188 research outputs found

    Multinet : enabler for next generation enterprise wireless services

    Get PDF
    Wireless communications are currently experiencing a fast migration toward the beyond third-generation (B3G)/fourth generation (4G) era. This represents a generational change in wireless systems: new capabilities related to mobility and new services support is required and new concepts as individual-centric, user-centric or ambient-aware communications are included. One of the main restrictions associated to wireless technology is mobility management, this feature was not considered in the design phase; for this reason, a complete solution is not already found, although different solutions are proposed and are being proposed. In MULTINET project, features as mobility and multihoming are applied to wireless network to provide the necessary network and application functionality enhancements for seamless data communication mobility considering end-user scenario and preferences. The aim of this paper is to show the benefits of these functionalities from the Service Providers and final User point of view

    A Seamless Vertical Handoff Protocol for Enhancing the Performance of Data Services in Integrated UMTS/WLAN Network

    Get PDF
    The Next Generation Wireless Network (NGWN) is speculated to be a unified network composed of several existing wireless access networks such as Wireless Local Area Network (WLAN), Global System for Mobile (GSM), Universal Mobile Telecommunications System (UMTS), Worldwide Interoperability for Microwave Access (WiMAX), and satellite network etc

    An Experimental Cross-Layer Approach to Improve the Vertical Handover Procedure in Heterogeneous Wireless Networks

    Get PDF
    Users of next generation wireless devices will be likely to move across a heterogeneous network environment. This will give them the possibility to always exploit the best connection to the global Internet. In order to keep a seamless connection, the handover between different access technologies, also known as vertical handover, must be as smooth as possible. The current evolution of network architectures toward an all-IP core favours the use of the Mobile IPv6 protocol to handle such handovers. However, this protocol still presents several drawbacks, mainly related to the assumption of static devices and wired connections. Hence we have designed and implemented a software module that exploits information from the lower layers (e.g. physical) to extend the capabilities of Mobile IPv6 to wireless environments. We have then evaluated both the plain Mobile IPv6 and our proposed implementation over an experimental testbed. The outcome of the assessment proves the effectiveness of our solution and reveals the possibility to perform a seamless vertical handover in heterogeneous wireless networks

    Enhancing Capacity and Network Performance of Client-Server Architectures Using Mobile IPv6 Host-Based Network Protocol

    Get PDF
    A huge number of studies have been done supporting seamless mobility networks and mobile technologies over the years. The recent innovations in technology have unveiled another revolution from the static architectural approach to more dynamic and even mobile approaches for client-server networks. Due to the special equipments and infrastructure needed to support network mobility management, it is difficult to deploy such networks beyond the local network coverage without interruption of communications. Therefore, MIPv6 as developed by the Internet Engineering Task Force (IETF) and ancillary technologies were reviewed to provide clear insights on implementing MIPv6 in Client-Server architectures. However, MIPv6 technology presents weaknesses related to its critical handover latency which appears long for real-time applications such as Video Stream with potential loss of data packets during transmission

    Future Trends and Challenges for Mobile and Convergent Networks

    Get PDF
    Some traffic characteristics like real-time, location-based, and community-inspired, as well as the exponential increase on the data traffic in mobile networks, are challenging the academia and standardization communities to manage these networks in completely novel and intelligent ways, otherwise, current network infrastructures can not offer a connection service with an acceptable quality for both emergent traffic demand and application requisites. In this way, a very relevant research problem that needs to be addressed is how a heterogeneous wireless access infrastructure should be controlled to offer a network access with a proper level of quality for diverse flows ending at multi-mode devices in mobile scenarios. The current chapter reviews recent research and standardization work developed under the most used wireless access technologies and mobile access proposals. It comprehensively outlines the impact on the deployment of those technologies in future networking environments, not only on the network performance but also in how the most important requirements of several relevant players, such as, content providers, network operators, and users/terminals can be addressed. Finally, the chapter concludes referring the most notable aspects in how the environment of future networks are expected to evolve like technology convergence, service convergence, terminal convergence, market convergence, environmental awareness, energy-efficiency, self-organized and intelligent infrastructure, as well as the most important functional requisites to be addressed through that infrastructure such as flow mobility, data offloading, load balancing and vertical multihoming.Comment: In book 4G & Beyond: The Convergence of Networks, Devices and Services, Nova Science Publishers, 201

    Advanced Positioning and Location based services in 4G Mobile-IP Radio Access Networks

    Get PDF
    2004 IEEE 15TH IEEE International Symposium on personal, indoor and mobile radio communications (PIMRC 2004), Barcelona, Spain, 5-8 september 2004.This paper proposes an evolved architecture from 3G networks to provide basic and advanced positioning methods for location based services in mobile IPv6-based radio access networks. We start analyzing current status of location-based services (i.e. LBS or LCS) and architectures in 3G networks as well as state-of-the-art research on LBS and mobile Internet. Next we set the requirements the solution should fulfill. We continue proposing the evolved architecture for support of basic and advanced positioning methods, using MIPv6 and HMIPv6 as mobility scenario for the mobile IPv6 based RAN, describing element's functions and changes from current approaches as well as description of the dynamic behavior. We complete the proposal with a bandwidth analysis of the signaling, identifying issues when planning implementation of LCS services in the network

    Enhancing Capacity and Network Performance of Client-Server Architectures Using Mobile IPv6 Host-Based Network Protocol

    Get PDF
    A huge number of studies have been done supporting seamless mobility networks and mobile technologies over the years The recent innovations in technology have unveiled another revolution from the static architectural approach to more dynamic and even mobile approaches for client-server networks Due to the special equipments and infrastructure needed to support network mobility management it is difficult to deploy such networks beyond the local network coverage without interruption of communications Therefore MIPv6 as developed by the Internet Engineering Task Force IETF and ancillary technologies were reviewed to provide clear insights on implementing MIPv6 in Client-Server architectures However MIPv6 technology presents weaknesses related to its critical handover latency which appears long for real-time applications such as Video Stream with potential loss of data packets during transmissio
    • 

    corecore