of the Ith propagation path [62].

L

h{t, ip) = ^ 2  “  Ti)ö(<P ~  $/)•
i = i

The data structure is shown in Table 5.1, where |a| and a are cPs magnitude and 
phase, respectively. We consider this structure as a matrix corresponding to a 
source position, namely the location signature of the position. The number of rows 
of the matrix is the number of multipaths of the target position’s MP. c and C are 
assumed to be the CIR matrix of two positions. The generalized “CIR distance” 
between them is

im n p

A> = ( £  £  |c«  -  c y p) (5.1)
*=1 j=1

where m and n are the CIR matrix row and column dimensions, p is set to 1 if we 
use Manhattan distance and p is equal to 2 when Euclidean distance is adopted.

The phase term of the received signal suffers from small scale fading and we 
will omit a when calculating CIR distance.
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5.3 L o ca tio n  A lg o rith m s for F W N

The fingerprint method involves two stages: an offline training stage and a later 
online estimation stage.

In the training stage, a training data set is gathered by a field survey which 
contains a number of data instances. Each instance contains one pair: the “target 
value” and the corresponding “attributes” (features) vector. During the online 
stage, it is requested to estimate the target value with respect to a measured 
attribute vector, based on information in the training data set solely. To solve 
this problem, estimation algorithms may approximate the target value implicitly 
or construct an explicit description of the target value and its attribute vector.

In our case, the target value is the MS’s geometrical position and attribute 
vector has the CIR parameters as its components, such as time of delay, angle of 
arrival and signal attenuation, etc.

Instance-based learning algorithms can approximate the target’s value by sim­
ply storing the training data set, such as the /c-nearest neighbors learning the locally 
weighted regression and radial basis functions [63]. Each time a new instance is 
encountered, its relationship to the stored data set is examined in order to assign a 
target value for the new instance. On the other hand, the SVM constructs explicit 
functions to describe the target value and its attribute vector of the training data 
instances. The arbitrary learning ability of the SVM makes it a powerful tool for 
solving both pattern recognition and regression problems. SVM has wide applica­
tions including in computational biology, intrusion detection, generalized predictive 
control, dynamic reconstruction of chaotic systems and modeling of seismic lique­
faction potentials.

We will give mathematical descriptions for the algorithms indicated above in 
the following sections.

5.3.1 In stan ce-B ased  L earning A lgorith m s

Instance-based learning algorithms are available in estimating the location of the 
MS by searching in the training database, and include algorithms such as near­
est neighbor (NN), K-nearest neighbor (KNN) and /^-weighted nearest neighbor 
(KWNN).

To find the location regarding to a given CIR vector in the testing set, we 
calculate “distance” between this CIR with all instances in the training set. For the 
algorithm of nearest-neighbor (NN), the instance with smallest distance in training 
set is selected and its target value is considered as the most possible position of the
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testing set.
One problem is that we need to build the training set with dense enough spatial 

sample points in order to achieve a satisfactory location accuracy. Sparse sample 
points may lead to significant location errors.

One mitigating solution is to estimate the target by combining several close 
neighbors. This is referred as the A"-nearest neighbor (KNN) [53]. The target’s 
position is the “averaged” position of the neighbors, weighted by inverse of their 
relative “CIR distance”.

The vector difference between measured CIR and CIR in the database is cal­
culated. The position of the nearest neighbor in the database is reckoned as the 
target position. For KNN, we like to take into account more neighbors around the 
nearest neighbor, the estimate of the MS position is the averaged coordinates of 
the total K  neighbors, as in (5.2):

XT = (5.2)

where X* (i =  1, . . . ,  IV) are the N  neighbors. Performance achieved by this method 
is not satisfactory since the relative “CIR distance” has no direct relation with 
geographical distance.

KNN is a special case of KWNN, with the weight to each neighbor is equal. In 
KWNN, the MS position is estimated by the weighted average of the coordinates 
of the A-neighbors (5.3).

(5.3)

The weight is selected to achieve better performance. In our case the weight is 
equal to inverse of the CIR vector/matrix distance.

[The above listed methods are not accurate models.] The “CIR distance” be­
tween the target and a RP has no simple relation with their geographical distance. 
The hidden relationship is dominated by the specified radio wave propagation en­
vironment. We intend to employ a more powerful tool — support vector machine 
to learn this hidden relation.

5.3 .2  S up port V ector M achine

The support vector machine (SVM) is a category of universal feed-forward net­
works, pioneered by Vapnik [47, p.318]. SVM has been widely applied in pattern 
classification and nonlinear regression.
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We start from classifying a number of / training instances. Each instance con­
sists of a pair: an input vector aq £ Kd, i — 1, • • • , Z and the associated pattern
label 2/j, where in a simple case yi = 1 or —1. The task is to construct a hyper­
plane to separate the positive samples with label yt = 1 from those negative ones 
with yi = 0. In case of linear SVM, the points x  £ in the hyperplane satisfies 
w - x  + b = 0 where w  £ is unknown and normal to the hyperplane. The optimal 
w  and b determine the hyperplane.

The training instances satisfy the following constraints:

Xi • w  + b > +1 for  yi = +1 (5.4)

x x • w  +  b < — 1 for yi =  —1 (5.5)

Combining the above two equations we have:

yi(xi ■ w + b) — 1 > 0 Vz £ 1,2, . . . , /  (5.6)

In pattern classification one key principle is to make the margin of separation 
between positive and negative examples maximized. It is known that the margin 
is 2 /11 w  11 [64]. Now the problem is formulated as to minimize \\w\\ for inequality 
constraints in (5.6). This is a constrained optimization problem and solvable by 
Lagrangian method, where each of the inequality constraints (5.6) is assigned a 
nonnegative Lagrange multiplier, cq, i =  1, . . . , / >  0.

The Lagrangian is given by:

2 *
Lp{w, 6, cq) =  - |M |2 -  [yi(xi • w  + b) -  1]

*=l
^ i i

= -\\w\\2 - ^ 2 / a iyi(x l -w  + b) + ^ 2 a i (5.7)
i=1 i=l

This constructs the primal problem. There is a saddle point with regard to w, b 
and cq. At the point of optimality,

min max Lp = max min Lp. (5.8)
w,b cti cti w,b

It is more often that the positive and negative samples are mixed together, a 
non-separable case. To generalize the optimal separating hyperplane algorithm, [65] 
introduced non-negative slack variables, & > 0 for measuring the misclassification 
errors: for an error to occur, the corresponding & must exceeds unity. JT  ^  is an



5.3 Location Algorithms for FWN 73

upper bound on the number of training errors. The constraints in (5.4) and (5.5) 
are modified for the non-separable case to

X i - w  + b > + l - £ i  for yi  = +1 (5.9)

Xi • w  +  b < -1  +  & for yi =  -1  (5.10)

& > 0 Vz (5.11)

The generalized separating hyperplane is determined by the vector w , that 
minimize the functional,

$ ( w , 0  =  Iwwr + c 'E t i  (5-12)
i

where C is a parameter dominating the higher or less penalty to errors.

The primal Lagrangian is

LP =  i |M |2 + C -  'Ŝ j ai{ y f x l ■ w  +  b) -  1 + 6 }  -  (5.13)
i i i

where the a* and \ii are the Lagrangian multipliers.

Applying the Karush-Kuhn-Tucker (KKT) conditions for the primal problem, 
the Wolfe dual problem [66] becomes to maximize

To 'y ^ Cki y ]  c x i O i j y i y j X i  • X j (5.14)
rj

subject to

0 < Qi < C, (5.15)

=  0. (5.16)
i

The solution is given by
Ns

w = J 2 aiyjXj (5.17)
3=1

where Ns is the number of strict positive elements in the Lagrangian multipliers set: 
a*, i =  1 , . . . ,  The training instances whose corresponding Lagrangian multi­
plier are positive are so called “support vectors”. They are the critical instances in 
determining the separating plane.

There is no guarantee that linear decision function can separate instances satis-
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factorily. Here comes the most interesting part of SVM, which is to preprocess the 
data instances to map the attribute space into a higher dimension Euclidean space, 
H. With an appropriate mapping : Rd —> 7i to a sufficiently high dimension, 
instances from two categories can always be separated by a hyperplane.

Equation (5.14) provides a hint that the algorithm would only depend on two 
arbitrary instances X i  and X j  through their dot product X i  • X j .  This generates a 
method to rely on 4>(a?j) • 4>(aq) in space H. To be specific, at online estimation 
stage SVM computes dot products of a new instance x  by computing the sign of

where the s* is the support vector.

If a “kernel function” K  is defined as K (x i , X j )  = • 4>(xj), we may use the
kernel function A'(-) in both the training and predicting stages without knowledge 
of what the explicit form of is:

The SVM has been extended to solve regression problem by introducing a loss 
function [67]. Similar to pattern classification problem, we are given a number of 
l training samples. Each sample consists of a pair: an input vector Xi G Rd, i = 
1, • • • , l and the associated label (function value) yi is not constrained to { + 1,-1} 
but can take any arbitrary value. The goal is to find a function f ( x )  to approximate 
the relation inherited from the training data set. Loss function C(y, f (x) )  is used 
to evaluate how the estimated value f ( x)  deviated from the real value y. Many 
forms for loss function can be found in the literature such as linear, quadratic 
loss function, exponential, etc. In this chapter, we intend to obtain a sparse set 
of support vectors and Vapnik’s loss function is adopted, which is also known as 
e-insensitive loss function:

Ns

f ( x )  = Y  W M * * )  ■ $(*) +  b (5.18)

(5.19)
i— 1

otherwise
if Iy -  f {x)  I < e

where e > 0 is a predefined constant which controls the noise tolerance. The form
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of support vector regression [67] algorithm is presented as:

1 1 
- w Tw + C'^2(Zi + $ )mmw,b~£,£*

* = l

subject to

The dual problem is:

w T$(Xi) +  b -  di < e + 

di -  w 1 $(xi) -  b < e +  £*, 

6 , £ > 0, * = 1, 2 .. . ,/. (5.20)

min ~(ot — ct*)J Q(ct — a.*)
a,ex* 2

+e^(a* + a * )  + ^ (cq  ~ a i )

i= 1 i=1
l

subject to — a*) = 0,
i —1

0 < ( X i , a *  < C,i  = (5.21)

where the component of Q at the zth row and jth  column, Qij — K(xi ,Xj)  
$(xi)T$(Xj). The approximation function is

i

f ( x )  = ^2( -a i - \ - a - )K{x i , x )  +  b.
1=1

A

In our application, the goal is to learn the properties of a wireless radio wave 
propagation environment from the data instances in the training set. It requires 
a high dimensional mapping to learn the complex relation within the pairs of CIR 
and geographical location. Furthermore, the kernel function encapsulates the inner 
products of arbitrary two data instances and avoids knowing the mapping explicitly. 
The most popular four kernels are

• linear: K(Xi,Xj) = x j  Xj.

• polynomial: K( x i , Xj) =  (7x j  x 3 + r)d,y  > 0.

• radial basis function (RBF): K(xi ,Xj)  = exp(—y)||27 — iCj||2),7  > 0

• sigmoid: K{xi,Xj) = t a n h ^ x j X j  + r).

where 7, r and d are kennel parameters. We note the RBF kernel can handle the 
nonlinear relation between attributes and regression value due to its nonlinearity.
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It is suggested as the first choice in general. There are three parameters while using 
RBF kernels: C, e and 7. When applying SVM in learning the relation between 
MS position and CIR vector, it is non-trivial to find appropriate (C, e, 7) such that 
the machine can accurately predict unknown positions regarding to a testing data 
instance. The performance of a SVM is measured by its prediction accuracy but 
not its fitness to training data set. In order to achieve better prediction accuracy 
and avoid over-fitting, a TV-fold cross validation strategy [68] is applied in training 
our SVM. Namely, the training set is divided into N  subsets. Sequentially one 
subset is tested using the machine trained on the remaining N  — 1 subsets. The 
training accuracy is accessed by the averaged “prediction” accuracy when each of 
the N  subsects is used as the testing set sequentially.

We use a combinational grid search method to find appropriate (C, e, 7). A 
coarse search is implemented by the winSVM program [69]. Different kernel types 
and values of parameters are tried by the program and the corresponding mean 
square training error are recorded. We select tuples of (C, e, 7) with reasonable 
small training error as the staring point for the 5-fold cross-validation process. 
Since C, e and 7 are independent, it is possible to do grid-search in parallel which 
saves much training time. The search record is recorded and the set of parameters 
with least validation error is taken to train our SVM.

Before starting the training of SVM, it is important to scale the attributes’ 
numerical range for better prediction accuracy. The reasons are similar to those 
when training Neural Networks, mainly to reduce effect of attributes with large 
numeric value range on small ones.

5.4 S im ulation Setup  and R esu lts

We use the Radiowave Propagation Simulator (RPS) to implement the algorithms. 
RPS is a radio coverage and performance planning and automatic optimization 
system [70] issued by Radioplan in Dresden, Germany. It utilises either 3D/2.5D 
ray tracing engine or empirical propagation engine to model radio wave propagation 
in a wide range of propagation environments, such as in indoor or outdoor, urban 
or rural areas. RPS provides accurate channel impulse response information such 
as power attenuation, phase, time delay, azimuth and elevation of incoming or 
outgoing rays of at a per-path basis at receiver or transmitter.

Before launching the radio propagation simulation, a propagation environment 
needs to be generated by the integrated environment editor. In our simulation we 
use a modified urban outdoor environment. The original environment comes with
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Figure 5.1: RPS Plot

RPS version 5.2 (trial version) example library. The size of the propagation region is 
1000 x 800 m2 with around 30 buildings inside. Part of the simulation environment 
is shown in Figure 5.1, demonstrating radio wave rays reflected, refracted and 
diffracted in the environment. There are two emitters (7\, T2) and one receiver 
(R) in this figure. To gather the training data set, the region is separated into 
square blocks with grid length equal to 20m. At the centre of each block there is a 
transmitter deployed with isotropical antenna. The transmit power is 33dBm. The 
receiver is deployed at the up-right part of the area and installed with an isotropic 
antenna.

We also deploy numerous test points where each CIR vector and its location 
is gathered. The instance-based algorithms and SVM are applied in analyzing the 
localisation accuracy.

The error distance is defined as the distance between an estimated position 
and true position of a test instance. The probability distribution and cumulative 
distribution of estimation error for the above methods are shown in Figure 5.2 
and Figure 5.3. It is shown that the performance of 4NN, 4WNN and SVM have 
no apparent difference: The average error distances are 53.3m, 43.4m and 49.6m,
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Error distance (m)

Figure 5.2: Probability distribution of error distance, 4NN stands for 4-nearest 
neighbor, 4WNN stands for 4-weighted nearest neighbor

respectively. SVM and 4WNN have almost the same 90% error distance, which is 
around 120m.

5.5 C ontributions

The technical contributions of this chapter were:

1. To propose algorithms suitable for locating multiple users in parallel in a fixed 
wireless network. Unlike methods presented by [25], the pattern matching 
technology does not need to keep record of the target’s moving trajectory 
while still capable of providing fairly good accuracy.

2. To interpret the inherent reason wdiy SVM only provides similar location 
accuracy as the general methods. This indicates we cannot have further 
performance gain from the computational effort we spend in training SVM. 
To our understanding, this is due to the “small scale” spatial distribution 
characteristic of CIR, acting as the location signature. “Small scale fading” 
in wireless wave propagation is well known. Similarly, the parameters of CIR, 
such as amplitude, DoA and delay, fluctuate rapidly over a short period of 
geographical distance. Since we use parameters of CIR as the input vector 
x and the corresponding position as output y , the output hyperplane is a
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Error distance (m)

Figure 5.3: umulative distribution of error distance, 4NN stands for 4-nearest neigh­
bor, 4WNN stands for 4-weighted nearest neighbor

non-smooth, or even a nearly discontinuous surface due to the “small scale” 
characteristic of CIR. This non-smoothness/discontinuity prevents the SVM 
having better performance than the general KWNN methods. The above 
also explains the similar performance of KWNN, Bayesian modeling, multi­
layer perceptrons and SVM, using radio signal strength as location fingerprint 
in [53].
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C onclusions

6.1 Sum m ary and G eneralization

How to increase location accuracy is the major concern in wireless location re­
search. The multipath propagation nature of wireless waves not only introduces 
inter-symbol interference to the receiver in a communication system but also brings 
difficulty in estimating target’s location. Many solutions in literature provide lim­
ited effect in conquering the location ambiguity caused by multipath.

On the other side, wireless waves arrives in the receiver through different in­
coming azimuth and elevations in space. This propagation has a wider occupancy 
of space and therefore has its own spatial diversity compared to less number of 
arrival paths. This consideration intrigues us to study the unexposed potential 
beneficiary of multipath on location accuracy. We develop a model for generating 
random wavefields according to a given angular correlation characteristic which 
permits a numerical investigation into the effects of correlated incoming wavefield 
modeling. Not surprising, our numerical results show that richer multipath in a 
wireless terminal’s spatial region can be beneficial to improving the location reso­
lution. To make this conclusion it is critical to satisfy the following conditions:

• the incoming multipaths are correlated in angle;

• and the total energy of wavefields in an aperture-limited receiver region are 
identical in different richness multipath.

The first condition is a reasonable assumption since in reality multipath waves 
generated by same scatterer or reflector are correlated to each other. The second 
is essential in understanding the location accuracy of line-of-sight scenario, which 
is beyond of the scope of the study of this thesis. The reason is line-of-sight wave 
has significant more energy than normal multipath waves.

81
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To develop a wireless location system practically, we give out a “virtual” radio 
wave propagation model for predicting the spatial distribution of the radio signal. 
We proposed an adaptive algorithm to learn this “virtual” environment based on 
the wireless signal strength measured in actual field measurements. Also, we in­
troduced a Channel Impulse Response (CIR) fingerprint location solution, which 
takes advantages of the features of fixed wireless network. A practical solution is 
determined for the location problem using pattern matching technique.

6.2 Future Work

6.2.1 E ssen tia l Sensor N um b er and Sensor P o sitio n s for 

Sam pling

One interesting problem is to address the necessary sensor number and positions 
to have optimal spatial sampling for wavefield coupled to a region. The effect of 
optimal sampling can be defined in terms of reproducing the coupled wavefield 
with least error and without significant sensor deployment redundancy. Optimal 
sampling is vital in wireless communications and/or signal processing. Potential 
applications include reproduce a 3D high-fidelity sound field, such as a concert, in 
a most efficient and economical way to let the sensor network to be as simple as 
possible. The optimal sensor number is addressed in [29] as the problem of numbers 
of receiver antennas. It is shown the number of critical antennas deployed in a 2D 
disk region of R is the dimensionality of the region, Djf*, assuming the antennas 
are smartly displaced. More antennas are superfluous — that is, they contribute 
little or no additional information.

6.2 .2  Itera tive  Searching A lgorith m

In this thesis we are challenged to solve the problem that how to find the smart 
positions of the D2̂ sensors in the region of R. We start from a simple case by 
assuming that scattering from one azimuth is independent from another, namely an 
angular uncorrelated scatterer gain A(<f>). Consider Q — D antennas in a region 
11 a; < R  || at distinct locations X\ ,X2 , , Xq for snatching up as much information 
as possible in the multipath field of the region. The Q antennas may be placed in 
the region randomly without overlapping in the region at the initial stage. We then 
start an iterative process to find the near-optimal positions of the Q antennas. Let 
q[Q denote the sensor set of sensors 1, 2, . . . ,  Q excluding sensor i. The region R  is 
evenly divided into numerous small sections. The central location of each section
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is used to mark the section. The number of the sections should be big enough thus 
the Q antennas stay in Q different sections at least. In every iteration there would 
Q sub-iterations. We try to find the sub-optimal position of the first antenna in 
the first sub-iteration. Assume there are totally M  sections in the region. The 
sub-optimal position of the first antenna is searched through the complementary 
sections occupied by the q(Q] antenna set in the total M  section space, while keeping 
the q(Q] antennas’ position fixed. This means antenna 1 has M — Q + 1 potential 
sub-optimal positions. But, how to justify which position is the best one in the 
M  — Q + 1 candidates? A spatial correlation matrix, denoted as 1Z, for the Q 
antennas is proposed where the element in the zth row and j th column is defined 
as

ritj = p(xi,Xj) i , j  = l , 2 . . . Q  (6.1)

Every time antenna 1 is moved to a new position/section we will have a matrix 7Z. 
We calculate the Q eigenvalues and store the summation of them. Once antenna 
1 has traveled all the M  — Q + 1 sections we will have M  — Q + 1 summation 
results. The section with the biggest eigenvalue summation is considered as the 
sub-optimal position of antenna 1 in this sub-iteration. In a similar way all the 
other antennas’ positions are sub-optimised in the first iteration by moving one 
antenna only during one sub-iteration while keeping all others fixed. The next 
iteration is simply a repetitive one of the first iteration. This problem is proposed 
to solve a global convergence problem in our future work.

6.2 .3  Tracking M aneuvering  Target

Kalman filtering is widely used in tracking linear trajectory with Gaussian noise 
for its economical calculation complexity. With the development of more powerful 
embedded computation units, particle filtering is widely adopted for its adaptivity 
to non-linear state evolution model under non-Gaussian noise environments. We 
intend to exploit the tracking performance of particle filtering while maintaining the 
computation complexity relatively low. In detail, we would adopt more realistic 
dynamic model for the target since current existing models are very limited in 
describing and predicting target’s next position. For example, in indoor WLAN 
localisation system, particles are constrained to lie within a room. Our new model 
is designed to solve this problem and borrowed the ideas from Robot Simultaneous 
Localisation and Mapping. We would study the particle filtering re-sample rate 
for different radio propagation environment. The purpose for resampling is to 
remove those particles with a very low weight. However, this causes loss of particle
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diversity. This motivates us to do future study on the optimal threshold in deciding 
when to do resampling.

6.2.4 R SSD M  O ptim al U p d a tin g

One disadvantage of hngerprint location technology is updating the Radio Signal 
Spatial Distribution Map once the radio propagation environment is changed. In 
future research we will analyze the optimal updating period and strategy in updat­
ing the RSSDM in wireless communication system.

6.2.5 O p tim al S patia l Sam ple D ensity  for F in g erp rin t Tech- 
nology

Fingerprint location requires large amount of sample points for reliable localisation 
accuracy, especially in high dense multipath propagation environment. However, 
there is performance improvement ceil as the the sample density increases. This 
motives our future research to discover the relationship between sample density 
and location accuracy. According to our understanding, this issue is related with 
the radio signal spatial distribution. The spatial varying rate dominates the best 
sampling rate.
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