737 research outputs found

    Measurement and Modeling of Wireless Off-Body Propagation Characteristics under Hospital Environment at 6-8.5 GHz

    Full text link
    © 2013 IEEE. A measurement-based novel statistical path-loss model with a height-dependent factor and a body obstruction (BO) attenuation factor for off-body channel under a hospital environment at 6-8.5 GHz is proposed. The height-dependent factor is introduced to emulate different access point (AP) arrangement scenarios, and the BO factor is employed to describe the effect caused by different body-worn positions. The height-dependent path-loss exponent is validated to fluctuate from 2 to 4 with AP height increasing by employing both computer simulation and classical two-ray model theory. As further validated, the proposed model can provide more flexibility and higher accuracy compared with its existing counterparts. The presented channel model is expected to provide wireless link budget estimation and to further develop the physical layer algorithms for body-centric communication systems under hospital environments

    UWB Path Loss Models for Ingestible Devices

    Full text link
    [EN] Currently, some medical devices such as the Wireless Capsule Endoscopy (WCE) are used for data transmission from inside to outside the body. Nevertheless, for certain applications such as WCE, the data rates offered by current medical frequency bands can result insufficient. Ultra Wideband (UWB) frequency band has become an interesting solution for this. However, to date, there is not a formal channel path loss model for the UWB frequency band in the gastrointestinal (GI) scenario due to the huge differences between the proposed studies. There are three main methodologies to characterize the propagation channel, software simulations and experimental measurements either in phantom or in in vivo animals. Previous works do not compare all the methodologies or present some disagreements with the literature. In this paper, a dedicated study of the path loss using the three methodologies aforementioned (simulations, phantoms and in vivo measurements) and a comparison with previous researches in the literature is performed. Moreover, numerical values for a path loss model which agrees with the three methodologies and the literature are proposed. This paper aims at being the starting point for a formal path loss model in the UWB frequency band for WBANs in the GI scenarioThis work was supported in part by the European Union's H2020-MSCA-ITN Program for the "Wireless In-body Environment Communication" Project under Grant 675353, in part by the Programa de Ayudas de Investigacion y Desarrollo (PAID-01-16) from Universitat Politecnica de Valencia, and in part by the Ministerio de Economia y Competitividad, Spain under Grant TEC2014-60258-C2-1-R through the European FEDER Funds.Pérez-Simbor, S.; Andreu-Estellés, C.; Garcia-Pardo, C.; Frasson, M.; Cardona Marcet, N. (2019). UWB Path Loss Models for Ingestible Devices. IEEE Transactions on Antennas and Propagation. 67(8):5025-5034. https://doi.org/10.1109/TAP.2019.2891717S5025503467

    Ultrawideband Technology for Medical In-Body Sensor Networks: An Overview of the Human Body as a Propagation Medium, Phantoms, and Approaches for Propagation Analysis

    Full text link
    [EN] An in-body sensor network is that in which at least one of the sensors is located inside the human body. Such wireless in-body sensors are used mainly in medical applications, collecting and monitoring important parameters for health and disease treatment. IEEE Standard 802.15.6-2012 for wireless body area networks (WBANs) considers in-body communications in the Medical Implant Communications Service (MICS) band. Nevertheless, high-data-rate communications are not feasible at the MICS band because of its narrow occupied bandwidth. In this framework, ultrawideband (UWB) systems have emerged as a potential solution for in-body highdata-rate communications because of their miniaturization capabilities and low power consumption.This work was supported by the Programa de Ayudas de Investigación y Desarrollo (PAID-01-16) at the Universitat Politècnica de València, Spain; by the Ministerio de Economía y Competitividad, Spain (TEC2014-60258-C2-1-R); and by the European FEDER funds. It was also funded by the European Union’s H2020:MSCA:ITN program for the Wireless In-Body Environ-ment Communication–WiBEC project under grant 675353.Garcia-Pardo, C.; Andreu-Estellés, C.; Fornés Leal, A.; Castelló-Palacios, S.; Pérez-Simbor, S.; Barbi, M.; Vallés Lluch, A.... (2018). Ultrawideband Technology for Medical In-Body Sensor Networks: An Overview of the Human Body as a Propagation Medium, Phantoms, and Approaches for Propagation Analysis. IEEE Antennas and Propagation Magazine. 60(3):19-33. https://doi.org/10.1109/MAP.2018.2818458S193360

    Wireless Off-body Channel Analysis and Sparse Modeling

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.The successful application of very rapidly growing wearable devices relies on the research on the propagation characteristics of off-body channels which plays a key role in connecting the wireless body area network and cellular network, WiFi and other local area networks. This thesis concentrates on the bottleneck problems of the measurement, analysis and modeling of the off-body propagation characteristics. A large number of measurement investigations have been carried out to solve the thorny problem of complicated and changeable scenes of off-body channel and heavy fading caused by adjacent humans. These activities include different transmission schemes, different influence factors, and typical changeable configurations. Then, in this study, the systematic analysis of the measured big channel datasets are conducted based on traditional large/small scale propagation analysis methods and compressive sensing based sparse channel analysis methods. The first part of the thesis discusses the measurement and analysis of typical off-body channel types including single input single output (SISO), diversity reception and multiple input multiple output (MIMO). A two-factor integrated path loss model with variable body worn locations and variable access point (AP) height is proposed to improve the power management and link budgeting ability in off-body scenarios. A highly robust circularly polarized spatial diversity off-body scheme is made up and validated to tackle the heavy fading problem. In addition, the influences of humans including both hand-held effect and body obstruction effect on off-body transmission angular spectrum and capacity are estimated. In the second part of the thesis, the novel compressive sensing based sparse channel analysis methods are proposed to deal with the modeling problems of off-body temporal channels with complex multipath components. The channel impulse response (CIR) models of SISO and MIMO channels based on single measurement vector (SMV) and multi-measurement vector (MMV-CS) compressive sensing methods respectively are established. Finally, according to the off-body link types, the propagation characteristics, sparse analysis and modeling methods are integrated into several channel simulators with friendly GUI interface, whose source codes are shared on gitHub. Those models and simulators are expected to be used in theoretical analysis and engineering practice for the coverage planning, link simulation, algorithm design, and performance validation

    In-body to On-body Experimental UWB Channel Characterization for the Human Gastrointestinal Area

    Full text link
    [ES] La población mundial en países desarrollados está envejeciendo y con ello existe un aumento de enfermedades en gran medida causadas por la edad. Las nuevas tecnologías médicas pueden ayudar a detectar, diagnosticar y tratar estas enfermedades y con ello ahorrar dinero, tiempo y recursos de los sistemas sanitarios. Las tecnologías inalámbricas implantables han abierto un nuevo panorama para la próxima generación de tecnologías médicas. Frecuencias como la Ultra Wide-Band (UWB) de 3.1 a 10.6 GHz están siendo consideradas para la nueva generación de dispositivos inalámbricos para dentro del cuerpo humano. Las características como el reducido tamaño de las antenas, la baja potencia de transmisión y la alta velocidad de datos son las más buscadas en este tipo de dispositivos. El problema surge porque el cuerpo humano depende de la frecuencia de modo que a mayores frecuencias, mayores son las pérdidas por propagación. Conociendo el canal de transmisión se puede solventar el problema de las altas pérdidas. Esta tesis tiene como objetivo caracterizar el canal de radio frecuencia (RF) para la nueva generación de dispositivos médicos implantables. Para caracterizar el canal se han empleado tres diferentes metodologías: simulaciones numéricas, medidas en phantom y experimentos en animales vivos. Las medidas en phantom fueron realizadas en un nuevo sistema de medidas expresamente disen¿ados para medidas de dentro a fuera del cuerpo humano en la banda de frecuencias UWB. Además, se utilizó un novedoso recipiente con dos capas de phantom imitando la zona gastrointestinal del cuerpo. Estos phantoms fueron creados para este tipo de medidas y son extremadamente precisos a las frecuencias UWB. Para los experimentos en animales se utilizaron cerdos y se intentó reproducir en ellos las medidas previamente realizadas en phantom. Las simulaciones software se realizaron con la intención de replicar ambas metodologías. Una vez realizados los experimentos se realizó un extensivo estudio del canal en dominio frecuencial y temporal. Mas en detalle, se compararon las antenas usadas en la recepción y transmisión, el efecto de la grasa en el canal, la formas del recipiente contenedor de phantom y las componentesmulticamino. Como resultado se ha propuesto un modelo de propagación del canal para la banda baja de las frecuencias UWB (3.1 -5.1 GHz) para la zona gastrointestinal del cuerpo humano. Este modelo de propagación ha sido validado utilizando las tres metodologías previamente descritas y comparada con otros estudios existentes en literatura. Finalmente, se midió el canal de propagación para una determinada aplicación a bajas frecuencias con señales UWB. También se realizaron medidas del canal de propagación en la zona cardíaca del cuerpo humano desde un punto de vista de seguridad de datos. Los resultados obtenidos en esta tesis confirman los beneficios que tendría la utilización de frecuencias UWB para las futuras generaciones de dispositivos médicos implantables.[CA] La població mundial a països desenvolupats està envellint-se i enfrontant-se a un augment d'infermetats principalment causades per la edat. Les noves tecnologies mèdiques poden ajudar a detectar, diagnosticar i tractar aquestes malalties, estalviant diners, temps i recursos sanitaris. Els dispositius implantables sense fils han generat un nou panorama per a les noves generacions de dispositius mèdics. Les freqüències com la banda de UWB estan sent considerades per a les futures tecnologies implantables. La reduïda grandària de les antenes, la baixa potència de transmissió i les altes velocitats de dades son característiques buscades per als dispositius implantables. Per contra, els éssers humans depenen de la freqüència en el sentit que a majors freqüències, majors les pèrdues per propagació quan el senyal travessa el cos humà d'interior a exterior. Per solventar aquestes pèrdues el canal de propagació s'ha d'entendre i conèixer de la millor manera possible. Aquesta tesi doctoral te com a objectiu caracteritzar el canal de radio freqüència (RF) per a la nova generació de dispositius mèdics implantables. S'han emprat tres metodologies diferents per a realitzar aquesta caracterització: simulacions software, mesures amb fantomes i experiments amb animals vius. Els experiments amb fantomes es van realitzar a un sistema de mesures dissenyat expressament per a les transmissions de dins a fora del cos humà a les freqüències UWB. També es van utilitzar un contenidor per als fantomes de dues capes, imitant l'area gastrointestinal dels humans. Per als experiments a animals es van emprar porcs, replicant els experiments al laboratori en fantomes de la forma més semblant possible. Les simulacions software foren dissenyades per a imitar les experiments amb fantomes i animals. Després dels experiments el canal de propagació es va investigar exhaustivament des del domini freqüèncial i temporal. S'ha observat com les antenes en transmissió i recepció afecten al senyal, la influència de la grassa, la forma del contenidor de fantoma i les possibles contribucions multicamí. Finalment es proposa un nou model de propagació per a les baixes freqüències UWB (3.1 a 5.1 GHz) per a la zona GI del cos humà. El model es va validar utilitzant les tres metodologies abans esmentades i també foren comparades amb model ja existents a la literature. Finalment des d'un punt de vista aplicat, el canal es va avaluar per al senyal UWB a baixes freqüències (60 MHz). A més a més, per a la nova generació de marcapassos sense fil es va investigar el canal des d'un punt de vista de seguretat de dades. Els resultats obtinguts a aquesta tesi confirmen els avantatges d'emprar la banda de freqüències UWB per a la nova generació de dispositius médics implantables.[EN] The current global population in developed countries is becoming older and facing an increase in diseases mainly caused by age. New medical technologies can help to detect, diagnose and treat illness, saving money, time, and resources of physicians. Wireless in-body devices opened a new scenario for the next generation of medical devices. Frequencies like the Ultra Wide-band (UWB) frequency band (3.1 - 10.6 GHz) are being considered for the next generation of in-body wireless devices. The small size of the antennas, the low power transmission, and the higher data rate are desirable characteristics for in-body devices. However, the human body is frequency ependent, which means higher losses of the radio frequency (RF) signal from in- to out-side the body as the frequency increases. To overcome this, the propagation channel has to be understood and known as much possible to process the signal accordingly. This dissertation aims to characterize the (RF) channel for the future of in-body medical devices. Three different methodologies have been used to characterize the channel: numerical simulations, phantom measurements, and living animals experiments. The phantom measurements were performed in a novel testbed designed for the purpose of in-body measurements at the UWB frequency band. Moreover, multi-layer high accurate phantoms mimicking the gastrointesintal (GI) area were employed. The animal experiments were conducted in living pigs, replicating in the fairest way as possible the phantom measurement campaigns. Lastly, the software simulations were designed to replicate the experimental measurements. An in-depth and detail analysis of the channel was performed in both, frequency and time domain. Concretely, the performance of the receiving and transmitting antennas, the effect of the fat, the shape of the phantom container, and the multipath components were evaluated. Finally, a novel path loss model was obtained for the low UWB frequency band (3.1 - 5.1 GHz) at GI scenarios. The model was validated using the three methodologies and compared with previous models in literature. Finally, from a practical case point of view, the channel was also evaluated for UWB signals at lower frequencies (60 MHz) for the GI area. In addition, for the next generation of leadless pacemakers the security link between the heart and an external device was also evaluated. The results obtained in this dissertation reaffirm the benefits of using the UWB frequency band for the next generation of wireless in-body medical devices.Pérez Simbor, S. (2019). In-body to On-body Experimental UWB Channel Characterization for the Human Gastrointestinal Area [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/133034TESI

    An improved channel model for medical body area network device testing

    Get PDF
    For testing and validation of medical body area network devices the knowledge of the wireless channel is very crucial. Although this could be implemented by utilizing existing BAN channel models, their restriction to specific device usage scenarios and environments make them less appropriate. For this purpose, this thesis presents a methodology for an MBAN device testing by developing an improved channel model, which accounts for a room size and use case variability. The improved channel model is based on channel sounding, over the frequency band from 2.3 GHz to 2.5 GHz, performed for five different use cases defined based on body posture, movement, and orientation. In order to study the room size effect, the measurements have been carried out in three different office rooms and an anechoic chamber. The proposed channel model is composed of three components, which are modeled separately: the mean path loss, body shadowing, and multipath fading. The mean path loss is modeled as a distance log function, while the body shadowing is modeled statistically by a lognormal distribution, and the multipath fading by a Rician distribution. The impact of room size is mainly notified in the Rician K-factor value; whereas the effect of movement is notified in the lognormal parameter. Furthermore, the effect of body orientation and posture is represented in the path loss model parameters

    Body-centric wireless communications: wearable antennas, channel modelling, and near-field antenna measurements

    Get PDF
    This thesis provides novel contribution to the field of body-centric wireless communications (BCWC) with the development of a measurement methodology for wearable antenna characterisation on the human body, the implementation of fully-textile wearable antennas and the on-body channel modelling considering different antenna types and user's dynamic effects. More specifically, a measurement methodology is developed for characterising wearable antennas on different locations of the human body. A cylindrical near-field (CNF) technique is employed, which facilitates wearable antenna measurements on a full-body solid anthropomorphic mannequin (SAM) phantom. This technique allows the fast extraction of the full spherical radiation pattern and the corresponding radiation efficiency, which is an important parameter for optimising wearable system design. It appears as a cost- effective and easy to implement solution that does not require expensive positioning systems to rotate the phantom, in contrast to conventional roll-over-azimuth far-field systems. Furthermore, a flexible fully-textile wearable antenna is designed, fabricated and measured at 2.4 GHz that can be easily integrated in smart clothing. It supports surface wave propagation and exhibits an omni-directional radiation pattern that makes it suitable for on-body communications. It is based on a multilayer low-profile higher-mode patch antenna (HMMPA) design with embroidered shorting vias. Emphasis is given to the fabrication process of the textile vias with conductive sewing thread that play an important role in generating the optimal mode for on-body radiation. The radiation pattern shape of the proposed fully-textile antenna was found to be similar to a copper rigid antenna, exhibiting a high on-body radiation efficiency of 50 %. The potential of the embroidery technique for creating wearable antennas is also demonstrated with the fabrication of a circularly polarised spiral antenna that achieves a broadband performance from 0.9-3 GHz, which is suitable for off-body communications. By testing the textile spiral antenna on the SAM phantom, the antenna-body interaction is examined in a wide frequency range. Finally, a statistical characterisation of on-body communication channels is undertaken both with EM simulations and channel measurements including user's dynamic movement (walking and running). By using antenna types of different polarisation, the on-body channels are examined for different propagation conditions. Four on-body channels are examined with the one part fixed on the waist of the human body while the other part located on the chest, back, wrist and foot. Channel path gain is derived, while large-scale and small-scale fading are modelled by best-fit statistical distributions

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Ultra Wideband

    Get PDF
    Ultra wideband (UWB) has advanced and merged as a technology, and many more people are aware of the potential for this exciting technology. The current UWB field is changing rapidly with new techniques and ideas where several issues are involved in developing the systems. Among UWB system design, the UWB RF transceiver and UWB antenna are the key components. Recently, a considerable amount of researches has been devoted to the development of the UWB RF transceiver and antenna for its enabling high data transmission rates and low power consumption. Our book attempts to present current and emerging trends in-research and development of UWB systems as well as future expectations
    corecore