4 research outputs found

    Compression forces used in the Norwegian Breast Cancer Screening Program

    Get PDF
    Objectives: Compression is used in mammography to reduce breast thickness, which is claimed to improve image quality and reduce radiation dose. In the Norwegian Breast Cancer Screening Program (NBCSP), the recommended range of compression force for full field digital mammography is 11-18 kg (108-177 Newton [N]). This is the first study to investigate the compression force used in the program. Methods: The study included information from 17,951 randomly selected women screened with FFDM at 14 breast centres in the NBCSP, January-March 2014. We investigated the applied compression force on left breast in craniocaudal (CC) and mediolateral oblique (MLO) view for breast centres, mammography machines within the breast centres and for the radiographers. Results: The mean compression force for all mammograms in the study was 116N and ranged from 91 to 147N between the breast centres. The variation in compression force was wider between the breast centres than between mammography machines (range 137-155N) and radiographers (95-143N) within one breast centre. Approximately 59% of the mammograms in the study complied with the recommended range of compression force. Conclusions: A wide variation in applied compression force was observed between the breast centres in the NBCSP. This variation indicates a need for evidence-based recommendations for compression force aimed at optimizing the image quality and individualising breast compression. Advances in knowledge: There was a wide variation in applied compression force between the breast centres in the NBCSP. The variation was wider between the breast centres than between mammography machines and radiographers within one breast centre

    Diagnostic Reference Levels for digital mammography in Australia

    Get PDF
    Aims: In 3 phases, this thesis explores: radiation doses delivered to women during mammography, methods to estimate mean glandular dose (MGD), and the use of mammographic breast density (MBD) in MGD calculations. Firstly, it examines Diagnostic reference levels (DRLs) for digital mammography in Australia, with novel focus on the use of compressed breast thickness (CBT) and detector technologies as a guide when determining patient derived DRLs. Secondly, it analyses the agreement between Organ Dose estimated by different digital mammography units and calculated MGD for clinical data. Thirdly, it explores the novel use of MBD in MGD calculations, suggesting a new dose estimation called the actual glandular dose (AGD), and compares MGD to AGD. Methods: DICOM headers were extracted from 52405 anonymised mammograms using 3rd party software. Exposure and QA information were utilised to calculate MGD using 3 methods. LIBRA software was used to estimate MBD for 31097 mammograms. Median, 75th and 95th percentiles were calculated across MGDs obtained for all included data and according to 9 CBT ranges, average population CBT, and for 3 detector technologies. The significance of the differences, correlations, and agreement between MGDs for different CBT ranges, calculation methods, and different density estimation methods were analysed. Conclusions: This thesis have recommended DRLs for mammography in Australia, it shows that MGD is dependent upon CBT and detector technology, hence DRLs were presented as a table for different CBTs and detectors. The work also shows that Organ Doses reported by vendors vary from that calculated using established methodologies. Data produced also show that the use of MGD calculated using standardised glandularities underestimates dose at lower CBTs compared to AGD by up to 10%, hence, underestimating radiation risk. Finally, AGD was proposed; it considers differences in breast composition for individualised radiation-induced risk assessment

    Design, development and use of a deformable breast phantom to assess the relationship between thickness and lesion visibility in full field digital mammography

    Get PDF
    Aim of research:This research aimed to design and develop a synthetic anthropomorphic breast phantom with cancer mimicking lesions and use this phantom to assess the relationship between lesion visibility and breast thickness in mammography. Due to the risk of cancer induction associated with the use of ionising radiation on breast tissues, experiments on human breast tissue was not practical. Therefore, a synthetic anthropomorphic breast phantom with cancer mimicking lesions was needed to be designed and developed in order to provide a safe platform to evaluate the relationship between lesion visibility and breast thickness in mammography. Method: As part of this research custom Polyvinyl alcohol (PVAL) breast phantoms with embedded PVAL lesions doped with contrast agent were fabricated and utilised. These breast phantoms exhibited mechanical and X-ray properties which were similar to female breast/breast cancer tissues. In order for this research to be useful for human studies, patient safety factors have constrained the extent of this research. These factors include compression force and radiation dose. After acquiring mammograms of phantoms with varying thicknesses, the image quality of the embedded lesions were evaluated both perceptually and mathematically.The two-alternative forced choice (2AFC) perceptual method was used to evaluate image quality of the lesions. For mathematical evaluation the following methods were utilised: line profile analysis, contrast-to noise ratio (CNR), signal-to noise ratio (SNR) and figure of merit (FOM).Results: The results of the visual perception analysis of the mammograms demonstrate that as breast compressed thickness reduces the image quality increases. Additionally, the results display a correlation in the reduction in the level of noise with the reduction in breast thickness. This noise reduction was also demonstrated in the profile plots of the lesions. The line profile analysis, in agreement with visual perception, shows improvement of sharpness of the lesion edge in relation to the reduction of the phantom thickness. The intraclass correlation coefficient (ICC) has shown a great consistency and agreement among the observers for visibility, sharpness, contrast and noise. The ICC results are not as conclusive for the size criterion. Mathematical evaluation results also show a correlation of improvement in the image quality with the reduction in breast thickness. The results show that for the measures CNR, SNR, and FOM, the increase in image quality has a threshold after which the image quality ceases to improve and instead begins to reduce. CNR and FOM dropped when the breast phantom thickness was reduced approximately 40% of its initial thickness. This consistently happened at the point where the filter changed from rhodium (Rh) to molybdenum (Mo). Conclusion: This breast phantom study successfully designed and developed an anthropomorphic compressible breast phantom with cancer mimicking lesions with mechanical and X-ray properties similar to human breast tissue. This study also demonstrates that as breast compressed thickness reduces the visibility of the perceived lesion increases. The radiation dose generally decreases up to the point that the filter changes from rhodium to molybdenum. After this point, the radiation dose increases regardless of the phantom thickness. The results from this thesis are likely to have implications for clinical practice, as they support the need for compression/thickness reduction to enhance lesion visibilit
    corecore