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Abstract 

Design, development and use of a deformable breast phantom to assess 

the relationship between thickness and lesion visibility in full field digital 

mammography 

Mary Shahrzad Ossati Salford University, 2015 

 

Aim of research: 

This research aimed to design and develop a synthetic anthropomorphic breast 

phantom with cancer mimicking lesions and use this phantom to assess the relationship 

between lesion visibility and breast thickness in mammography. 

Due to the risk of cancer induction associated with the use of ionising radiation on 

breast tissues, experiments on human breast tissue was not practical. Therefore, a 

synthetic anthropomorphic breast phantom with cancer mimicking lesions was needed to 

be designed and developed in order to provide a safe platform to evaluate the relationship 

between lesion visibility and breast thickness in mammography. 

Method: 

As part of this research custom Polyvinyl alcohol (PVAL) breast phantoms with 

embedded PVAL lesions doped with contrast agent were fabricated and utilised. These 

breast phantoms exhibited mechanical and X-ray properties which were similar to female 

breast/breast cancer tissues. In order for this research to be useful for human studies, 

patient safety factors have constrained the extent of this research. These factors include 

compression force and radiation dose. 

After acquiring mammograms of phantoms with varying thicknesses, the image 

quality of the embedded lesions were evaluated both perceptually and mathematically. 
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The two-alternative forced choice (2AFC) perceptual method was used to evaluate image 

quality of the lesions. For mathematical evaluation the following methods were utilised: 

line profile analysis, contrast-to noise ratio (CNR), signal-to noise ratio (SNR) and figure 

of merit (FOM). 

Results: 

The results of the visual perception analysis of the mammograms demonstrate that 

as breast compressed thickness reduces the image quality increases. Additionally, the 

results display a correlation in the reduction in the level of noise with the reduction in 

breast thickness. This noise reduction was also demonstrated in the profile plots of the 

lesions. The line profile analysis, in agreement with visual perception, shows 

improvement of sharpness of the lesion edge in relation to the reduction of the phantom 

thickness. The intraclass correlation coefficient (ICC) has shown a great consistency and 

agreement among the observers for visibility, sharpness, contrast and noise. The ICC 

results are not as conclusive for the size criterion. 

Mathematical evaluation results also show a correlation of improvement in the 

image quality with the reduction in breast thickness. The results show that for the 

measures CNR, SNR, and FOM, the increase in image quality has a threshold after which 

the image quality ceases to improve and instead begins to reduce. CNR and FOM 

dropped when the breast phantom thickness was reduced approximately 40% of its initial 

thickness. This consistently happened at the point where the filter changed from rhodium 

(Rh) to molybdenum (Mo). 

Conclusion: 

This breast phantom study successfully designed and developed an 

anthropomorphic compressible breast phantom with cancer mimicking lesions with 

mechanical and X-ray properties similar to human breast tissue. This study also 
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demonstrates that as breast compressed thickness reduces the visibility of the perceived 

lesion increases. The radiation dose generally decreases up to the point that the filter 

changes from rhodium to molybdenum. After this point, the radiation dose increases 

regardless of the phantom thickness. The results from this thesis are likely to have 

implications for clinical practice, as they support the need for compression/thickness 

reduction to enhance lesion visibility. 
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Chapter 1 Introduction 

In order to provide good quality mammograms, breast compression in 

mammography is required. Compression is needed regardless of patient related factors 

such as breast density, and mammographic techniques (O'Leary, Grant, & Rainford, 

2011). As the compression reduces the thickness of the breast, the breast structures are 

brought closer to the detector (Chevalier, Leyton, Tavares, Oliveira, da Silva, & Peixoto, 

2012). This in turn reduces the distance that radiation must travel through the tissue. 

Subsequently, the amount of scattered radiation is reduced, and the sharpness of the 

features in the captured mammograms is increased. This reduction in tissue thickness also 

has the effect of reducing the required dose of radiation necessary to acquire the 

mammographic image (Chevalier, Leyton, Tavares, Oliveira, da Silva, & Peixoto, 2012) 

(Kaabi, Bariki, & Janeczek, 2013).  

Compression force also improves the image quality by limiting breast movement 

and spreading the overlapping breast tissue (O'Leary, Grant, & Rainford, 2011) 

(Chevalier, Leyton, Tavares, Oliveira, da Silva, & Peixoto, 2012). Immobilizing the 

breast increases the definition or sharpness of the structures in the image by reducing 

movement unsharpness. Spreading the overlapping breast structures differentiates the true 

lesions from summation shadows which are caused by overlapping soft tissues (Brant & 

Helms, 2012).  

The National Health Service Breast Screening Programme (NHSBSP) provides 

guidelines for the use of compression in mammography (NHS Breast Screening 

Programme, 2000). These guidelines refer to the gentle and slow use of compression to 

hold the breast tissue firmly in position, and define an upper limit of compression which 

should not be exceeded (200 N or 20 kg). The guidelines do not discuss the adequate 
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range for compression force in order to provide diagnostically acceptable mammograms. 

Because of this missing link, numerous experiments on compression force in 

mammography have already been carried out to determine the optimal compression force 

to enhance image quality, decrease the patient radiation dose, and reduce patient 

discomfort. These studies are explored in Chapter 3.  

Failure to apply adequate compression force increases the possibility of missing 

the lesions. Whereas, when excessive compression forces are used, the risk of discomfort 

and possible injury to the patients as a result of the procedure increases. Evidence shows 

that if the screening clients experience too much discomfort, the may not attend again on 

future screening occasions. Therefore, finding the relationship between the image 

visibility and the breast thickness will assist the clinicians to reach an appropriate 

thickness in order to visualize breast cancer. 

1.1 THIS RESEARCH STUDY 

This research aims to design and develop a synthetic anthropomorphic breast 

phantom with cancer mimicking lesions and use this phantom to assess the relationship 

between lesion visibility and breast thickness in mammography. This demonstrates 

whether image visibility improves with the decrease of the breast phantom thickness due 

to an increase of compression force. This helps determine how much the breast must be 

compressed in order to create adequate mammographic lesion visibility. This study also 

considers the relationship between the breast phantom thickness and the radiation dose. 

Due to the risk of cancer induction associated with the use of ionising radiation on 

humans, synthetic anthropomorphic (see glossary on page 305) breast phantoms are often 

utilised in mammography research. In general, phantoms are designed objects that are 
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used in medical imaging research to replace the real tissue where using the living human 

is inappropriate (Surry, Austin, Fenster, & Peters, 2004). 

In order for the phantoms to be suitable as a human substitute, their mechanical 

and X-ray properties must be similar to the tissues they mimic. Mechanically the 

phantoms need to simulate both the stiffness and compressibility of the mimicked human 

tissue.  

Due to the limitations of existing commercial physical and computerised 

phantoms, development of a physical breast phantom was required in this research. Non-

toxic, biodegradable, biocompatible, simple, and low cost water-based poly vinyl alcohol 

(PVAL) phantoms/lesions with multiple freezing-thawing cycles (FTC) were fabricated 

and utilised. The lesions were made of PVAL and water-based X-ray contrast media. The 

mechanical and X-ray properties of the phantoms/lesions were then measured to ensure 

their mechanical and X-ray properties were similar to breast tissue and cancer lesions. 

Since the X-ray properties of the PVAL phantoms are dissimilar to human breast tissue, 

the appropriate amount of contrast agent was measured and added to the PVAL lesions. 

The contrast agent helped to simulate the right attenuation difference between the cancer 

mimicking lesions and the surrounding PVAL breast phantom. The compressible 

phantoms developed in this research can tolerate over 200 N of compression force 

without being damaged. This allows the application of a wide range of compression 

forces to the PVAL breast phantoms in order to acquire images of various phantom 

thicknesses. 

In this study, mammography was performed both during the design and 

development of the phantoms and after finalising the design. Imaging of the phantoms 

during the design was aimed to improve the phantom/lesion fabrication by assessing the 

appropriateness of the tissue substitutes. After completing the design, mammography 
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imaging was utilised to measure the lesion visibility in relation to breast phantom 

thickness. 

After acquiring mammograms of the phantoms at various thicknesses, the image 

quality of the embedded lesions was evaluated mathematically and perceptually. 

Mathematical methods employed were contrast-to-noise ratio (CNR), signal-to-noise 

ratio (SNR), line profile analysis, and figure of merit (FOM). The perceptual method 

utilised was two-alternative forced choice (2AFC) (Blindell & Hogg, 2012). 

1.2 STRUCTURE OF THIS THESIS 

This thesis consists of 11 chapters including the introduction. Chapter 2 provides 

background information around the anatomy of the breast and the abnormalities that can 

occur within the breast.  This is then followed, in Chapter 3, with a brief discussion on 

previous breast compression studies corresponding to the relation between the 

compression force, breast thickness, image quality, and patient’s discomfort. Chapter 4 

and Chapter 5 introduce two different categories of breast phantoms employed in medical 

imaging research: physical and computerised. As mammography was the main imaging 

modality in this research, Chapter 6 was dedicated to the physics of mammography unit. 

Chapter 7 defines the structure and chemical/physical properties of PVAL and the 

formation of the gel. It also discusses why PVAL is suitable for use in biomedical 

engineering and in this project. Although this research was not specifically CT based, a 

CT scanner was used in the initial evaluation of the imaging properties of the PVAL 

phantoms/lesions. Therefore, Chapter 8 was provided to discuss the physics of the CT 

scanner and the processes of image acquisitions and image reconstructions. In the next 

chapter, Chapter 9, the concept of visual perception and perceptual methods such as 

receiver operating characteristic (ROC) and 2AFC were discussed. Chapter 10 and 
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Chapter 11, discuss the materials/equipment and experiments that took place, and the 

analysis of their results. Additional supporting data can be found in the appendices. 
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Chapter 2 The breast and its abnormalities 

In order to design and develop anthropomorphic breast phantoms with cancer 

mimicking lesions, some knowledge of the anatomy of the breast and its abnormalities is 

required. This chapter aims to discuss the anatomy and properties of the breast and breast 

cancer lesions. Considering the anatomy and properties of the breast/lesions will help the 

breast phantom/lesions to be similar to human breast tissue with cancer lesions. 

2.1 BREAST CANCER 

Breast cancer is a malignant tumour which can initiate in any tissue of the breast 

and invade the surrounding area. This cancer, similar to other types of cancers, can be the 

result of the uncontrolled cell division (proliferation). In normal cell division, two basic 

classes of genes, referred to as proto-oncogenes and tumour suppressor genes are 

responsible to regulate the cell divisions. When these genes mutate permanently, the cells 

divide uncontrollably. Consequently, the uncontrolled cell division results in cancer. This 

can spread or metastasize to distant organs through the blood stream or lymphatic system. 

(Clark, Levine, & Snedeker, 1997) 

2.2 BREAST CANCER MORTALITY STATISTICS 

After lung cancer, breast cancer is the second leading cause of cancer death 

among women. Breast cancer is a major concern for women. In 2010, over 11,000 people 

died from breast cancer in the United Kingdom alone with 99% of these being women 

(Cancer Research UK, 2014). In 2012 in the UK about 11,600 women died because of 

breast cancer. 1,200 deaths occurred in women younger than 50. Around three-quarters of 

the deaths from breast cancer occurred in women aged 60 and over (Cancer Research 

UK, 2014). 
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Although the incidence rates of breast cancer in the UK have increased by 72% 

since mid-1970s, the chance of survival at least ten years has also increased. Currently, 

approximately 2 in 3 women diagnosed with breast cancer can survive beyond 20 years 

after detection (Cancer Research UK, 2014). 

2.3 ANATOMY OF THE BREAST  

The female breast (Figure 2.1) is composed of glandular, fibrous and adipose 

(fatty) tissue (Geddes, 2007). The glandular part of the breast consists of 15-20 lobes 

separated by fat and is made up of lobules. Each lobe has a major duct connecting to the 

nipple. Lobules consist of alveoli cells which are clustered around fine tubes called 

ductules. The ductules join to each other to form a larger canal called a lactiferous duct. 

The milk produced in alveoli is drained towards the nipple through the lactiferous duct. 

The breast tissue is supported by fibrous connective tissue referred to as Cooper’s 

ligaments. The Cooper’s ligaments maintain the shape of the breast and attach it to the 

chest muscle (Butler, Mitchell, & Ellis, 2007) (ElSharkawy, 2014). Figure 2.1 illustrates 

the anatomy of the beast. 
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Figure 2.1 Breast anatomy (Marshall University, 2009) 

The female breast mostly consists of a group of fat cells referred to as adipose 

tissue. The adipose tissue ranges from the collarbone to the armpit and to the middle of 

the ribcage (National Breast Cancer Foundation, 2012). The size of the breast is mainly 

determined by the amount of the adipose tissue in the breast. Typically, smaller breasts 

have a higher amount of glandular tissue compared to their adipose tissue (Fritsch & 

Kuehnel, 2007). 

2.4 DETECTION OF BREAST CANCER 

Several different imaging modalities are employed for the detection of breast 

cancer in screening and symptomatic populations. These include mammography, 

ultrasound, magnetic resonance imaging (MRI), tomosynthesis, cone beam computed 

tomography (CBCT), and contrast-enhanced Dedicated Breast CT. 
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Mammography, as an X-ray exam of the breast, is the most common imaging 

modality utilised (National Cancer Institute, 2014).  Mammography is employed as both 

a screening and a diagnostic tool in order to detect the breast lesions/microcalcifications. 

Breast ultrasound examination, as a non-ionising radiation-based imaging 

technique, helps physicians evaluate suspicious breast abnormalities that have been 

detected with mammography screening/diagnostic and/or palpation. Due to the 

availability of real time ultrasonic images, ultrasound imaging is also used in breast 

biopsy procedures to guide operators during needle insertion (Mayo Clinic, 2015). 

Subsequently pathology lab analyses determine whether the breast abnormalities are 

cancerous. In general, breast biopsy is the removal of the breast tissue in order to 

examine it under microscope by a pathologist for the signs of breast cancer or other 

abnormalities (Cancer Research UK, 2014). 

Breast MRI is a revolutionary diagnostic imaging modality which utilises a 

magnetic field and radio waves in order to produce the breast images. Although breast 

MRI is not routinely used for breast screening, it can help detect the breast cancer among 

the women who are at high risk for developing the breast abnormalities (cancer.net, 

2014). 

Tomosynthesis is a three-dimensional medical imaging technology that acquires 

several pictures of each compressed breast at multiple angles during a short scan. In this 

modality the breasts are immobilized with a slight pressure during the procedure. The X-

ray tube moves in an arc around the breast in order to take images. Then a computer is 

employed to produce three dimensional images from the acquired data. One of the 

advantages of tomosynthesis over the conventional mammography is the elimination of 

the tissue overlap problems which occur in two-dimensional mammography. This helps 

to achieve more confident and accurate readings/diagnosis (Smith, 2008). 
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Cone beam computed tomography (CBCT) (Lai, et al., 2007) and Contrast-

enhanced Dedicated Breast CT (Prionas, et al., 2010) are other imaging techniques that 

are used to detect breast cancer. 

2.4.1 Limitations of mammography  

Mammography, as a routine breast imaging procedure, has its own limitations. 

These limitations can be due to the level of expertise of the operator, the machine related 

features (for example detectors), the breast structures, or the size and the location of the 

lesions. These limitations can result in false positive/negative diagnosis. The 

demographic with the highest likelihood of false positive/negative results is towards the 

younger women with denser breasts (American Cancer Society, 2014) (Joy, Penhoet, & 

Petitti, 2005). Dense breasts make the detection of the cancer lesions and 

microcalcifications harder. 

Mammography procedure requires compression force, which can cause pain 

among some women. The pain might discourage women from attending regularly for 

screening mammography (NHSBSP, 2006) (O’Leary & Al Maskari, 2013). This 

limitation of the mammography procedure can be resolved by utilising other modalities 

such as magnetic resonance imaging (MRI). Although other breast imaging modalities do 

not employ the compression mechanism which is commonly used in mammography, they 

might have other limitations such as cost, higher radiation dose to the breast, lower 

sensitivity and specificity. For example, breast MRI as an advanced imaging modality 

can detect some cancer lesions which cannot be seen in mammogram, but due to the high 

cost of the purchase, maintenance and training, not very many hospitals are equipped 

with breast MRI technology (American Cancer Society, 2014). 
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2.5 BREAST PROJECTIONS IN MAMMOGRAPHY 

As the breast is not uniform in shape or structure, different mammographic 

projections are needed to visualise the suspected abnormalities. Typically the two main 

projections which are used during the mammography procedure are the craniocaudal 

projection (CC) and the mediolateral oblique projection (MLO). In cases where the 

abnormality is not well visualised by the above projections, supplementary 

mammographic projections including the lateromedial (LM) projection and the 

mediolateral projection (ML) can be utilised. The following image (Figure 2.2) shows all 

these four types of mammographic projections (Imaginis Corporation, 2014). 

 
Figure 2.2 Mammographic projections (Imaginis Corporation, 2014) 

2.6 TYPES OF BREAST CANCERS 

There are many types of breast cancers that originate in different parts of the 

breast, e.g. milk ducts, lobules, and nipples. Some of these types include carcinoma, 

adenocarcinoma and sarcoma. Carcinoma is a cancer that starts in the lining layer of an 

organ such as breast. Adenocarcinomas are cancers that begin in the gland tissue such as 

breast lobules. Sarcomas are cancers which start from connective tissues (muscle, fat or 

blood vessels) (American Cancer Society, 2014). 

 Breast cancers can be invasive or non-invasive. Invasive Ductal Carcinoma 

(IDC) is an example of invasive breast cancers which includes several subtypes (Papillary 
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Carcinoma, Medullary Carcinoma, and Tubular Carcinoma) (Danziger & Simonsen, 

2011). An example of non-invasive breast cancer is Ductal Carcinoma in Situ (DCIS). 

IDC as the most common breast cancer initiates in the cell linings of the breast 

ducts and invades through the wall of the ducts. IDC is able to metastasize to adjacent 

lymph nodes, blood stream or other body parts. About 8 out of 10 invasive breast cancers 

can be classified as IDC (American Cancer Society, 2014). Most commonly, IDC form 

speculated firm masses with irregular and ill-defines margins. Invasive Lobular 

Carcinoma (ILC) is the second most common breast cancer which begins in the milk-

producing glands or lobules. Normally, the average age of the patients with ILC is a few 

years older than that of patients with IDC. Due to the formation of ill-defined IDC, 

detection of this type of cancer is difficult. DCIS is the most common type of non-

invasive breast cancer which starts in the milk ducts. There are other types of breast 

cancer such Lobular Carcinoma in Situ (LCIS), and Paget's disease of the nipple (NHS, 

2014) (Winchester & Winchester, 2006). 

Breast calcifications are small deposits of calcium salt which in most cases are 

benign, but they can be early signs of breast cancer (Breast Cancer Care, 2014). 

Calcifications are viewed in mammograms as bright structures with high signal to noise 

ratio (SNR). This high SNR is due to the presence of calcium which has a high X-ray 

attenuation coefficient (see glossary on page 305). Calcifications can be grouped as 

macrocalcifications and microcalcifications (Figure 2.3). Macrocalcifications are 

calcifications with a diameter greater than 1 mm and are associated with benign 

conditions whereas microcalcifications are sized between 0.1-1 mm and can be associated 

with later breast cancer. A group of microcalcifications, referred to as cluster, can be 

associated with cancer. The size, shape, and pattern of microcalcifications are related to 
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the type of microcalcifications (Karahaliou, Arikidis, Skiadopoulos, Panayiotakis, & 

Costaridou, 2012). 

 
Figure 2.3 Microcalcifications (Halls, 2011)  

2.7 BREAST CANCER STAGING 

The Tumour  lymph Nodes  Metastasis (TNM) staging systems describes the size 

of the tumour (T), evidence of the spread of the cancer to the lymph nodes (N) and 

evidence of the spread, metastasis (M), to other parts of the body. This classification 

helps the specialists to determine the type of the treatment based on the stage. For 

example, T2 N0 M0 means, the size of the tumour is 2.1 to 5 cm, no evidence of spread 

to any lymph nodes, and there is no evidence of metastasis (Cancer Research UK, 2014). 

The following table (Table 2.1) illustrates TNM staging. 
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Facet Stage Description 
Tu

m
o

u
r 

(T
) 

TX no assessment for the size 

Tis DCIS 

T1 tumour <= 2 cm 

T2 2 cm < tumour <= 5 cm 

T3 tumour > 5 cm 

T4 -subcategories can be inflammatory carcinoma 

N
o

d
es

 (
N

) 

NX no assessment for the lymph node  

N0 no cancer cells found in any nearby nodes 

N1 cancer cells in the upper levels of lymph nodes in the armpit but 
the nodes are not stuck to surrounding tissues 

pN1mi one or more lymph nodes contain areas of cancer cells  

N2 cancer cells in the lymph nodes in the armpit, stuck to each 
other and to other structures 

N3 cancer cells in lymph nodes above the collarbone 

M
e

ta
st

as
is

 (
M

) 

 

M0 no sign of cancer spread 

cMo(i+) no sign of the cancer on physical examination, scans or X-rays 
but cancer cells are present in blood, bone marrow, or lymph 
nodes far away from the breast cancer - the cells are found by 
laboratory tests  

M1 cancer has metastasized to another part of the body 

Table 2.1 TNM staging (Cancer Research UK, 2014) 

2.8 BREAST QUADRANTS 

The occurrence of cancer is not uniform throughout the breast. Different regions 

of the breast have a higher incidence of cancer than others. By dividing the breast into 

five regions (upper outer quadrant UOQ, upper inner quadrant UIQ, lower outer quadrant 

LOQ, lower inner quadrant LIQ, and centre) the relative distribution of cancer within the 

breast can be seen (Figure 2.4). The following image shows the approximate occurrence 

of breast cancer by quadrant (Madjar & Mendelson, 2011).  
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Figure 2.4 Breast Quadrants of a right breast. Upper outer quadrant (UOQ), upper inner quadrant 

(UIQ), lower outer quadrant (LOQ), lower inner quadrant (LIQ), and centre (Madjar & 

Mendelson, 2011)  

As can be seen in the above figure, the upper outer quadrant (UOQ) shows the 

highest percentage of occurrence of breast cancer. Although the percentage of the 

approximate occurrence of breast cancer by quadrant varies between studies (Aljarrah & 

Miller, 2014), researchers believe that the upper outer quadrant contains a greater amount 

of breast tissue and a high percentage of ducts. Hence, the chance of cancer occurrence in 

this quadrant is high (Yu, 2000). 

Multifocality and multicentricity are two concepts in breast cancer research which 

define presence of two or more lesions foci within a single quadrant or different 

quadrants of the same breast. In multifocality, the tumours are in one single quadrant 

arisen from the original tumour. Whereas in multicentricity the tumours are formed 

separately from each other and are located in multiple quadrants of the same breast 

(Coombs & Boyages, 2005). 

2.9 SHAPE AND MARGIN OF THE LESIONS/MASSES 

The margin and shape of the masses or lesions indicate if the lesion is benign or 

malignant. The shape can be round, oval, irregular, or lobulated. The margin can be 
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circumscribed, spiculated, obscured, indistinct, or microlobulated. Lesions which have an 

oval or round shape and include a circumscribed margin are usually benign. Whereas 

lesions with an irregular shape often have a higher likelihood of being malignant. The 

following image (Figure 2.5) illustrates common shapes and margins of lesions. 

 
Figure 2.5 Shape and margin of cancer lesions (Bast, Bast, & Holland, 2000) 

Some examples of benign circumscribed masses include cysts and fibroadenomas. 

Although invasive ductal carcinomas (IDC) exemplify cancers with irregular shape and 

spiculated margins, they can have well-defined margin (Dronkers & Hendriks, 2011). 

The following mammograms (Figure 2.6 and Figure 2.7) show the benign and malignant 

masses (Bast, Bast, & Holland, 2000) (Dronkers & Hendriks, 2011).  
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Figure 2.6 Mammograms showing benign and malignant masses Left: Cyst- round circumscribed 

- Middle: Fibroadenoma - lobular, circumscribed, and low density - Right: Invasive ductal 

carcinoma (IDC) - irregular shape and spiculated margins (Bast, Bast, & Holland, 2000) 

 
Figure 2.7 A 12 mm round IDC with well-defined margin 

2.10 MECHANICAL PROPERTIES OF THE BREAST  

For a phantom to be anthropomorphic, it must not only exhibit the imaging 

properties similar to human tissue, but also requires the mechanical properties to 

resemble their human counterparts. When relating compression to image visibility in 

mammography, the key mechanical property of breast tissue is its compressibility. The 

terminology used to describe this property varies and has also been referred to as 

elasticity or stiffness. 

In determining an acceptable range of compressibility for human breast tissue, the 

results of various clinical research shows a large variation among these studies. A 

common conclusion among the studies is that lesions are stiffer than normal breast tissue. 

Krouskop et al. have found that invasive ductal carcinoma (IDC) can be between 4.8 to 
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27.9 times stiffer than the fatty tissue. A research by Samani et al. has shown that the 

stiffness of invasive ductal carcinoma is up to 13 times higher than fatty tissue (Samani, 

Zubovits, & Plewes, 2007). Sarvazyan’s results using 162 breast tissue samples have 

presented that the breast cancer lesions can have a wide range of stiffness which can be 

up to seven times higher than normal tissue (Sarvazyan, 1993). The compressibility of the 

fatty tissue was found by different researchers in the range of 0.5 to 25 kPa (Gefena & 

Dilmoney, 2007). Interestingly, the range of 20 kPa was found by Krouskop with various 

pre-compression forces and loading frequencies using an Instron machine (Krouskop, 

Wheeler, Kallel, Garra, & Timothy, 1998). 

It is important to investigate the reasons for variation of the quantitative 

measurements of the mechanical properties of the breast tissue. Using various methods in 

order to measure the mechanical properties of the breast can be one of the reasons for the 

variation of the results between studies. For example the amount of pre-compression 

force can make a significant difference in the measurement of the compressibility of the 

samples (Krouskop, Wheeler, Kallel, Garra, & Timothy, 1998). 

Temperature can be another factor which can affect the measurement of the 

stiffness of the breast tissue such as fat (Gefena & Dilmoney, 2007) inside and outside of 

the breast. Since the body temperature and the temperature of the fat out of the body are 

different, this might have an effect on the stiffness of the fat. Samples of breast tissue 

acquired from surgical procedures (fat, glandular, and cancer lesion) could have a 

different stiffness than live tissue due to lack of metabolic activities and dehydration. The 

samples used in these types of studies also might not be homogeneous. For example, the 

lesion might contain other tissues such as fat and glandular. Other factors to consider 

when measuring breast tissue stiffness include patient age and sample shape and size. 
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Variation in sample size may affect the results. For example, in Krouskop’s study, 

the numbers of fat and invasive ductal carcinoma samples were 8 and 32 respectively 

whereas in Samani’s research the numbers were 71 and 9 (Krouskop, Wheeler, Kallel, 

Garra, & Timothy, 1998) (Samani, Zubovits, & Plewes, 2007). 

2.11 X-RAY PROPERTIES OF THE BREAST  

X-ray properties of body parts, such as the breast, can be measured by Hounsfield 

unit (HU). Details of HU will be discussed in Chapter 8. According to Boone et al. 

(Boone, Nelson, Lindfors, & Seibert, 2001), the HU of breast fat, glandular tissue, and 

cancer lesions are -180, 40, and 80 respectively. As the graph shows (Figure 2.8), the HU 

of the breast structures change corresponding to the kVp.  

 
Figure 2.8 HU for breast cancer, glandular tissue, adipose tissue, and water (Boone, Nelson, 

Lindfors, & Seibert, 2001). 

The HU of fat in general has been measured in ranges of (-150,-50), and also (-

200,-10) (Kim, Lee, Lee, Park, Pyo, & Cho, 1999). It is important to take into 

consideration that the location of the measured fat in the body has an influence on its HU. 

Similarly, the composition of the fat, which can vary from person to person, can be 
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another factor which may have an impact on the measurement of its HU (Kim, Lee, Lee, 

Park, Pyo, & Cho, 1999). CT techniques, CT manufacturing variations, X-ray scattering 

(Yang,  Burkett Jr, & Boone, 2014), and selection of the region of interest (ROI) could be 

other reasons for discrepancies of the HU of fat.  
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Chapter 3 Mammographic compression studies 

This chapter introduces and discusses various breast compression studies in order 

to show different research approaches regarding finding adequate ways of compressing 

the breast during mammography.  

In a qualitative and quantitative visual perception based research by D O'Leary et 

al, compression force, radiation dose and image quality data were acquired from 4790 

mammograms. In the quantitative part, the image quality was grouped into perfect, good, 

moderate, and inadequate. This method of evaluation of clinical image quality is referred 

to as the PGMI system (Perfect, Good, Moderate, and Inadequate) (Goel & Pacifici, 

2014). Both craniocaudal and mediolateral oblique projections were considered in this 

research. In the qualitative part, the pain reported by the patients was taken into 

consideration.  

In data analysis, univariate analysis of variance (ANOVA) statistical test was 

employed. The results showed that in order to acquire good and perfect images in full-

field digital mammography, significantly higher compression force is required. With this 

higher compression force, the image quality for good and perfect images is noticeably 

higher than moderate and inadequate images. This research supports the increase of 

compression force in order to acquire high quality images and suggests the utilisation of 

121.34 N and 134.23 N for craniocaudal and mediolateral oblique projections 

respectively in digital mammography. The results also exhibited the higher compression 

forces result in lower mean glandular doses. The results of the qualitative part also 

showed that there were no complaints regarding the pain from the patients when the high 

compression force was applied on them (perfect and good image categories) (O'Leary, 

Grant, & Rainford, 2011). A strong point in this research was the utilisation of a big 
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sample size. The drawback is the definition of the criteria for assessing the images. For 

example “perfect” is a relative term to assess the entire image. A better definition for the 

criteria could increase the level of accuracy during the evaluation of the images.  

In a different study by Poulos et al. (2003), the relationship between applied 

compression force, breast thickness, reported discomfort and image quality was 

determined. In this research the sample was selected from the population of 114 women 

with a mean age of 60 years attending the mammographic breast screening. The research 

included two parts: clinical and experimental. The clinical part was the normal 

mammography and the experimental part was one extra exposure with a reduced level of 

compression.  In the experimental part, the level of compression force reduction started 

with the range of 10-30 N, then a reduction of 30 N was found to be more appropriate as 

the research progressed.  

 After completion of the mammography procedure, the participants were asked to 

complete a questionnaire regarding the level of discomfort experienced during the 

mammography procedure. 

The image quality of the normal and extra mammograms were then compared as 

paired set and evaluated by 6 radiologists. The criteria were spatial and contrast 

resolution for various breast features and the scores were from significantly better to 

significantly worse. For data analysis, programs such as Pearson’s correlation 

coefficients, one-way analysis of variance (ANOVA), one-sample t-tests were applied to 

the collected data. 

The visual perception results demonstrated no significant differences between 

each set for any criterion except contrast resolution within the fatty region of the breast. 

The results also demonstrated no linear relationship between the applied compression 

force and the thickness of the compressed breast. There was also no relationship between 



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 24 of 365 July 2015 

the applied compression force and the reported discomfort. The results demonstrated a 

significant relationship between the breast volumes measured by cup size and 

compression force, compressed breast thickness and reported discomfort. This means that 

the larger volume breasts required larger compression force. Larger volume breasts 

displayed higher mean compressed thickness and higher mean compressed thickness was 

associated with discomfort among women.  

 According to this research, compression force should be applied until the 

minimal thickness is acquired. Increasing the pressure after reaching the minimal 

thickness does not change the breast thickness. Hence, it does not improve the image 

quality or reduce the radiation dose. It potentially increases the discomfort for women 

(Poulos, McLean, Rickard, & Heard, 2003). Although this research is one of the novel 

studies in breast compression force, it has a few downsides. The term minimal is a 

relative term which does not provide accurate level of measurement for the compression 

force and breast thickness during mammography. During the selection of the amount of 

reduced compression force in the experimental part of this research, the inconsistency to 

pick a constant compression force could also add inaccuracy to this research. The number 

of the participants (114 women) can be another limitation of this research (Poulos, 

McLean, Rickard, & Heard, 2003). 

In a study by Korf et al., a comparison of the relationship between compression 

force, image quality and radiation dose was assessed. The results of this research indicate 

an improvement in image quality based upon increased compression force. This study 

was conducted using an Artinis contrast-detailed phantom within a Superflab phantom 

and focused on the change-in-density point of compression. A computed radiography 

(CR) mammography unit with automatic exposure control (AEC) was utilised in this 

research. Image quality was assessed using image quality figure (IQF) scoring (see 
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glossary on page 305) and visual inspection. The researchers of this study concluded that 

less compression is acceptable, without a significant decrease in image quality, if the 

patient is in pain or discomfort during the mammographic procedure. They also 

concluded that the entrance dose decreases with increased compression force (Korf, 

Herbst, & Rae, 2009). 

 In this study (Korf, Herbst, & Rae, 2009), the image quality was assessed using 

an Artinis contrast-detailed phantom within a Superflab phantom. The contrast-detailed 

phantom consists of an aluminium base with gold discs (Artinis Medical Systems, 2014). 

This structure does not simulate the breast properties. For example, the young’s modulus 

of the gold is about 70 GPa while the young’s modulus of the breast is about 20 KPa 

(Wu, Heidelberg, & Boland, 2005) (Fromageau, Gennisson, Schmitt, Maurice, Mongrain, 

& Cloutier, 2007). Moreover, in the image quality assessment, visual inspection and 

image quality figure (IQF) scoring were based on visual evaluation. Due to the subjective 

nature of this image quality assessment technique, the assessment was possibly subjected 

to human errors (Wang, Wang, Chan, Wang, & Liou, 2011). 

Mercer and her research collaborators found out that variation in compression 

force applied in mammography is highly related to the practitioners rather than the 

patients. In this study, practitioners have been categorised into three groups by their 

compression force mean value. These groups apply high (12.6 daN), intermediate (8.9 

daN) and low (6.7 daN) compression forces. The mean compression value within each 

group is not significantly different. Compression force variation among these 

practitioners affects the radiation dose, image quality consistency and patient experience 

(Mercer, Hogg, Szczepura, & Denton, 2013).  
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The results of the study carried out by Chida and his fellow researchers suggested 

that a reduced compression force is more tolerable for some women. This study appears 

contrary to the results acquired by D O'Leary et al (O'Leary, Grant, & Rainford, 2011) 

supporting the employment of higher compression force. The reduction of compression 

from 120 N to 90 N caused the breast thickness to increase by 3 mm. The mAs was 

increased by 20% for the increased thickness. However, the image quality was assessed 

as unchanged from the higher compression force. In this research, the image quality was 

evaluated objectively using a method suggested by the American College of Radiology. 

During assessment, an RMI 156 phantom with and without added 3 mm acrylic plate was 

utilised (Chida, et al., 2009).  

The results of a study by Dustler and his fellow researchers have shown an 

uneven distribution of pressure in the mediolateral oblique projection on the breast tissue 

components. According to the study a higher pressure is concentrated on the 

juxtathoracic edge due to the compression of the stiff muscles. The results indicate that 

repositioning the breast to exclude 1 cm of the juxtathoracic region including the pectoral 

muscle and anterior axillary fold causes the pressure to be distributed more evenly among 

the different parts of the breast. The distribution of the pressure was measured employing 

thin force sensing resistor (FSR) pressure sensors connected to the compression paddle. 

The results show that the repositioned breasts were thinner and had a larger area over 

which pressure was affected. Further, the results emphasized a need for the proper 

positioning of the breast during the mammography procedure (MLO-projection) in order 

to obtain a balance between compression force and the tissue inclusion (Dustler, 

Andersson, Förnvik, & Tingberg, 2012).  

The breast re-positioning research by Dustler, Sardanelli et al. has focussed on 

breast biphasic compression to include the tissues that Dustler’s study had excluded. This 
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study emphasizes on a technique of changing the angle of the compression paddle during 

the compression of the breast to improve the inclusion and viewing of the pectoral 

muscles in CC projection. In this method the compression angle starts at 22.5° and is 

continually reduced until the paddle is parallel with the receptor. The results of this study 

show an improvement of presenting the pectoral muscles in CC projection from 34% 

(monophasic) to 54% (biphasic). The following image (Figure 3.1) shows the phases 

applied in biphasic compression (Sardanelli, Zandrino, Imperiale, Bonaldo, Quartini, & 

Cogorno, 2000).  

 
Figure 3.1 Biphasic compression (Sardanelli, Zandrino, Imperiale, Bonaldo, Quartini, & 

Cogorno, 2000) 

A breast positioning system has been suggested to increase the field of view with 

an additional volume of breast in full-field digital mammography (Varjonen, Pamilo, 

Hokka, Hokkanen, & Strömmer, 2007). This system consists of two moving transparent 

sheets (Figure 3.2) that can be placed under and above the compressed breast. The role of 

these sheets is to pull the breast into the imaging field during compression. Mammograms 

(Figure 3.3) presented show that this method is able to extend the breast away from the 

chest wall and increase the breast volume imaged. The pectoral muscle is clearly visible 

in the right mammogram with enhanced positioning method. 
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Figure 3.2 Positioning sheets (Varjonen, Pamilo, Hokka, Hokkanen, & Strömmer, 2007) 

 

Figure 3.3 Comparison of mammograms with standard compression to mammograms which 

benefit from the use of the Varjonen et al breast positioning system. Left: standard compression. 

Right: mammogram with the special positioning system. (Varjonen, Pamilo, Hokka, Hokkanen, 

& Strömmer, 2007).   

Although the proper positioning methods and the use of biphasic compression 

method (Chapter 3 on page 27) enable a better visualization of the breast structures such 

as pectoral muscles, there is no need to apply these methods in this research. This is 

because of the homogeneity of the PVAL breast phantoms. However, it is necessary to 

see the entire breast phantom/lesion in the mammograms in order to assess the image 

quality such as contrast, noise, and sharpness.  

The compression methods discussed in this chapter use either objective 

(mathematical) or subjective (visual) methods in order to assess the image quality. This 

research is aimed to cover the objective and subjective methods for the assessment of the 

acquired mammographic images. 
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Chapter 4 Physical breast phantoms 

Mammographic breast imaging research requires the use of ionising radiation 

during the capture of medical images. Due to the risk associated with the use of ionising 

radiation on living human breasts, synthetic anthropomorphic breast phantoms are 

utilised in breast related experiments. Phantoms are designed objects in medical imaging 

research to replace the real tissue when using the living human is inappropriate (Surry, 

Austin, Fenster, & Peters, 2004) 

In breast research, depending on the nature of the study, various types of breast 

phantoms have been employed. Types of breast phantoms can be classified into two 

categories: compressible phantoms and non-compressible phantoms. Compressible 

phantoms resemble human breasts in terms of flexibility and can be used in 

mammography procedures as well as biopsy training. Whereas non-compressible 

phantoms have very specific imaging structures and are typically used for quality control 

procedures and dosimetry. 

4.1 COMPRESSIBLE BREAST PHANTOMS  

Price et al. (2010) introduced a compressible breast phantom comprising freeze-

thawed polyvinyl alcohol (PVAL) in ethanol and water. This solid and elastically 

compressible gel with the concentration between 5% and 20% has a linear attenuation 

coefficient ranging from 0.76 cm
−1

 to 0.86 cm
−1

 at 17.5 keV which is similar to the 

published (Johns & Yaffe, 1987) values of breast tissue at the same energy. In this 

research, heavy metal salt such as barium chloride was suggested to use in order to 

increase the attenuation. This increase was to simulate the attenuation coefficient of 

fibrous or cancer lesions (Price, Gibson, Tan, & Royle, 2010). 
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 Silva et al. (2010) produced a compressible breast phantom. This was obtained 

from gel paraffin and self-polymerizing acrylic with inserted silicone implant. This 

phantom was utilised to evaluate the effect of the implant on the visibility of the 

mammographic findings such as microcalcifications. In this research, Nylon thread, 

ground porcelain and nylon masses were used to simulate fibres, microcalcifications and 

cancer lesions (Figure 4.1) (Silva, Souza, Salmon, & Souza, 2010). This research has 

shown that the insertion of prosthesis into the breast reduces visibility of the breast tissue. 

 
Figure 4.1 Phantom with silicone implants (Silva, Souza, Salmon, & Souza, 2010) 

An example of a compressible phantom which is used in ultrasound guided needle 

biopsy is produced by Kyoto Kagaku Co. As the image in Figure 4.2 shows, the phantom 

can be used with an ultrasound scanner and biopsy needle simultaneously. The targets, 

red and yellow simulated lesions, are positioned in three layers. These lesions have 

different echogenicities (see glossary on page 305). 



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 31 of 365 July 2015 

 
Figure 4.2 Ultrasound guided needle biopsy needle phantom (Kyoto Kagaku). 

Another deformable phantom created by Kyoto Kagaku Co. is the breast 

ultrasound examination phantom (Figure 4.3) known as BREASTFAN. This is designed 

for use in breast ultrasound examination training. This phantom contains simulated 

lesions such as benign, malignant and cyst with different echogenicities (Kyoto Kagaku). 

 
Figure 4.3 Breast ultrasound examination phantom (Kyoto Kagaku) 

The Stereotactic Breast Biopsy Phantom (Figure 4.4) is another type of biopsy 

training breast phantom. This phantom contains multiple radiopaque lesions. The 

phantom is made of clear gel covered in soft skin-like vinyl layer. The stereotactic breast 

biopsy phantom is compressible with a biopsy instrument.  
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Figure 4.4 Stereotactic Breast Biopsy Phantom (Gammex Inc., 2014) 

4.2 NON-COMPRESSIBLE BREAST PHANTOMS  

Gammex Inc. produce a non-compressible anthropomorphic breast phantom 

referred to as the “Rachel” breast phantom (Figure 4.5). This phantom provides a 

mammogram with breast feature detail (Gammex Inc., 2014). 

 
Figure 4.5 Anthropomorphic Rachel breast phantom (Gammex Inc., 2014) 

Yip et al. have produced another type of non-compressible phantom in their 

study: ROC curve analysis of lesion detectability on phantoms. In these phantoms, layers 

of grapefruit fibre were placed on a slab of Lucite to build the phantom. Egg shells and 

chalk powder were then used to simulate the high and moderate contrast 

microcalcifications.  Circular pieces of X-ray film and aluminium foil were employed to 

simulate low contrast lesions (Yip, Pang, Yim, & Kwok, 2001). 
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Almeida et al. have used non-compressible breast phantoms to study dosimetry. 

Breast Tissue Equivalent (BTE) is one of the non-compressible phantoms that they have 

used to measure the air kerma and glandular dose in mammography. These semi-circular 

phantoms (Figure 4.6) have been found to have both adequate density and attenuation 

properties similar to fat and glandular tissues of human breasts. 

  
Figure 4.6 BTE Phantoms (Almeida, Coutinho, Peixoto, & Dantas, 2009)  

The Contrast Detail Mammography (CDMAM) phantoms (Figure 4.7) are non-

compressible phantoms produced by Artinis Medical Systems for use in quality control in 

mammography. These phantoms are used to detect the low contrast and small details 

since viewing the low contrast and small findings are necessary in mammography. These 

phantoms are utilised for quality control of the mammography units at regular time 

intervals. 
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Figure 4.7 CDMAM phantom (Artinis Medical Systems) 

4.3 ASSESSMENT OF THE AVAILABLE BREAST PHANTOMS 

In this research, a compressible breast phantom with X-ray and mechanical 

properties similar to human breast tissue is required. Various breast phantoms were 

discussed in this chapter. These breast phantoms are utilised for specific purposes such as 

biopsy training, teaching the anatomy of the breast and its abnormalities, and 

mammographic quality control.   

Two categories of breast phantoms were discussed earlier: compressible 

phantoms (4.1 on page 29) and non-compressible phantoms (4.2 on page 32). As this 

research focuses on the effect of compression on lesion visibility, non-compressible 

phantoms such as CDMAM and Rachel are not suitable for the mammography procedure 

of this research.  

Along with having similarity in the compression characteristics of the breast 

phantom to human breast tissue, this research is looking at the visibility of lesions within 

the phantom and needs to have X-ray imaging properties that are consistent with human 

breast tissue. The compressible breast phantoms utilised in ultrasound are not suitable for 

the mammography part of this research. This is because the imaging principles of the X-

ray based mammography and sound wave based ultrasound are different and also the 

mechanism of compression in mammography is completely different from ultrasound.  
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The focus of the compressible breast phantom with inserted silicon was on the 

effect of the silicone prosthesis in mammography images. The mechanical properties of 

theses phantoms have not been measured. Therefore they cannot be considered as 

anthropomorphic or tissue-mimicking breast phantoms.  

Among the compressible phantoms mentioned above, the polyvinyl alcohol 

(PVAL) breast phantom designed by Price and his colleagues could be utilised in this 

research. However, the usage of ethanol and barium chloride presents significant health 

and safety risks and also creates a need to safely dispose of these hazardous substances 

(University of Guelph, 2002). Therefore, a water-based phantom was produced in order 

to pursue the objectives of this research.  
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Chapter 5 Computerised phantom models 

Computerised phantoms have become widely used in medical imaging research 

(Li, Segars, Lo, Veress, Boone, & Dobbins III, 2008). These phantoms are capable of 

simulating the human anatomy and physiology. This simulation of real human tissues and 

their mechanisms can be utilised to improve the medical imaging modalities and 

techniques (Segars & Tsui, 2009).  This chapter aims to discuss computerised phantoms 

as possible alternative for physical phantoms and explain why these phantoms have not 

been used in this research.  

There are a number of advantages of using computerised phantoms over physical 

phantoms. Physical phantoms such as PVAL are material-based; therefore they can 

deteriorate over a period of time while computerised phantoms do not. Computerised 

phantoms can be transferred nationwide digitally, whereas physical phantoms have to be 

relocated physically. Replicating physical phantoms is more difficult than generating the 

computerised replicates. Although these phantoms are beneficial in biomedical research, 

they have many limitations which are discussed later in this chapter (5.4 on page 50). 

Computerised phantoms are classified into three categories: voxelized phantoms, 

mathematical phantoms, and hybrid phantoms. Voxelized phantoms are realistic 

phantoms based on actual patient data acquired from CT or MRI images. In these 

phantoms, the patient’s 3D image is segmented and a unique index value is assigned to 

each segmented area. Since these computerised phantoms are dependent on a particular 

patient’s anatomy, it is hard to implement anatomical variations or patient motions 

(Ljungberg, Strand, & King, 2013). In order to overcome these disadvantages, numerous 

models based on various patient datasets have to be assembled. As these models require 
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individual segmentation, a great amount of modelling and time will be needed in order to 

simulate anatomical variations and patient motions (Ljungberg, Strand, & King, 2013).   

Mathematical phantoms (also known as numerical phantoms) are computer 

software based methods to implement and display the human tissue and its motions and 

deformations on the computer screen (Yan, Gu, Huang, Lv, Yu, & Kong, 2007). So far, 

many mathematical models have been used in simulation of human tissue and its 

deformation. Two examples of mathematical models are Mass-Spring (Hammer, Sacks, 

del Nido, & Howe, 2011) and linear elastic FEM (Finite Element Modelling) (Bro-

nielsen, 1998). These models all have their own limitation factors when it comes to 

physically realistic modelling of human tissue and its deformation. The models 

mentioned above can work well with small strains and local deformations, but they suffer 

from simulation of large global deformation modelling such as large twisting or bending 

of the tissue (Yan, Gu, Huang, Lv, Yu, & Kong, 2007). Unlike voxelized phantoms, 

mathematical phantoms suffer from not being able to adequately represent the real 

anatomical features of the body. This problem resulted in inventing another classification 

for the computerised phantoms called hybrid. 

Hybrid phantoms are a combination of the patient-based voxelized phantoms and 

the equation-based mathematical phantoms with the assistance of computer graphics. A 

hybrid phantom is initially produced from a voxelized model of segmented 3D patient 

images such as MR or CT images. Then the complex anatomical structures are modelled 

utilizing Non Uniform Rational B-splines (NURBS) and subdivision surfaces (see 

glossary on page 305) (Cashman, 2010). Examples of hybrid phantoms are Four 

dimensional Mathematical Cardiac-Torso (4D MCAT), 4D NURBS-based Cardiac, and  

4D extended Cardiac-Torso (XCAT) (Segars & Tsui, 2009). 
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5.1 VOXELIZED BREAST PHANTOMS 

 A voxelized breast phantom with anatomical features was introduced by 

Bliznakova and his colleagues. This phantom consists of the breast surface, the duct 

system, cooper’s ligaments, the pectoral muscle, the background and the breast 

abnormalities (Figure 5.1). In order to compare the image of the synthetic mathematical 

phantom with the real breast, the synthetic mammograms from the monoenergetic fan 

beams were generated. The subjective and objective assessments of the real and synthetic 

mammograms revealed a good correlation between the phantom/lesion and the real 

breast/lesion. Although this model contains good anatomical features, it does not provide 

the breast compressibility (Bliznakova, Bliznakov, Bravou, Kolitsi, & Pallikarakis, 

2003). 
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Figure 5.1 Numerical breast compositions (Bliznakova, Bliznakov, Bravou, Kolitsi, & 

Pallikarakis, 2003) 

In this model, an elongated semi-ellipsoid and an elongated semi-hyperboloid has 

two geometrical primitives composed the breast. The next step was the simulation of the 

ductal system using a group of cylinders. It is worth mentioning that all the measures 

such as the radius, height and direction of ductal system were assigned accurately to the 

breast phantom ductal components. The background texture simulates the fat, fibrous and 

connective tissues. The background is shown by a 256x256x256 voxel matrix. Each 

voxel was 1 mm
3
. A power spectrum method (Veenland, Grashuis, van der Meer, 

Beckers, & Gelsema, 1996) was employed to produce the synthetic fractal images (see 

“Description of 3D background matrix formation” from (Bliznakova, Bliznakov, Bravou, 

Kolitsi, & Pallikarakis, 2003)). Cooper’s ligaments are modelled as ellipsoid shells, 

located at random positions in the breast model. The abnormalities can be round, oval, 

elongated and irregular shapes. The user can define size, location, numbers and 

attenuation coefficient corresponding to the type of the abnormality. This means that, by 

changing the lesion’s parameters, the level of malignancy can be changed. In order to 

generate the irregular lesions, a 3D random walking algorithm (Kaplan & Glass, 1995) 

was utilised.  

After constructing the breast model, the simulation of the radiographic imaging 

process was performed using the Lazos method (Lazos, Kolisti, & Pallikarakis, 2000). 

The following image (Figure 5.2) shows the synthetic mammograms versus real 

mammograms. The mammograms of real breast and synthetic illustrate three types of 

breast composition; dense (a), (b), fatty-glandular (c), (d), and fatty (e), (f).  
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Figure 5.2 Comparison of real mammogram images to synthetic images. (a),(c), and (e) were 

acquired from the real breast and (b), (d), and (f) were synthetic (Bliznakova, Bliznakov, Bravou, 

Kolitsi, & Pallikarakis, 2003) 

In a study by Saunders and et al., a voxelized breast phantom and compression 

force followed by X-ray simulated images illustrated how the quality of medical images 

can be affected by compression force (Saunders & Samei, 2008). The mammography 

system was simulated using a Monte Carlo algorithm on the Penelope program. A 

voxelized breast phantom with anatomical structures and breast masses were generated in 

this system. This model was based on tracking photons through the voxelized breast 

phantom and following them until they were absorbed by an a-Se based detector. In this 

study, standard compression and 12.5% reduced compression were simulated. The results 
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for the reduced compression demonstrated higher scatter fractions as expected. It also 

showed that the reduced compression reduces the glandular dose for the constant photon 

flux. According to this study, the breast compression can be reduced by about 12% if the 

total tube output increases by 10% and signal detector reduces by 10%. The reduction of 

the compression will produce little effect on the image quality (mass conspicuity) or 

radiation dose (Saunders & Samei, 2008) 

5.2 MATHEMATICAL BREAST PHANTOMS 

The breast undergoes deformations due to the forces from medical imaging 

procedures such as compression in mammography, ultrasound or magnetic resonance 

(MR) and also surgical procedures such as biopsy (Han, et al., 2012). Hence, simulations 

of breast and its deformation have been carried out by numerous researchers (Ruiter, 

Stotzka, Gemmeke, Reichenbach, & Kaiser, 2002) (Samani & Plewes, 2004) (Chung, 

Rajagopal, Nielsen, & Nash, 2008) (Azar, Metaxas, & Schnall, 2001) .  

In general, realistic computerised breast models have the potential to help cancer 

diagnosis, image guided surgery, image registration, and surgical planning (Han, et al., 

2012). Predicting the accurate location of the tissue and the lesions utilizing mathematical 

models might improve the detection of the cancer lesions (Han, et al., 2012).  

Simulated mathematical breast phantoms can be also applied in imaging 

experimentation and training. The training can be achieved by comprehending and 

interpreting anatomy on mammograms (Bliznakova, Bliznakov, Bravou, Kolitsi, & 

Pallikarakis, 2003).  These phantoms can be used for image quality and dosimetry 

research, assessing the new technologies such as tomosynthesis, tomographic 

mammography, and cone-beam volume CT. These models might be cost effective, 
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practical, and flexible compared to physical phantoms (Bliznakova, Bliznakov, Bravou, 

Kolitsi, & Pallikarakis, 2003).  

5.2.1 Common Mathematical Methods 

Two common mathematical models which simulate the breast tissue and the 

deformation of it under compression are finite element (FE) and mass spring models. 

The finite element model (FEM) is one of the widespread applied methods in 

mathematical modelling (Unlu, et al., 2005). In this method, small interconnected 

components known as “finite elements” are employed to simulate real objects. The 

elements are connected to each other at locations called nodes on the surface of the finite 

elements (Unlu, et al., 2005). Basically, nodes represent geometric locations and define 

the element boundary in the model. 

One of the first steps in implementing the FE models is generating a geometrical 

mesh. This mesh is essentially based on patient data from the three dimensional MR or 

CT images. The acquired mesh represents the structure of interest in the research. Mesh 

generation is a complicated, time consuming and tedious task (Samani, Bishop, Yaffe, & 

Plewes, 2001). The following image (Figure 5.3) shows the finite element mash 

constructed with triangular finite elements (del Palomar, Calvo, Herrero, López, & 

Doblaré, 2008).  
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Figure 5.3 Finite element mesh to simulate numerical breast 

5.2.1.1 Finite element breast models 

Stewart et al. (2011) have used a finite element model to simulate compression 

during an MR guided biopsy. In this study, a lesion was designed in the breast model. 

Since, the female breast has nonlinear characteristics; the hyperelastic nonlinear 

geometry and nonlinear material theory were considered in this modelling (details are out 

of scope for this research). The linear tetrahedral Herrmann formulated (5-node 

isoparametric element) finite element (Figure 5.4) was used to discretize the FE breast 

mesh (Stewart, Smith, & Hall, 2011).  

 
Figure 5.4  Linear tetrahedral Herrmann formulated element (Stewart, Smith, & Hall, 2011) 
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The FE model suggested in this study starts from the images acquired from the 

MR imaging. In this model the breast was considered as a combination of fat and 

glandular tissues. Therefore, other breast features such as blood vessels, cooper’s 

ligaments, and pectoral muscles were not added to this FE model.  

First, an MR image of a breast containing a non-invasive lesion was acquired as a 

reference. The next step was the construction of the mesh which happens in multiple 

steps. First, displaying the MR image in 3D utilizing a piece of software (ANALYZE) 

(AnalyzeDirect, 2010) to segment the breast image and the lesion surface separately. 

After the segmentation process, the surface of the breast/lesion for the FE analyses was 

generated utilizing the HyperMesh software (Altair Engineering, 2010). The output of 

these processes was the discretization of the breast and lesion separately constructing 

10,915 tetrahedral elements for the breast surface and 1,562 tetrahedral elements for the 

lesion. The next step was to tie the breast nodes and the lesion nodes together employing 

a kinematic constraint (Stewart, Smith, & Hall, 2011). 

The total breast volume and the fat tissue volume were measured from the MR 

image in order to be utilised in the material properties calculations. Material properties 

such as Young’s Modulus were assigned to the breast model and the lesion based on the 

volume fraction rule (Wellman’s equation) (Wellman, 1999). The next step was 

measuring the displacement vector to each surface node in order to use in displacement 

measurement due to the compression force.  The finite element analysis in this model was 

the comparison between the displacement of the lesion in the MR and the mathematical 

model. The last step was the modelling of compression force. The following diagram 

displays the FE breast model construction in this research (Figure 5.5). The readers are 

referred to the original literature for the details of this model (Stewart, Smith, & Hall, 

2011).  
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Figure 5.5 Overview of the proposed FE breast model construction 

In biomedical engineering, finite elements have been widely used as mathematical 

models to simulate deformable tissues. Although these models enable the researchers to 

simulate the tissues with various complex geometrical shapes, they have multiple 

drawbacks. Drawbacks include the complexity of mesh generation, and time consuming 

processes to solve the deformation of the model (large deformations). Errors introduced 

from the selection of the material properties and boundary conditions are other issues 
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with these models (Tanner, Hipwell, & Hawkes, 2008) (Samani, Bishop, Yaffe, & 

Plewes, 2001).  

5.2.1.2 Mass spring system 

Among all the deformable mathematical models, mass spring is the simplest and 

most computationally efficient (Jarrousse, 2011). This modeling is suitable for simulating 

the dynamic character of complex single or multi-organ tissues. Although this model 

compared to the FE model is more practical to implement and more effective in 

computation, it has remarkably lower accuracy (Wang, Xiong, & Xu, 2006). Non-

realistic mechanical properties for the simulated tissues were one of the reasons for low 

accuracy of this model. Complex calculations regarding the spring forces and non-

constant stiffness spring are required to address the problems with the mechanical 

properties of the tissues (Patete, et al., 2013).  

This model has been used by Patete and his colleagues for computer assisted 

breast surgery (Patete, et al., 2013). Similar to the FE breast models, this model uses a 

computer mesh (Figure 5.6) based on the MR images before and after compression to 

simulate the human breast. The segmentation of the MR images was based on the Fuzzy 

C-Means (FCM) algorithm followed by a Gaussian Hidden Markov Random Field 

(GHMRF) model-based procedure (Patete, et al., 2013). A tetrahedral mesh generation 

algorithm was applied to produce a volumetric 3D mesh of the volume of interest 

representing skin, fat and mammary glands.  The algorithm for the deformation of the 

model was based on a mass-spring model. In this model, each tetrahedron edge was 

represented by a pure elastic spring. The dynamic behaviour of the each tetrahedron edge 

was defined by Hook's law and the calculation of the displacement of each vertex was 

measured through the Verlet numerical integration (Verlet, 1967). Similar to other 
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numerical breast models, this model requires further robust investigation to predict breast 

deformations accurately (Patete, et al., 2013).  

 
Figure 5.6 MR-based tetrahedral mesh - Left: complete mesh - Right: internal structure (Patete, et 

al., 2013)  

5.2.2 Material properties in mathematical models 

Researchers have given wide range of values for the material properties of various 

types of the tissues mainly from ex-vivo experimental data. According to various studies, 

fibroglandular and fat tissues as main constituents of the breast follow the exponential, 

hyperelastic (Neo-Hookean, Mooney-Rivlin, Ogden, Arruda-Boyce, and polynomial 

models) (Han, et al., 2012), or linear elastic stress-strain relationships. Therefore, various 

material models have been employed in different research such as hyperelastic and 

exponential models (del Palomar, Calvo, Herrero, López, & Doblaré, 2008) 

5.2.3 Software packages used in mathematical modelling 

ABAQUS, HyperWorks, LS-DYNA (Exponent Inc., 2010) and ANSYS (Tanner, 

Schnabel, Smith, Sonoda, Hill, & Hawkes, 2002) are all commercial software packages 

which are capable of FE modelling. Segmentation and displacement measuring can be 
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carried out utilizing Scion Image (Azar, Metaxas, & Schnall, 2000). Borland C, C and 

other programming languages have been used in some of the studies in order to simulate 

human anatomy such as breast tissue (Bliznakova, Bliznakov, Bravou, Kolitsi, & 

Pallikarakis, 2003). 

5.3 HYBRID BREAST PHANTOMS 

In a research by Li et al. a mathematical breast phantom was created by 

generating a polygon mesh from the segmented CT data (Li, Segars, Lo, Veress, Boone, 

& Dobbins III, 2008). A marching cubes algorithm was utilised to generate the mesh. 

Then the mesh underwent a subdivision surface model in order to join into the NURBS-

based cardiac-torso (NCAT) phantom (Figure 5.7). 

A simple compression model was designed and implemented in order to display 

the deformation of the breast phantom. The mechanical properties of various features of 

the breast were not considered in the breast compression algorithm (Li, Segars, Lo, 

Veress, Boone, & Dobbins III, 2008). 

 
Figure 5.7 Three-Dimensional Computer Generated Breast Phantom Left: Skin surface- Right: 

inner structure surfaces (Li, Segars, Lo, Veress, Boone, & Dobbins III, 2008) 
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In order to verify the appearance of the simulated phantom before and after 

compression, a noise free X-ray imaging simulator was utilised to produce the synthetic 

images. The following image (Figure 5.8) illustrates the simulated craniocaudal (CC) 

projection of a synthetic breast versus a real breast mammogram (Li, Segars, Lo, Veress, 

Boone, & Dobbins III, 2008).  

Although this model displays the breast structures and the deformation of the 

breast, a more accurate delineation of the internal breast features is required in this 

phantom in order to properly simulate a human breast. Similarly, the simulation of breast 

compression needs to be improved (Li, Segars, Lo, Veress, Boone, & Dobbins III, 2008). 

 
Figure 5.8 Simulated craniocaudal (CC) projection of a synthetic breast versus a real breast 

mammogram. Left: real mammogram - Right: synthetic (Li, Segars, Lo, Veress, Boone, & 

Dobbins III, 2008) 
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5.4 CHALLENGES WITH USING COMPUTERISED PHANTOMS 

In real mammograms, a good contrast is essential in order to detect abnormalities, 

especially microcalcifications. Therefore, simulating an adequate contrast in 

computerised phantoms is required. One of the drawbacks of the computerised phantoms 

compared to the real mammograms is generating a good background contrast 

(Bliznakova, Bliznakov, Bravou, Kolitsi, & Pallikarakis, 2003). Insufficient contrast can 

hide the simulated breast texture in mammograms. Therefore, this is one issue that has to 

be addressed in computerised models. 

In mathematical models, the evaluation of the performance of an imaging 

modality is dependent upon the level of accuracy of the imaging hardware being 

simulated. However, in the employment of physical phantoms, the real hardware 

(mammography equipment) can be utilised and configured during the imaging procedure 

(Markey, 2013). Utilizing the Monte Carlo algorithm on the Penelope program by 

Saunders et al. is an example of simulating the mammography system rather than direct 

use of it (Saunders & Samei, 2008).  

Constructing heterogeneous models containing breast tissues are additional 

challenges to address in mathematical modelling. These tissues include adipose, 

fibroglandular, pectoral muscles, Cooper’s ligament and skin. Unlike other body parts, 

each breast has its own specific structural map, and each component of this structure has 

its own mechanical properties which can change over time. These variations make the 

computation of computerised phantoms difficult and might not let researchers take all the 

parameters into consideration.  

There are also numerical challenges associated with the simulation of mechanical 

friction generated from the contact of the breast phantom and the paddle which have to be 

taken into consideration (Chung, Rajagopal, Nielsen, & Nash, 2008). 
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 Complex algorithms (Azar, Metaxas, & Schnall, 2002) and time consuming 

computation (Han, et al., 2012) are other  reasons that physical phantoms are still 

constructed and applied in studies such as image quality and dosimetry. 

One of the main differences between the computerised modelling and the physical 

phantoms is the requirement of the human MR or CT images before and after tissue 

deformation (for example breast compression) in order to simulate the models. The real 

human images are necessary to validate the models by measuring the amount of 

displacement of the tissue/lesion in the image versus the predicted displacement using the 

mathematical model. This requires a time consuming imaging procedure which can be 

eliminated by fabricating physical phantoms (del Palomar, Calvo, Herrero, López, & 

Doblaré, 2008) (Samani, Bishop, Yaffe, & Plewes, 2001).  
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Chapter 6 Mammography  

6.1 MAMMOGRAPHY 

Mammography is a well-established process which employs low-energy X-rays to 

examine the breast tissue and detect cancer tumors at early stages. This imaging modality 

can be used as both a diagnostic tool and a screening tool. Mammography, as a screening 

tool, has reduced breast cancer mortality due to the early detection of breast tumors and 

microcalcifications. Research shows that breast screening decreases the number of deaths 

from breast cancer by about 1,300 a year in the UK (Cancer Research UK, 2014). 

Although sensitivity of the mammography procedure varies with age and breast density 

(Kolb, Lichy, & Newhouse, 2002), it is still has the highest demand of the medical 

imaging modalities (Robson, 2010). The X-ray risks associated with this imaging 

procedure is far below the risk of breast cancer. Therefore it should not stop women 

opting for the procedure (Heywang-Köbrunner, Hacker, & Sedlacek, 2011) (Yaffe & 

Mainprize, 2011). 

Research shows the invention of full field digital mammography (FFDM) has 

improved the accuracy of imaging of denser breasts for women younger than 50 years 

compared to screen-film systems (Pisano, et al., 2008). Interestingly, this research could 

not show the significance of the performance improvement of FFDM for women aged 65 

years or older with fatty breasts. Although the entire sample size in this research was over 

4000 participants utilising various types of mammography units, the subgroup for this 

particular age range (65+) may not have been large enough for the analysis. Another 

reason for this disagreement between the results could be the low number of observers 

which was two radiologists, one for digital and one for screen-film mammography. 
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 In England, the NHS offers FFDM from the age of 47 to 73. Women older than 

73 can opt to be screened every 3 years by their local breast screening centre (Cancer 

Research UK, 2014).  

Before the development of the mammography imaging technique, breast imaging 

was performed employing conventional X-ray systems. The use of conventional X-ray 

systems resulted in higher radiation doses and lower image quality. The invention of the 

mammography unit with improved target/filters, focal spots, Automatic Exposure Control 

(AEC) systems, tube voltage, and high dynamic range made this modality desirable in 

breast imaging. Another benefit was in the elimination of the screen film imaging 

technique. This allowed for the separation of the image acquisition from the display of 

the acquired image (Robson, 2010) and the capability of reading the acquired images in 

near real time. 

The advantages of FFDM over the screen film (SF) have made this imaging 

modality popular worldwide over the last decade. One advantage of FFDM over SD is 

the elimination of film processing including the storage and retrieval of the films. FFDM 

also allows for the ability to post-process the captured images rather than having to 

capture an additional image in conventional X-ray systems. As the images are digital, 

telemammography can be achieved and the mammograms can be shared digitally. FFDM 

also creates the ability to change the contrast and brightness of the images after the 

images have been acquired. Compared to a conventional X-ray, FFDM patients receive a 

lower radiation dose (Hambly, McNicholas, Phelan, Hargaden, O'Doherty, & Flanagan, 

2009). 

Despite all the advantages of utilizing the mammographic imaging and all the 

technical improvements over time, mammography still suffers from some drawbacks. 

One of the problems present in mammography is that this imaging modality uses a two-
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dimensional image to represent a three-dimensional object. In the two-dimensional 

radiograph, the resulting image is the summation (line integral) of the attenuation present 

along a certain path. Therefore, a low-contrast object can be fully masked by dense tissue 

above or below the low-contrast object (superimposition). This problem can have a 

bigger effect on denser breasts due to the close attenuation of the lesions and dense breast 

tissue. The problem with superimposition and masking in mammography can increase the 

number of false-positive and false-negative cases (Robson, 2010).  

Digital breast tomosynthesis (DBT) is a three dimensional mammography 

procedure which minimizes the effect of overlapping breast tissue during imaging. In this 

breast imaging technique a reconstructed image is created from the data acquired at a 

limited number of views over a limited number of arc angles. In this modality, specific 

reconstruction techniques such as shift-and-add and filtered back projection are employed 

in order to form three dimensional images from two dimensional projections. At a 

workstation, similar to CT, a series of images (for example 0.5 mm thickness) are 

presented to the radiographers. These individual image slices allow better visualization of 

the lesions and lesion margins. One of the disadvantages of this imaging modality is that 

different manufacturers apply various techniques to develop and perform tomosynthesis. 

These variations can produce different clinical results (Helvie, 2010).  

One of the initial concerns regarding digital radiography in general was that 

FFDM has a lower spatial resolution compared with SF systems. It was thought that the 

lower spatial resolution could lead to missing subtle features in the radiographic imaging. 

However, according to research by Suryanarayanan et al, digital imaging systems have 

higher dynamic range and detective quantum efficiency (DQE), leading to high contrast 

resolution (Suryanarayanan, Karellas, Vedantham, Ved, Baker, & D'Orsi, 2002). The 

results of studies by Fischer et al and by Fischmann et al have also shown an 
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improvement in image quality. This then leads to better detection of subtle features such 

as microcalcifications in the breast (Fischer, et al., 2002) (Fischmann, Siegmann, 

Wersebe, Claussen, & Müller-Schimpfle, 2005).  

The results of the Digital Mammographic Imaging Screening Trial (DMIST) as 

well as numerous results from recent European studies indicate that FFDM has a 

significantly higher cancer detection rate compared to SF mammography (Pisano, et al., 

2008) (Skaane, Hofvind, & Skjennald, 2007) (Vigeland, Klaasen, Klingen, Hofvind, & 

Skaane, 2008) (del Turco, et al., 2007) (Heddson, Rönnow, Olsson, & Miller, 2007).  

6.2 PHYSICS OF MAMMOGRAPHY 

In order to accomplish the objectives of this research, the use of a mammography 

unit was necessary. Therefore, in order to understand the results of utilising the 

mammography machine appropriately, it was important to know the underlying physics 

and mechanism of the system. The mammography procedure is an X-ray based modality, 

therefore, the first step in this scientific journey was to discuss the production and 

spectrum of the radiation applied to the breast phantoms. The X-ray spectrum has an 

important effect on image quality and absorbed radiation dose. For more information, 

Appendix I includes details of the production of X-rays. 

Since this research was simulating the real clinical procedures, and in clinical use 

automatic exposure controls (AEC) are routinely utilised, knowing about the mechanism 

of AEC was recommended. The main factors that AEC circuits are associated with are 

kVp, mAs, anode/filter, detectors, SNR, compression force, breast thickness, and breast 

density. Hence, it was preferred in this research to discuss these subjects briefly.  

The following areas are covered in this section: X-ray spectrum, X-rays incident 

on the detector, low energy in mammography, mammography density, and digital 
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mammography. Digital mammography is categorized into digital (DR) and computed 

(CR). Both classifications are briefly discussed in this chapter.  

6.2.1 X-ray spectrum 

The X-ray spectrum, specified by the tube energy and the anode/filter 

combination, has a significant role in image quality and absorbed radiation dose (Boone, 

Fewel, & Jennings, 1997). In mammography a low energy X-ray beam is required in 

order to visualize subtle density differences between normal and abnormal tissues. A 

mammography unit is equipped with special anode/filter configurations to operate in the 

appropriate kVp range. The suggested typical range for kVp varies among multiple 

studies. For example, 24-32 kVp as a typical range was suggested by the International 

Atomic Energy Agency (IAEA) while 18-42 kVp was considered a range for traditional 

mammography by Zhang et al. (Zhang, Li, & Liua, 2012). The kilovoltage settings of 23–

35 kVp were mentioned by Ranger et al. (Ranger, Lo, & Samei, 2010). Variations in 

kilovoltage settings among different studies might be because of the use of various 

models of mammography units from different manufacturers. 

 In a typical mammography unit, the anode/filter combinations are typically, 

molybdenum/molybdenum (Mo/Mo) or molybdenum/rhodium (Mo/Rh). Some of the 

mammographic units are equipped with a dual-track anode which allows the 

mammographer or the mammography unit using AEC to select either molybdenum or 

rhodium (Sprawls, 1995). Additionally, because of advances in new digital detectors, 

other types of anode/filter combinations such as rhodium/rhodium (Rh/Rh), and 

tungsten/rhodium (W/Rh) can be utilised in the mammographic systems (Chevalier, 

Leyton, Tavares, Oliveira, da Silva, & Peixoto, 2012). Although Mo/Mo or Mo/Rh are 

commonly used in mammography (for example, Hologic Selenia), research shows that 



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 57 of 365 July 2015 

the W/Rh target/filter is the best choice in terms of image quality at a lower dose. This 

target/filter combination is capable of working as the best choice for all breast 

thicknesses and breast compositions to detect lesions and microcalcifications (Baldelli, 

Phelan, & Egan, 2010). 

In mammography, the molybdenum energy spectrum consists of characteristic 

and a Bremsstrahlung continuum energies (Figure 6.1). Molybdenum anode produces two 

characteristic X-ray energies. These X-ray energies are at 17.9 keV and 19.5 keV 

respectively. These produce high contrast mammograms for breasts with average 

thickness. A molybdenum filter removes the beam energies higher than 20 keV and the 

resulting mammogram is produced with low-energy photons. In other words, most 

Bremsstrahlung spectrum X-rays above the K-edge energy or the binding energy of the 

K-shell electrons of 20 keV are cut off utilizing a Mo filter (Figure 6.1). The removal of 

high energy X-ray radiation above 20 keV improves the subject contrast (Huda & Slone, 

2007) (Sprawls, 1995). 

 
Figure 6.1 Mo/Mo spectrum (Sprawls, 1995) 

A rhodium filter which is either selected by the mammographer or the 

mammography unit using AEC is an alternative filter. This is typically included in 

mammographic units with double filters. The k-edge boundary is moved to a higher 
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energy (23.22 keV) compared to Mo filter (20 keV) (Figure 6.2). Shifting to a higher 

energy means that the Bremsstrahlung radiation between 20 keV and 23.22 keV is 

included in the X-ray beam. This additional radiation has a higher penetrating energy and 

can be used for denser or thicker breasts (Sprawls, 1995). For most patients, the Mo/Mo 

setting is utilised. However, for thicker/denser breasts, a Mo/Rh filter with a higher kVp 

is automatically selected (Paredes, 2007). 

 
Figure 6.2 Mo/Rh spectrum  (Sprawls, 1995)  

6.2.2 X-ray interactions in the detectors 

X-ray interaction is common among different types of detectors. There are three 

main atomic reactions between the X-ray photons and the mammographic detectors. 

These X-ray interactions include: elastic scattering, Compton (inelastic) scattering, and 

the photoelectric effect (Yaffe, 2010). 

In elastic scattering, the emitted photon from the matter has the same energy as 

the incoming photon. In other words, the energy of the emitted scattered photon does not 

dissipate after interaction with the matter. In Compton scattering (Figure 6.3), part of the 

energy of the photon is absorbed when the photon liberates a recoil electron which is a 

low binding electron. The rest of the energy remains in the scattered photon. This 
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interaction causes loss of spatial resolution, increase of the noise and decrease of the 

contrast (Toennies, 2012).  

The amount of Compton scattering increases with the increase of photon energy. 

The scattered photon can be scattered in any direction and also can be hazardous for the 

radiographers (Fosbinder & Orth, 2011). 

 
Figure 6.3 X-ray interaction via Compton scatter (Stangl, 2013) 

In photoelectric interaction or photoelectric effect (Figure 6.4), the incoming X-

ray photon with an energy higher than the electron’s binding energy liberates the electron 

from one of the inner atom shells (K-shell or L-shell). Much of the energy of the photon 

transfers to this photoelectron. The vacancy of the electron is then refilled by a more 

loosely bound orbital electron from a higher atomic shell and the rest of the energy is 

either transferred to a second auger electron or the low-energy fluorescent X-ray (Yaffe, 

2010).  
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Figure 6.4 X-ray interaction via photoelectric effect. Left: Incoming photon ejects an electron 

from the inner shell. Most of the energy of the incoming electron transfers to a photoelectron. 

Right: the vacancy of the electron in the inner shell is filled by an electron from the outer shell 

The probability of photoelectric absorption per unit mass is related to the 

following equation. 

𝑍3

𝐸3
 

In this equation Z represents the atomic number of the object and E represents the X-ray 

energy (Bushberg, Seibert, Leidholdt, & Boone, 2012). This equation shows the inverse 

relationship between the photoelectric interaction and the increase of energy. At low kVp 

levels, the photoelectric interaction predominates over Compton scattering, whereas at 

higher kVp levels, Compton interaction occurs mainly. Therefore, since mammography is 

a low energy procedure, the photoelectric effect is the main X-ray interaction in the 

detector (Saha, 2013).  

The type of material used as detectors has a significant influence on the increase 

of the photoelectric effect. Suitable detector materials are those with relatively high 

atomic numbers such as iodine and selenium. At 20 keV, 94% of X-ray interactions will 

be by photoelectric interaction for iodine and 96% for selenium. (Yaffe, 2010). Since 

photoelectric absorption requires low photon energy and low photon energy is desirable 
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in mammography in order to produce images with good visibility these detector materials 

are suitable for mammography. 

6.2.2.1 Application of iodine-based contrast agent in mammography 

 “Attenuation” as a key concept in medical imaging is the removal of photons 

from a beam of X-rays as it passes through an object.  X-ray beams can be attenuated by 

interaction mechanisms such as scattering and absorption. The photoelectric effect 

described in (6.2.2 on page 58) can cause the attenuation in soft tissue when the photon 

energy is low. The occurrence of photoelectric absorption depends on the atomic number 

of the matter (absorber) and the photon energy 

The following graph (Figure 6.5) illustrates the mass attenuation coefficient for 

tissue and iodine as a function of X-ray energy. The curves show decrease in the 

attenuation coefficient with the increase of energy. The sudden increase in the attenuation 

coefficient referred to as “absorption edges” happens because of the increase in the 

probability of photoelectric absorption. This occurs when the energy of photon exceeds 

the binding energy of inner-shell electrons such as K shell. One of the reasons that the 

non-toxic high atomic number element such as iodine can be used to increase the 

photoelectric interactions is that the range of the energy that is used to start photoelectric 

interactions is in the diagnostic energy range (Bushberg, Seibert, Leidholdt, & Boone, 

2012)  (Sprawls, 1995).  
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Figure 6.5 Mass attenuation coefficient in relation to X-ray energy (Bushberg, Seibert, Leidholdt, 

& Boone, 2012) 

In this research, a non-ionic iodinated contrast agent called Optiray 320 

(DailyMed, 2012) was used to increase the attenuation of the phantom lesions as it was 

readily available. The contrast agent increases the density and atomic number of the 

phantom region of interest (University of the West of England, 2010) leading to increase 

of attenuation coefficient and consequently increase of the Hounsfield unit (HU).  

6.2.3 X-rays incident on the detector 

As Figure 6.1 and Figure 6.2 illustrate, mammographic systems work based on 

low-energy photons. In order to explain the reason for using low-energy photons to 

produce mammograms, the relationship between the thickness of the object of interest in 

the breast, the attenuation coefficient of the object and the detector are discussed.  

As an X-ray photon travels through breast tissue, it reacts differently with the 

different densities of tissues within the breast. The following schematic diagram of the 

breast (Figure 6.6) shows two sample paths that an incident photon (X-ray) can travel, A 

and B. In path A, the X-ray passes through the normal tissue. While in path B, there is a 

structure such as a lesion with the thickness ‘a’. 
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Figure 6.6  X-ray transmission path A: through normal breast tissue B: through  sructure of 

interest  (Yaffe, 2010) 

In path A, the mean number (𝑛𝐴) of the X-rays transmitted through the breast 

tissue with monoenergetic X-ray beam is represented by the following equation.  

𝑛𝐴 =  𝑛0 𝑒−𝜇𝑧 

In this equation, 𝑛0 is the mean number of transmitted X-ray beam to the breast, µ 

is the X-ray attenuation coefficient (see glossary on page 305) of the normal tissue 

(background) and z is the thickness of the breast. 

In path B, the mean number (𝑛𝐵) of X-rays transmitted through the structure of 

interest with the thickness of ‘a’ is represented by the following equation. 

𝑛𝐵 =  𝑛0 𝑒−𝜇(𝑧−𝑎)−𝜇′𝑎   

In this equation µ´ represents the X-ray attenuation coefficient of the structure of 

interest. The signal difference between 𝑛𝐴 and 𝑛𝐵  is calculated with the following 

equation 

𝑆𝐷 =  𝑛𝐴 − 𝑛𝐵 
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The contrast can be defined using the following equation. 

𝑛𝐴 − 𝑛𝐵

𝑛𝐴 + 𝑛𝐵
 

This contrast is related to the X-ray attenuation coefficient between the background tissue 

and the structure of interest such as a lesion and the thickness of the structure. This 

contrast however is not related to the thickness of the breast.  

The actual number of X-rays on the detectors is related to the quantum detection 

efficiency (η). This parameter describes the fraction of X-rays incident on the detector 

and is related to the attenuation coefficient of the detector based on the X-ray energy and 

the thickness of the detector. In actuality, the amount of X-rays detected for paths A and 

B are represented as η𝑛𝐴 and η𝑛𝐵 respectively (Yaffe, 2010).  

Using the radiation contrast equation 
𝑛𝐴−𝑛𝐵

𝑛𝐴+𝑛𝐵
 after replacing 𝑛𝐴 and 𝑛𝐵 with 

𝑛0 𝑒−𝜇𝑧 and  𝑛0 𝑒−𝜇(𝑧−𝑎)−𝜇′𝑎   respectively, the following equation is acquired for the 

contrast. 

1 − 𝑒𝑎(𝜇−𝜇′)

1 + 𝑒𝑎(𝜇−𝜇′)
 

The above equation is dependent upon the X-ray attenuation coefficient between 

the background tissue and the structure of interest such as lesion and the thickness of the 

lesion. The radiation contrast is not dependent upon the thickness of the breast or the 

number of transmitted X-ray beams to the breast. This is a simplified model in order to 

demonstrate the reason of using low energy X-ray beams in mammography. In practice, 

with the polyenergetic X-ray spectrum, the contrast shows dependence on the breast 

thickness (z), the mean number of transmitted X-ray beam to the breast (𝑛0), and the X-

ray attenuation coefficient (µ). 
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Research shows that the linear attenuation coefficient of the breast features such 

as fat, fibroglandular tissue and lesions is decreased with the increase of the X-ray energy 

(Figure 6.7) (Yaffe, 2010). Attenuation is produced by the absorption and scattering of 

the incoming photons to the tissue. At low energy this is dominant by the photoelectric 

absorption. Since the probability of the photoelectric absorption is related to the photon 

energy, and the atomic number of the absorber (6.2.2 on page 58), Hence the increase of 

the photon energy decreases the attenuation coefficient of the X-rayed tissue. 

Likewise, the difference between the linear attenuation coefficient of the breast 

tissue such as fat/glandular and the lesion is decreased (Figure 6.7) with the increase of 

the X-ray energy. These reductions applied in the latter radiation contrast equation above 

display the decrease of contrast between the breast tissue and the structure such as a 

lesion with the increase of the X-ray energy. Therefore, in order to produce adequate 

contrast mammograms, lower energy is required in mammography (Yaffe, 2010). 

 
Figure 6.7 linear X-ray attenuation coefficients of fat, fibroglandular tissue, and cancer lesion in 

the breast (Yaffe, 2010) 
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The following graph (Figure 6.8) displays the relation between the radiation 

contrast and the X-ray energy for fat, fibroglandular tissue and an infiltrating ductal 

carcinoma (Yaffe, 2010). 

 
Figure 6.8 Contrast of the breast tumour and calcification in relation to X-ray energy (Yaffe, 

2010) 

6.3 DIGITAL MAMMOGRAPHY 

Modern mammography is categorized into digital radiography (DR) and 

computed radiography (CR). Both of these categories are subsets of digital 

mammography. Digital mammography was implemented progressively in Canada in 

2006 and has been widely used in recent years (Brooks & Morley, 2013). In 2000, the 

first full-field digital mammography (FFDM) was approved by the U.S. Food and Drug 

Administration (FDA) for clinical purposes (Hendrick, et al., 2010). In 2010, the 

Department of Health Advisory Committee on Breast Cancer Screening in the UK 

decided to adopt direct digital radiography (DDR) based mammography rather than 

computed radiography (CR) into the NHS Breast Screening Programme. As of October 
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2013, 99% of the breast screening departments in the UK were equipped with at least one 

direct digital mammography unit (Public Health England, 2014). 

Computed mammography is a cassette based system which is less effective in 

detecting cancer lesions but is also less costly compared to digital mammography. 

Research shows that CR systems are about 21% less effective than direct digital 

mammography. This lower effectiveness may be due to loss of spatial resolution, or 

sharpness, and image noise (Chiarelli, et al., 2013) (Brooks & Morley, 2013).  

Due to the use of advanced technology in digital detectors such as flat-panel 

detectors with integrated thin-film transistor (TFT), charge-coupled device (CCD), or 

complementary metal oxide semiconductor (CMOS) image sensor, the time consuming 

processes of manipulating the cassettes, and photostimulable phosphor (PSP) read-out 

has been eliminated. Unlike the CR systems, DR provides almost instant display of the 

mammograms on the monitor (Herrmann, 2008). The following diagrams (Figure 6.9) 

show different classifications of digital X-ray technologies in general (Lança & Silva, 

2013).  
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Figure 6.9 Digital X-ray technology (Lança & Silva, 2013)   
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6.3.1 Direct and Indirect detectors 

In digital mammography, the detector is a core feature which creates electronic 

signals to represent the spatial pattern of the transmitted X-ray beams by the breast. The 

energy of the transmitted X-ray radiation which has passed through the breast is absorbed 

by the detector. This absorbed energy is then converted to light or electric charge. The 

signal is collected and, if the light was the output of the conversion phase, the signal will 

convert to electronic charge. After the production of the electronic signals, the process of 

reading the charge is followed by amplification and digitization (Yaffe, 2010).  

Mammographic digital detectors can be categorized as direct and indirect. As the 

following image (Figure 6.10) shows, both types of detectors include X-ray photon 

absorption, conversion to electric charge, readout, and analogue/digital layers.  

 
Figure 6.10 Indirect and direct conversion in digital mammography (Noel & Thibault, 2004) 

Direct digital detectors convert the X-ray photons directly to electric charge, 

whereas, with indirect systems, the X-ray photons are converted to light first before 

converting to electric signal. In indirect detectors, X-ray photons are absorbed on a 

scintillator (see glossary on page 305) such a phosphor based (or Thallium-activated 

caesium iodide (ScI:Tl)). The light generated in the scintillator is detected by an array of 

photodiodes. The electric charges created in the conversion to electric charge layer drift 
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towards the arrays of thin-film transistors (TFT) in the readout layer. The TFT array 

collects the electric signal and stores it in detector element capacitors. The array is then 

read immediately by the TFT in order to produce the image (Bushberg, Seibert, 

Leidholdt, & Boone, 2012). The last layer shows the conversion of the analogue signals 

to digital (Noel & Thibault, 2004). 

Due to the light spread in the scintillator, the spatial resolution of indirect systems 

is lower than in direct detectors. The following image (Figure 6.11) illustrates the line 

spread function (see glossary on page 305) in indirect detectors versus direct detectors. 

Because of the scattering of light in the scintillator, indirect detectors generate broad line 

spread functions while direct detectors have narrower line spread functions.  

 
Figure 6.11 Line spread function for indirect and direct conversion (Smith, 2003) 

In direct conversion digital detectors, the X-rays are absorbed by the detector and 

the electrical signal is generated directly due to the presence of an external electric field. 

The electrons (or holes based on the polarity of the electric filed) move towards a pixel 

electrode and are collected on a pixel capacitor. The movement of the electrons/holes are 
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along the direction of the electric filed lines. This un-scattered drift results in a narrow 

point spread response about one micron (Figure 6.11) (Markey, 2013). 

Amorphous selenium (a-Se) flat panel detectors are ideal for direct digital 

mammography. These detectors offer high X-ray absorption efficiency, high inherent 

resolution, and low noise. They are also suitable for radiation dose efficiency (Markey, 

2013) (Smith, 2003). 

6.3.2 Computed radiography 

Similar to screen film (see glossary on page 305), computed radiography (CR) 

systems are based on the photostimulable luminescence principle. CR is known as a 

cassette-based technology. In these systems, X-ray photons are absorbed on a 

photostimulable phosphor (PSP) plate within the imaging cassette. This modality then 

utilises a laser scanning mechanism to extract the data trapped on the cassette. 

6.3.3 Digital detector types 

Various types of detectors are used in mammographic systems. Some common 

digital mammographic detector types include phosphor-flat panel, selenium flat panel, 

and phosphor-CCD. Since a selenium flat panel detector was employed in the 

mammography unit of this research, therefore, only this detector is discussed in the next 

section. 

6.3.3.1 Selenium flat panel 

Another type of digital detector is the selenium flat panel detector which uses 

amorphous selenium (a-Se) (100-200 mm) as an X-ray absorber. The X-rays hit the a-Se 

and produces photoelectrons. The interaction between the electrons of the selenium atoms 

and the X-rays creates an electron-hole pair. This electron-hole pair is the source of the 

generation of the electric signals. The selenium is encompassed between two electrodes 
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(Figure 6.12). The electrodes generate an electrical field. The lower electrodes formed as 

a large matrix of detector elements (dels). The dels store the charge as capacitors. There 

is a TFT switch at the corner of each TFT. The charges then move to the readout circuit 

when the TFT switches are on. The TFT switches get command from control lines to 

open sequentially (row by row). The signals from the activated dels are transmitted along 

readout lines to be amplified and digitized (Yaffe, 2010). 

Selenium flat panel detectors offer very high DQE and high resolution, resulting 

improved image quality and the potential for lower radiation dose (Smith, 2003). 

 
Figure 6.12 Selenium system (Yaffe, 2010) 

6.3.4 Detector Elements (del) 

A detector element (del) or aperture, as a smallest detector component 

(Hashimoto, 2008), is considered as the heart of detectors. In image acquisition, dels 

provide X-ray discrete measurement to construct the image. In other words, the 

information displayed by every single pixel is originated in each del. Generally, the 

resolution of the detectors is related to the size of the del (Hashimoto, 2008).  
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The centre to centre distance between two adjacent dels in the array of dels is 

called pitch (p) and the size of each del is ‘d’ which is referred to as aperture size (Figure 

6.13). Fill factor is one of the measures which indicates the fraction of the area that is 

sensitive to X-rays and is represented by the following equation. 

Fill factor =
𝑑2

𝑝2
 

For example, if d is smaller than p, then the fill factor depending on the geometry of the 

del can be less than 1. The amount of fill factor can affect the sensitivity and efficiency of 

the detector. The loss of X-rays because of the geometry will reduce the efficiency and 

sensitivity of the detector (Yaffe, 2010).  

 
Figure 6.13 Detector element (dels) (Yaffe, 2010) 

6.3.5 Digitization 

Typically analogue data is the output of the medical imaging detectors. The 

digital data is required in order to process the data by computer, transfer it to other work 

stations and store it digitally. Therefore, the detectors utilise specific electronic circuits 

called analogue-to-digital convertors (ADCs) in order to digitize the input signals. This 
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process is called digitization of the signals. Digitization has two steps: sampling and 

quantization.  

An analogue signal is typically continuous in time. This means that the signal has 

value at each point in time. In the sampling technique, instead of selecting all the points 

in the analogue signal, some certain points in time are selected in order to form the digital 

signal. In the quantization technique each analogue sample converts to digital signal 

(Bushberg, Seibert, Leidholdt, & Boone, 2012). 

6.3.6 Dynamic range in DR 

Dynamic range is the range of intensity from minimum to maximum that can be 

shown as differences in signal intensity (Schaefer-Prokop & Prokop, 1997). Dynamic 

range in digital mammography is related to grey-scale shades in the image. The grey-

scale shades are defined as bits and the content of the bits (0/1) defines the grey shade. A 

mammography system that offers at least 12 bits of dynamic range will not deteriorate the 

fundamental information (Smith, 2003). The large dynamic range in digital 

mammography improves the visualization of various parts of the breast in the image and 

offers wide exposure latitude (see glossary on page 305) (Markey, 2013). The dynamic 

range should be enough to be able to cover the entire range of intensities for all the tissue 

types such as adipose, glandular, and fibrous and abnormalities such as 

microcalcifications. 

The high contrast resolution resulting from the high dynamic range in digital 

mammography improves image acquisition, especially for dense breast tissue (Medical 

Services Advisory Committee , 2008).  
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6.3.7 Pixel size in mammography 

In digital mammography, spatial resolution of an image is affected by the pixel 

size and the spacing between the pixels. However, a higher number of pixels do not 

always provide a higher spatial resolution. Image blurring can result from a number of 

factors including X-ray scatter, light scatter, and a combination of both in the detector 

(Chotas, Dobbins III, & Ravin, 1999). For example, in scintillator based systems, even 

with pixel sizes smaller than 100 μm, the spatial resolution is not as good as the direct 

selenium based systems with a pixel size of 70 μm (see 6.3.1 on page 68) (Smith, 2003). 

Typically, the size of the pixel element on currently available mammographic detectors is 

between 50 µm and 100 µm (Freitas, Kemp, Louveira, Fujiwara, & Campos, 2006).  

6.4 PERFORMANCE OF DIGITAL DETECTORS 

Measuring the performance of digital radiographic detectors is essential in order 

to generate good quality radiographs. Good image quality leads to accurate diagnosis. 

Hence, there are numerous research studies regarding the measurement and improvement 

of image quality in digital radiography. Since the evaluation of image quality in relation 

to breast phantom thickness is one of the objectives of this research, knowing the effects 

of the performance of the detectors on the images is essential. Furthermore, the 

parameters which are used to measure the performance of detectors such as sharpness, 

noise and contrast can be used to evaluate the image quality of the mammograms in the 

visual perception part of this research. 

 The performance of the system can be described by number of performance 

parameters. Contrast, sharpness, and noise are important characteristics to determine the 

performance of image quality. Characteristics such as sharpness and noise can be defined 

in terms of the modulation transfer function (MTF) and noise power spectrum (NPS) or 
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Wiener spectra (WS). Noise can also be used in the measurement of signal to noise ratio 

(SNR) and detective quantum efficiency (DQE).  

6.4.1 Contrast 

Contrast is the relative signal difference between two adjacent objects in the 

image. It is especially important when describing the difference between the image of the 

object and the background. In other words, contrast can be defined as the relative 

brightness difference between two locations in an image (Cunningham, 2000).  

In DR systems, the contrast and brightness can be adjusted by the display system 

(Pisano & Yaffe, 2005). It is important to mention that post-processing can only improve 

the contrast and brightness of what exists in the image. It cannot recover information that 

has not been obtained due poor acquisition.  

In digital mammography, the characteristic response curve represents the contrast 

of an imaging system. As Figure 6.14 displays, the characteristic curve of a digital 

mammography is linear. This means that the produced signal is linearly proportional to 

the intensity of X-rays transmitted through the breast. Due to the large dynamic range of 

the digital detectors, ranges of tissue can be viewed in the image. Since the contrast is an 

important parameter in image quality, digital mammography offers the ability to adjust 

the brightness and contrast of the image after image acquisition and during image 

viewing (Yaffe, 2010). 
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Figure 6.14 Characteristic response of a detector designed for digital mammography (Yaffe, 

2010) 

6.4.2 Sharpness  

Sharpness in medical imaging shows the ability of the system to distinguish the 

anatomic features of the imaged object. Degradation of sharpness in the radiographs can 

increase the chance of missing the detection of abnormalities (e.g. lesions) in the breast. 

Sharpness is directly related to the spatial resolution of the imaging system (Samei, 

2003).  

Spatial resolution is a concept in medical imaging which allows two adjacent 

structures or objects to be visualized separately. The spatial resolution in digital 

mammography is 5-10 line-pairs/mm (a dark line next to a light line), whereas, the spatial 

resolution in SF mammography is 20 line-pairs/mm (Whitman & Haygood, 2013).  

The modulation transfer function (MTF) is defined as a measure of signal transfer 

(modulation) over a range of spatial frequencies. MTF is used to measure image 

sharpness (Smith, 2003). In digital mammography, the value of MTF is affected by the 

focal spot size, detector’s active area, the spread of the signal in the detector, and the 

laser in CR-based detectors (Whitman & Haygood, 2013).  
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The following image (Figure 6.15) illustrates the concept of MTF. Three 

sinusoidal pulses (left) are the input signals on a detector. Each signal has its own 

frequency. The output signals are measured by the imaging system (right). As the image 

shows the frequency of input and output signal are the same, but the amplitude of the 

output signals dropped in comparison with the input signals. The reduction of the 

amplitude is more noticeable in input signals with higher frequencies. This reduction 

results in the loss of resolution in the imaging system. The following MTF plot 

demonstrates the drop in amplitude (87%, 56%, and 13%) as a function of spatial 

frequency (1 cy/mm, 2 cy/mm, and 4 cy/mm). In other words, the plot shows the spatial 

resolution of the imaging modality as a function of spatial frequency of the input pulse to 

the detector (Bushberg, Seibert, Leidholdt, & Boone, 2011).  
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Figure 6.15 MTF for input signals with various spatial frequencies 

The following image (Figure 6.16) illustrates MTF for the SF, indirect and direct 

detectors. As the graph shows, the direct a-Se detectors generate the highest MTF 

compared to SF and indirect detectors. Due to generation of light scattering in 

scintillator-based detectors using indirect technology, scintillator-based detectors produce 

lower MTF values. 
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Figure 6.16 MTF for direct, indirect and screen-film mammography systems (Smith, 2003) 

6.4.3 Noise and Signal to Noise Ratio 

Generally, in medical imaging, noise is the unwanted image detail which 

interferes with the visualization of the areas of interest (Samei, 2003). The main sources 

of noise are classified into the following categories: anatomical noise, electronic noise, 

scattered radiation noise, and quantum noise.  

Electronic noise is a random noise which can be generated from the electronic 

components of the imaging modality such as analogue to digital convertors (Williams, et 

al., 2007). Anatomical noise is the image of anatomical organ which always presents, but 

might not be important for diagnosis. The anatomical noise can block the area of interest 

in the image (Bushberg, Seibert, Leidholdt, & Boone, 2012). Scatter radiation is another 

source of noise in the image. Because of the scattering of the X-ray by the anatomical 

tissues, the intensity of the X-ray on the exit side of the patient reduces. This reduction of 

X-ray intensity reduces the signal to noise ratio (SNR) (Williams, et al., 2007). 

Both the production of X-rays and the interaction of photons with the detectors 

and also in the tissue are in a random manner. In other words, there is no even 
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distribution of photons on the detector. One area of a detector can receive more photons 

than other areas. The random pattern or uneven distribution of photons is the main 

reasons of generation of noise within the image. This noise is known as quantum noise 

and is related to the quantum structure of an X-ray beam (Sprawls, 1995).  

Signal to noise ratio (SNR) as a measure of image quality, is the ratio of signal to 

noise in the detectors. It can be defined as the ratio of the number of X-rays used to form 

the image (nd) to the square root of the number of X-rays (nd) (Yaffe, 2010). 

𝑆𝑁𝑅 =
𝑛𝑑

√𝑛𝑑

= √𝑛𝑑 

In order to visualise the small features in the breast such as microcalcifications, it 

is necessary to reduce the noise and increase the SNR. This can happen either by 

increasing the mAs or by utilizing a detector with high quantum detection efficiency (η) 

(Yaffe, 2010). 

6.4.4 Detective Quantum Efficiency 

Detective Quantum Efficiency (DQE) is one of the main measures to evaluate the 

performance of the digital X-ray system. As mentioned above, the higher SNR results in 

better quality mammogram. SNR decreases when other sources of noise other than 

quantum noise affecting the image quality. The signal directly transmitted from the breast 

to the detector produces SNRin which is defined in the following formula.  

𝑆𝑁𝑅𝑖𝑛 =
𝑛0

√𝑛0

=  √𝑛0 

In this formula n0 is the number of photons in a specified area. In a perfect system √𝑛0 

would be the only source of the noise, but in reality not all the photons get absorbed by 

the detectors, therefore the noise will be affected by quantum detection efficiency or η 
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resulting η.n0 as signal and √𝜂. 𝑛0 as noise. Signal to noise ratio (SNRout) is defined in the 

following equation. 

𝑆𝑁𝑅𝑜𝑢𝑡 =
η. 𝑛0

√η. 𝑛0

=  √η. 𝑛0 

The performance of the imaging system can be determined by the ratio of the SNRout to 

SNRin. This ratio is referred to as Detective Quantum Efficiency (DQE) and indicates 

how well the system transfers the input SNR (Yaffe, 2010).  

𝐷𝑄𝐸 =
𝑆𝑁𝑅𝑜𝑢𝑡

2

𝑆𝑁𝑅𝑖𝑛
2 =  

η. n0

n0
= η  

6.4.5 Noise Power Spectrum 

The presence of the noise in the images is unavoidable. If the noise level 

compared to the image intensity of the anatomical tissue is high, the important 

information on the image can be lost due to the presence of the noise. Therefore, utilizing 

mathematical methods to measure the level of the noise in the medical imaging is 

essential. 

Generally speaking, variance or σ
2
 is a metric which is employed in order to 

quantify the noise in the image. This metric does not measure the noise texture. For 

example, the following image (Figure 6.17) depicts two CT images of a test object. Both 

images have the same standard deviation in the specified ROI. As the image shows the 

appearance of the noise in those images is not identical. The difference between the 

frequency dependence of the noise causes this perceptual difference in the noise of both 

images. This frequency dependence of the noise variance is measured by the noise power 

spectrum (NPS) (Bushberg, Seibert, Leidholdt, & Boone, 2012). 
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Figure 6.17 Two CT images of a test object with identical standard deviation and different noise 

appearance (Bushberg, Seibert, Leidholdt, & Boone, 2012). 

6.4.6 The relationship between image quality parameters 

The following image (Figure 6.18) shows the relationships between image quality 

parameters. SNR represents the relationship between noise and contrast. The ratio 

between signals to noise represents the most significant indicator in image quality. The 

research by Dobbins shows that a ratio of 5:1 is adequate for observers (Dobbins III, 

2000). As the level of noise decreases, the SNR increases. An increase in the SNR 

directly results in an increase in the image quality and therefore the possibility of object 

detection (Lança & Silva, 2009).  

Wiener spectrum (WS) or NPS (Noise Power Spectrum) represents the 

relationship between noise and spatial resolution. This is an important tool to evaluate the 

noise power in the spatial frequency domain. MTF is affected by contrast and resolution. 

All the parameters have influence on the DQE as the main system performance measure. 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&ved=0CDIQFjAC&url=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F9251741&ei=Xz8IVNCQCuSe7AaLu4DICg&usg=AFQjCNGpBlaUdCiL1enV-WGt3dYR6OJdvg&sig2=ps6LrIn4JdoGOYCNpYu74g&bvm=bv.74649129,d.ZWU
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Figure 6.18 Relationship between image quality parameters (Oliveira & Lança, 2011) 

6.5 MAMMOGRAPHY UNIT 

A mammography unit is comprised of many different components including focal 

spots, collimator, field of view, grid, mammographic monitors, compression device, 

paddles, and automatic exposure control (AEC). This section is aimed to discuss the role 

of the parts of a mammography unit which have been directly used in this research. These 

parts include: compression device, paddles, and automatic exposure control (AEC). 

Appendix I covers some other key components of a mammography unit such as focal 

spots, collimator, field of view, grid, and mammographic monitors. 

6.5.1 Compression device 

The breast compression can be operated manually or motorized. In the motorized 

compression, a foot pedal assists the operator to be hands free, so she can use her hands 

to position the breast. The foot pedals operate the up/down motion for the compression 

paddle. Manual compression can be achieved by a compression knob.  

Generally, the initial breast compression starts with the motorized device. The 

foot pedal is programmed to a sufficient amount of compression to hold the breast in 
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position without over-compressing it. Then final compression is applied manually by the 

mammographer in order to compress the breast sufficiently for the imaging procedure 

(Andolina & Lillé, 2011). The following image (Figure 6.19) shows the compression 

pedals and knobs in both sides of mammography unit. 

 

 
Figure 6.19 Mammography unit (Hologic Inc., 2014)  

A mammography unit is also equipped with a feature called Automatic 

compression release. This feature allows the breast to be released automatically after the 

X-ray exposure. It also releases the breast when the power to the machine is cut off 

(Andolina & Lillé, 2010). The automatic compression unit can be set on/off from the 

control panel.  
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6.5.2 Paddles 

Paddles are plastic trays in a mammography unit which are utilised to compress 

and immobilize the breast during the imaging. The compression of the breast is carried 

out between the compression paddle and the support table. Paddles come in a variety of 

sizes and shapes based on the breast size and the purpose of mammography. Selecting the 

proper size of paddle has effect on image quality. Using too small of a paddle on a large 

breast can cause uneven and insufficient compression and might miss some areas to 

compress. Likewise, choosing large paddles for small breast might prevent access to the 

breast (Defreitas, Pellegrino, Farbizio, Janer, & Hitzke, 2008).  

Depending on the mammographic procedure, different types of paddles can be 

used for screening and diagnostic purposes (Figure 6.20). In the diagnostic 

mammography technique of spot (cone) compression, the focus of compression is on a 

specific area of the breast. Therefore, a small compression paddle is used to obtain the 

mammogram. Spot compression can also be used to detect microcalcifications (Canadian 

Cancer Society, 2014). Magnification, biopsy, and male breast paddles are other types of 

mammography paddles utilised for various mammographic purposes (AR Custom 

Medical Products, 2007).  

 
Figure 6.20 Different mammographic compression paddles  
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Typically, the 18x24 cm and 24x30 cm paddles are required for breast 

screening(Bassett, Jackson, Fu, & Fu, 2004). These flat and parallel paddles match the 

size of the image detector. Flex paddles as an alternative for flat rigid compression 

paddles can also be utilised in mammography. The tilting mechanism of these spring 

loaded paddles provides more uniform compression from the chest wall to the nipple 

(Bushberg, Seibert, Leidholdt, & Boone, 2012). Although the flex paddles are 

recommended by mammography unit manufacturers in order to decrease the pain and 

discomfort for women, there is no comprehensive study regarding the relationship 

between these two types of the paddles and the pain experience. On the contrary, due to 

the better contrast using the rigid paddle, this paddle was recommended for standard 

mediolateral oblique and craniocaudal projections (Broeders, et al., 2015).  

Since the conventional paddles are rigid and might cause pain and discomfort 

among the women, especially on the thicker parts of the breast, ergonomic paddles have 

been taken into consideration. One of the recent ergonomic paddles that has been 

introduced by Fujifilm Corporate is the FS (Fit Sweet) Compression Paddle. This flexible 

paddle (Figure 6.21) bends along the breast when it is in contact with the breast. The 

flexibility and shape of this paddle makes the positioning of the breast easier and reduces 

the pressure on the breast during compression (Otani, 2013).  

 
Figure 6.21 FS (Fit Sweet) Compression Paddle (Otani, 2013) 
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6.5.3 Automatic Exposure control (AEC) 

Automatic exposure control (AEC) as a key component in mammography has a 

crucial role in FFDM. It facilitates consistent optimal image exposure despite differences 

in the breast size, density and operator’s skill level (Benchimol, Näsström, & Shi, 2009).  

The main role of AEC in these systems is to set the radiation level to determine 

the signal difference to noise ratio (SDNR) and in some designs, it ensures the intensity 

of the X-ray does not exceed the limit of the detector or digitizer (Pisano & Yaffe, 2005). 

Although the presence of an AEC is important in specifying the exposure level to 

the breast and detector, its main roles are to help perform the predetermined SNR and 

provide an acceptable radiation dose to the breast rather than specifying the brightness or 

contrast of the image (Yaffe, 2010).  

In CR systems, the AEC circuit is an electronic X-ray sensor placed beneath the 

image receptor. AEC terminates the X-ray exposure when it senses the predetermined 

radiation level. However, in DR systems based on flat-panel detectors, the AEC is 

integrated into the detector. This multi-element sensor design allows the entire detector 

(the information from the entire breast and the air around the breast) to be utilised to 

sense the radiation transmitted through the breast. There are many algorithms to use the 

information on the digital detectors efficiently. 

Typically, the AEC systems are based on test exposure (pre-exposure). In these 

systems, a small amount of radiation with a very short exposure time approximately 4 ms 

is used to make a test image. The data acquired from the test image is then employed to 

calculate the optimum exposure parameters (kVp and mAs) for the main image 

(Benchimol, Näsström, & Shi, 2009) (Pisano & Yaffe, 2005).  
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6.6  MAMMOGRAPHY DENSITY 

Breast mammograms demonstrate different appearances of the breast 

components. The variation in X-ray brightness of different features of the breast is 

directly associated with the X-ray attenuation of those breast features. As the following 

graph (Figure 6.22) demonstrates, the attenuation coefficient of the breast features drops 

with an increase in the X-ray energy. A breast mammogram demonstrates darker areas 

for the fat (radiolucent) and bright regions for fibroglandular tissue (radiopaque). In other 

words, the regions with higher X-ray attenuation seem brighter on the radiograph. 

Mammographic breast density is known as regions of brightness related to fibroglandular 

tissue (Yaffe, 2008).  

 
Figure 6.22 Linear X-ray attenuation coefficients of fat and fibroglandular tissue in the breast in 

relation to X-ray energy (Yaffe, 2008) 

Breast density is one the main risk factors associated with development of breast 

cancer (McCormack & dos Santos, 2006) (Wolfe, 1976). Research shows women with 

the mammographically denser breast have higher chance of developing breast cancer 

(Qureshi & Samera, 2009).  



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 89 of 365 July 2015 

6.6.1 Breast Imaging Reporting and Data System (BIRADS) 

There are numerous methods of measuring mammographic density (Yaffe, 2008). 

These assessments can be either qualitative or quantitative. Breast Imaging Reporting and 

Data System (BIRADS) (Geller, et al., 2002) is a breast qualitative density classification 

system which is widely used in mammography. This system has 4 main categories: 

BIRADS-1 specifies fatty breast; BIRADS-2 dispersed fibroglandular tissue; BIRADS-3 

is heterogeneous dense breast; and BIRADS-4 for the highest density breast. Since the 

sensitivity of the mammography decreases for the denser breasts, this system assists the 

clinicians to focus on other imaging procedures which are less affected by density (Buist, 

Porter, Lehman, Taplin, & White, 2004) (Bird, Wallace, & Yankaskas, 1992). 

In order to make the BIRADS system more quantitative, the mammograms have 

been classified to 4 density categories defined as <25, 25%-50%, 51%-75%, and >75%. 

The category of <25% indicates that the breast is almost entirely fat and glandular tissue 

is less than 25% of the breast. 25%-50% shows the presence of scattered fibroglandular 

tissues, ranging from 25% to 50%. 51%-75% indicates that the breast is heterogeneously 

dense, ranging from 51% to 75%, and >75% means that the breast contains glandular 

tissues greater than 75% (Nicholson, LoRusso, Smolkin, Bovbjerg, Petroni, & Harvey, 

2006).  

Although the worldwide BIRADS system is a common language between 

radiologists to report mammographic breast densities, the image features are 

determined subjectively. Therefore this system may be prone to visual errors and can be 

affected by the expertise level of the image readers. Hence, computerised methods have 

been developed to measure the breast density more quantitatively (Yaffe, 2008).  
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Chapter 7 Polyvinyl alcohol 

The breast phantoms/lesions in this research are created from polyvinyl alcohol.  

Polyvinyl alcohol is a biocompatible, tissue mimicking, biodegradable and non-toxic 

polymer. The hydrophilic characteristic of PVAL makes this polymer desirable and 

widely used in biomedical and pharmaceutical applications (Hassan & Peppas, 2000).  

PVAL brain, vessel and breast biopsy phantoms are examples of water-based 

PVAL phantoms utilised in MR and ultrasound studies (Surry, Austin, Fenster, & Peters, 

2004) (Surry & Peters, 2001). Other applications of PVAL are in artificial cartilage, 

contact lenses (Ru-yin & Dang-sheng, 2008), vascular cell culturing and vascular 

implanting (Jiang, Liu, & Feng, 2011).  

PVAL gel has mechanical, optical and acoustic similarity to living human breast 

tissue (Kharine, et al., 2006) (Fromageau, Gennisson, Schmitt, Maurice, Mongrain, & 

Cloutier, 2007). The mechanical properties of PVAL gel make it a suitable material for 

the creation of tissue-mimicking phantoms in mammography. Optical and acoustic 

characteristics also make the gel appropriate for studies using other medical imaging 

modalities such as ultrasound. 

The X-ray properties of PVAL gel are not similar to the human breast, but the 

similarity between the X-ray properties of the PVAL gel and human breast can be 

simulated by utilizing substances such as ethanol (Price, Gibson, Tan, & Royle, 2010) or 

contrast agents.  

The PVAL has to be crosslinked to be able to produce gel (Figure 7.1). A 

crosslink is a bond that links the polymer chains together. The crosslinked gel is a 

hydrophilic (see glossary on page 305), three-dimensional polymeric network which 

swells in water yet remains insoluble. Aqueous solutions of PVAL can be solidified to 
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produce a gel by either chemical or physical crosslinking.  In chemical crosslinking, 

agents such as glutaraldehyde, acetaldehyde, and formaldehyde have been used. 

Chemical crosslinking is undesirable due to the presence of chemical residue and the 

time-consuming effort required for extracting the toxic residual components. Physical 

crosslinking, in contrast, is a mechanism to produce gel without the usage of crosslinking 

agents (Hassan & Peppas, 2000). Physically crosslinked gels (Figure 7.1) exhibit a higher 

mechanical strength and stability than chemically crosslinked gels (Hassan & Peppas, 

2000). The mechanical strength is derived from the distribution of the mechanical load 

among the crystallites of the three-dimensional (network) structure of the gel. 

 
Figure 7.1 Crosslinking of PVAL by freezing-thawing cycle and hydrogen bonding production 

(Bonakdar, Emami, Shokrgozar, Farhadi, Ahmadi, & Amanzadeh, 2010) 

7.1 FORMATION OF PVAL GELS THROUGH FREEZE-THAWING 

The formation of PVAL gel from the aqueous solution can be explained by three 

models: hydrogen bonding, crystallite formation, and liquid-liquid phase separation 

(Peppas & Stauffer, 1991). In a heated aqueous PVAL solution (dissolved PVAL crystals 

in deionised water) mobile molecular chains come in contact with each other for a short 

time but do not develop bond with each other. After reducing the temperature below 0 

°C, the chains stay in contact with each other for a longer period of time and result in 
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intermolecular interactions of the PVAL chains including hydroxyl bonds (Ru-yin & 

Dang-sheng, 2008). Hydrogen bonding between hydroxyl groups of PVAL is thought to 

be the source of the crosslink (tie point) between the molecules of PVAL polymer. The 

hydrogen bonding creates a network of hydrogen bonded PVAL crystallites which is 

hypothesized as the cause of the gel formation. This formation of crystallites initiates 

from a double layer of PVAL molecules held together by hydroxyl bonds and the 

presence of weak van der Waal forces. The crystallites originate from a folded chain 

structure of PVAL and are scattered in an amorphous polymeric network. Figure 7.2 

below shows a typical crystallite consisting of folded polymer (PVAL) chains of lamellar 

thickness l, width w, and distance b between the rows of chains (Hassan, Ward, & 

Peppas, 2000). 

 
Figure 7.2 Typical crystallite of folded polymer (PVAL) chains (Hassan, Ward, & Peppas, 2000) 

Liquid-liquid phase separation results in polymer-rich and polymer-poor regions. 

During the freezing cycle, the water freezes and it expels the PVAL as impurity of the 

water to the surrounding area (polymer-rich region). When the ice melts, it leaves a 

porous region whereas the PVAL crystallites form a network around the pores (junction 

points in a porous network) (Ricchiardi, Auriemma, & de Rosa, 2005) (Peppas & 

Stauffer, 1991).  

Each freezing thawing cycle makes the polymer-rich region richer and the 

polymer-poor region poorer. Consequently, the PVAL network becomes more rigid after 
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each freezing thawing cycle due to the expulsion of PVAL from the ice crystals to the 

junction points and the formation of more crosslinked crystallites in the polymer-rich 

regions. It is worth mentioning that the rigidity of the PVAL gel is directly related to the 

concentration of PVAL as well as the number of freezing thawing cycles (Stauffer & 

Peppas, 1992). The more concentrated PVAL has higher amount of polymer to add to the 

polymer-rich region (PVAL network). In addition to freeze-thaw cycles, the aging 

process of PVAL gels produces extra crystallites to their three-dimensional polymeric 

network (Hassan & Peppas, 2000). These additional crystallites, known as secondary 

crystallites, strengthen the mechanical properties of the PVAL network. Figure 7.3 shows 

the polymer-poor and polymer-rich regions. It also shows the formation of crystallites in 

the gel due to freeze-thaw cycles and/or the aging process (Willcox, et al., 1999).  

 
Figure 7.3 Polymer-rich and polymer-poor regions after freezing thawing cycles 
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7.2 STIFFNESS OF PVAL GELS 

Mechanical properties of PVAL gel have made this material distinguished to 

construct tissue mimicking phantoms. A strict control over the fabrication of the gel is 

required in order to build the PVAL gel with the right mechanical properties. The PVAL 

phantoms which are produced in uncontrolled or low controlled environments do not 

have the expected mechanical properties. Hence, they will not be appropriate to be 

employed in phantoms studies. 

As was mentioned earlier, the stiffness of the PVAL gel is directly related to the 

number of freezing thawing cycles. Thawing rate is another parameter which controls the 

stiffness of the gel. A slower thawing rate provides a longer time for the water to expel 

from the gel and longer time for the PVAL polymer chains to reorganize. The rejection of 

water and the reorganization of PVAL polymer chains resulted in stiffer PVAL gel and 

consequently higher Young’s modulus (see 10.1.6 on page 126) (Wan, Campbell, Zhang, 

Hui, & Boughner, 2002). Variations in the freezing thawing temperature have remarkable 

impact on the Young’s modulus (YM) of the PVAL gel. For example, two studies from 

the same researchers showed a great difference between the YM of the 10% PVAL gels 

fabricated based on various freezing thawing temperature and rates. According to 

Fromageau and his collaborators, PVAL is a suitable tissue-mimicking material (TMM) 

which can simulate the Young’s moduli across a range of pressures from 20 kPa (similar 

to breast and liver) to 600 kPa (Fromageau, Gennisson, Schmitt, Maurice, Mongrain, & 

Cloutier, 2007). In one of the first studies by Fromageau and his researchers (Fromageau, 

Brusseau, Vray, Gimenez, & Delachartre, 2003) based on the unregulated control over 

freezing thawing temperature, the YM of a 10% PVAL gel with 5 freezing thawing 

cycles was measured as 90±6 kPa while under regulated temperature the YM was 

measured as 300±35 kPa. In the unregulated temperature experiment the freezing 
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temperature was -40 °C while in the regulated temperature the freezing temperature was -

20 °C (Fromageau, Gennisson, Schmitt, Maurice, Mongrain, & Cloutier, 2007). This 

great difference in YM shows the effect of the freezing thawing temperature in the 

crosslinking process of PVAL gel. It is important to mention that unlike the freezing 

temperature and thawing rate which have direct impacts on the stiffness of the PVAL gel, 

the moderate freezing rate does not have drastic effects on the properties of the hydrogel 

(Lozinsky & Plieva, 1998). Providing a moderate freezing rate would be another 

challenging factor during the production of PVAL gel. In order to have moderate freezing 

temperature, first the degree and rate of freezing have to be defined clearly. Also the 

appropriate freezing equipment is needed in order to reach the right temperature with an 

appropriate rate. 

The YM of 5%-6% PVAL mixed with glycerol and Al2O3 (acoustic scatterers) 

was measured and had values ranging between 1.6-16.1 kPa using a ‘gold standard’ 

mechanical testing technique and transient elastography (Cournane, Cannon, Browne, & 

Fagan, 2010). As was described in this section, the environmental parameters can directly 

affect the mechanical properties of the PVAL gel. Diversity in the methods to produce 

PVAL gel and also diversity in the ways to measure the mechanical properties could 

cause variations in the measurement of the mechanical properties of the PVAL gel. 

7.3 METHODS TO PRODUCE PVAL GELS IN THE LAB 

PVAL gels are created through a combination of heating/stirring and freezing-

thawing processes. Various articles have suggested similar methods to fabricate PVAL 

gel. The freezing time can vary from 1 to 24 hours with stable PVAL gels forming after 

only 1 hour of freezing. The stability and stiffness of the PVAL gels increase in relation 

to their freezing time (Stauffer & Peppas, 1992).  
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Several articles have suggested varying methods for the preparation of PVAL gels 

including: heating at 90 °C for 3 hours and freezing at -20 °C for an hour (Millon, 

Mohammadi, & Wan, 2006); making transparent PVAL gels applying 80 °C for 

dissolving the PVAL crystal and  0 °C - 37 °C for freezing-thawing cycle (Gupta, 

Webster, & Sinha, 2011);  heating at 90 °C for six hours followed by freezing at -20 °C 

for 18 hours then thawing at 25 °C for 6 hours (Peppas & Scott, 1992); heating at 100 °C 

for an hour  then freezing  at -20 °C and thawing for 14 hour at room temperature (King, 

Moran, McNamara, Fagan, & Browne, 2011); heating at 90 °C in a water bath followed 

by freezing at  -30 °C for 12 hours and thawing for 12 hours at 15 °C (Cournane, Cannon, 

Browne, & Fagan, 2010).  

Variations in the construction of PVAL phantoms might make the process of 

PVAL production difficult for researchers to follow. However, variations in the time and 

temperature of boiling, freezing, and thawing might be the results of utilising various lab 

equipment (for example, magnetic stirrer versus mechanical stirrers), concentration of 

PVAL crystal, molecular weight of PVAL crystals, and size of the PVAL phantoms. 
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Chapter 8 CT scan 

In order to measure the relationship between the lesion visibility and the breast 

thickness in mammography, an anthropomorphic breast phantom/lesion was essential. As 

no such phantom was readily available, this research developed a phantom (see 10.1 on 

page 117). For the phantom developed to be suitable as a human substitute, it must 

exhibit similar X-ray imaging properties to human tissues. A CT scanner was employed 

to measure the X-ray properties of the phantoms independent of compression and to 

validate their similarity to human tissue. Once the phantoms developed were validated, 

then the phantoms could be taken to a mammography unit to measure the effect of 

compression. 

Computed tomography (CT) is a medical imaging modality which utilises X-rays. 

A CT scanner comprises of an X-ray tube which rotates around a patient lying on a CT 

bed. The patient continuously moves through the rotating tube. In order to image the 

tissue of interest, the X-ray beams have to strike the detectors on the opposite side of the 

body. 

8.1 PHYSICS AND MECHANISM OF CT SCAN 

In order to ensure the proper utilisation of the CT machine and understand the 

results of the imaging performed, it was necessary to know the corresponding physics and 

mechanism of the system. In this research, the X-ray properties of the breast 

phantom/lesions were measured using a measure called Hounsfield unit (HU), therefore 

knowing about this concept and the features affecting HU was crucial. 

In CT scan, window setup, protocols, image acquisition, and image reconstruction 

can have influence on the image quality. Therefore acquiring some knowledge regarding 

these concepts was recommended. 



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 98 of 365 July 2015 

Unlike two-dimensional imaging modalities such as mammography, CT is a 

three-dimensional medical imaging modality. The images acquired from CT imaging are 

a sequence of slices, hence knowing about the mechanism of acquiring these slices and 

the factors which can affect the quality of these slices could be beneficial in order to 

acquire high quality CT images. 

This chapter intends to discuss briefly the following concepts: Hounsfield unit 

(HU), windowing, kVp, CT protocols, pixel and voxel, axial/sequential versus 

helical/spiral acquisition, and CT image reconstruction. 

8.1.1 Hounsfield unit (HU)  

In CT scan, a measurement called Hounsfield unit (HU) or CT number is used in 

order to measure the radiodensity of the tissues. In other words, HU determines the 

radiation attenuation in various tissues. This represents the linear transformation of the 

linear attenuation coefficient of the object. As the linear attenuation coefficient of water 

does not change based on the energy of the X-ray, it is commonly used as a reference 

point for measuring the HU or CT number (Kalender, 2011).  

Based on the definition of the CT value, if the linear attenuation coefficient of the 

X-rayed tissue (µt) is equal to water, then the HU is 0 for that tissue. If µt is less than 

µwater, the HU will be negative and if µt is greater than µwater, the HU will be positive. 

Dense tissues such as bone have high positive HU while tissues with low µ such as fat 

have negative HU (Kalender, 2011). 

𝐶𝑇 𝑁𝑢𝑚𝑏𝑒𝑟 = 1000 ∗
(µt  −  µwater)

µwater
 HU  

As the above formula displays, The CT number is a function of the linear 

attenuation coefficient. Linear attenuation coefficient, µ is the product of density (ρ) and 
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the mass attenuation coefficient (µ/ρ). The amount of mass attenuation coefficient is 

related to the energy of the X-ray and the atomic number (Z) of the X-rayed tissue 

(Kalender, 2011). 

µ = [(
µ

ρ
) (𝐸, 𝑍)] ∗ 𝜌 

The following image (Figure 8.1) depicts the HU of various tissues. These 

numbers indicate the linear attenuation coefficient of the tissues relative to the linear 

attenuation coefficient of water (Kalender, 2011).  

 
Figure 8.1 The Hounsfield scale (Kalender, 2011)  

8.1.2 Windowing 

It is impossible to view 4096 grey scales in a single view. Therefore, a process 

called windowing is utilised to view the CT images. Windowing narrows down the range 

of shades of grey by altering the contrast scale and brightness levels. In a selected 

window, values above the chosen window are displayed as white and the values below 

the window are shown as black. In order to choose a window of interest, the centre and 
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the width of the window have to be determined on the CT console. The centre is selected 

based upon the mean CT value (brightness) of the anatomy of interest and the window 

width shows the contrast in the image. The following image (Figure 8.2) illustrates the 

windowing procedure in order to view various anatomical structures such as bone, 

mediastinal, and lung (Kalender, 2011). 

 
Figure 8.2 Windowing in CT (Kalender, 2011) 

8.1.3 The role of kVp in CT 

When the X-ray beams pass through an object the beams become attenuated and 

their intensity decreases. The energy of the incoming beam (kVp) has direct effect on the 

linear attenuation coefficient values. This indicates that a higher kVp generates a lower 

linear attenuation coefficient. Since the measurement of attenuation in CT is based on 

Hounsfield Units (HU) and the HUs are function of linear attenuation coefficient, then 

the kVp has direct effect on the HU in CT imaging (Philips, 1999). 

In CT imaging the proper selection of kVp has an important effect on image 

quality and patient radiation dose. Although the lower kVp produces more photoelectric 



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 101 of 365 July 2015 

effect and causes the object to be more attenuating, it also has impact on the overall 

signal and the amount of noise in the image. Therefore, it generates a lower signal to 

noise ratio. In order to compensate the decrease in signal to noise ratio, the mAs has to 

increase and the increase of mAs in turn increases the radiation dose to the patient. 

Hence, selecting the right value for kVp is important in CT imaging (Philips, 1999). 

Depending on the vendors, different kVp spectra values scans can be utilised 

clinically. Commonly the following values are employed: 80, 100, 120 and 140 kVp 

(Upstate medical university, 2011). It is important to mention that one of the main 

differences between the CT scan and mammography is the range of kVp used in these 

two imaging modalities. This will be discussed in the mammography chapter (6.2.1 on 

page 56).  

The Compton scatter interaction has the highest probability in these ranges of 

kVp. The likelihood of Compton scattering for the 120 to 140 kVp spectra in soft tissues 

is 10 times more than photoelectric effect (Bushberg, Seibert, Leidholdt, & Boone, 2012). 

8.1.4 CT protocols 

A CT scanner typically utilises pre-set protocols prior to its performance. A CT 

protocol is a set of defined parameters to instruct the CT scanner. These protocols include 

a wide range of acquisition parameters such as mAs, kV, rotation time, window 

width/window level, pitch, and slice thickness. These parameters are set based upon the 

nature of the anatomy of interest. For example, for a large patient, a higher mAs has to be 

set in the protocol in order to generate enough photons to produce good quality images. A 

typical CT scanner might have between 100 and 300 preloaded protocols for various 

purposes (Bushberg, Seibert, Leidholdt, & Boone, 2012). 
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8.1.5 Pixel and Voxel 

In the CT scan, the raw image data is converted to a series of continuous axial 

images. Although each individual image from the series is 2 dimensional in itself, the 

images together display a 3 dimensional representation of the body/organ. Therefore the 

term of volume element or voxel is commonly used in CT imaging in order to refer to a 

specific location in the patient. The picture element or pixel is referred to the specific 

location in each individual image from the series. The following image illustrates the 

pixel and voxel in CT images (Figure 8.3 Pixel and voxel in CT images  (Bushberg, 

Seibert, Leidholdt, & Boone, 2012). 

 
Figure 8.3 Pixel and voxel in CT images (Bushberg, Seibert, Leidholdt, & Boone, 2012) 

8.1.6 The CT process 

In order to produce a CT image, two major steps have to be carried out. These 

steps are data acquisition and image reconstruction. Data acquisition is defined by 

scanning the patient in order to collect the X-ray attenuation data (Jones, Hogg, & 

Seeram, 2013). There are multiple data acquisitions methods in CT such as 

axial/sequential, helical/spiral, and cone beam methods (Bushberg, Seibert, Leidholdt, & 
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Boone, 2012). This section is aimed to discuss only axial/sequential and helical/spiral 

methods. 

In the image reconstruction process, the attenuation readings from the image 

acquisition step with the assistance of mathematical algorithms are employed in order to 

generate the CT images (Jones, Hogg, & Seeram, 2013). The reconstruction algorithms 

discussed in this chapter are backprojection and filtered backprojection. 

8.1.7 Axial/ Sequential Acquisition 

Axial or sequential acquisition is based on step-and-shoot mode. This means that 

when the table moves, the X-ray tube is off and when the table is stationary, the X-ray is 

activated and data acquisition starts. During data acquisition, the X-ray tube rotates 360° 

around the area of interest. This process is repeated until the entire anatomical area is 

covered. 

This process is time consuming because of the continuous start-stop sequence of 

the table and the X-ray tube. Basically, the distance that the table moves is equal to the 

detector array’s width. Practically the X-ray beam’s width is slightly wider than the table 

distance before each exposure; this difference causes overlapping X-ray on the body 

between the acquisitions (Figure 8.4) and the X-ray overlapping increases the patient 

radiation dose. 

 
Figure 8.4 Axial/ Sequential Acquisition (Bushberg, Seibert, Leidholdt, & Boone, 2012) 
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8.1.8 Helical/Spiral Acquisition 

In helical or spiral acquisition, the table moves constantly while the X-ray tube 

rotates around the patient. Unlike the sequential acquisition which forms a full circle 

around the patient, this method of acquisition forms a helix (Figure 8.5). Due to the 

elimination of the start-stop processes, this method is faster than the sequential one 

(Bushberg, Seibert, Leidholdt, & Boone, 2012). 

In helical acquisition, the ratio of the table distance per 360° tube rotation to the 

thickness of the X-ray beam is referred to as pitch. When the pitch is equal to 1, this 

acquisition is similar to sequential acquisition.  The pitch lower or greater than 1 results 

in overscanning or underscanning the anatomical area. The overscanning increases the 

patient radiation dose, while the underscanning results in lower patient radiation dose 

(Bushberg, Seibert, Leidholdt, & Boone, 2012). 

 
Figure 8.5 Formation of circle and helix in sequential (left) and helical (middle and right) CT 

acquisitions (Bushberg, Seibert, Leidholdt, & Boone, 2012) 

8.1.9 CT image reconstruction 

In CT imaging, in order to form the image from the raw data, a specific algorithm 

or method has to be employed. One of these reconstruction methods is called 

backprojection. In backprojection reconstruction, first the profiles of the object from 

multiple angles are provided. In order to form the final image of the object, all of the 

collecting views are then summed up along the path they were originally collected. The 
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following image (Figure 8.6) illustrates a reconstructed image employing the 

backprojection method (Goldman, Principles of CT and CT Technology, 2007). 

 
Figure 8.6 Backprojection image reconstruction (Smith, 1997) 

In order to combat the poor spatial resolution and image blurring with the back 

projection image reconstruction method, a filter can be used. This filter is a mathematical 

function which is convoluted with individual views before the backprojection procedure 

(Goldberger & Ng, 2010). This method of image reconstruction is called filtered 

backprojection (FBP). Interestingly, despite all the significant progress in the hardware of 

detectors, X-ray sources, gantry, and system performance, the FBP as a method of image 

reconstruction remains unchanged over a period of 25 years (Pan, Sidky, & Vannier, 

2009). Perhaps employment of new algorithms for image reconstruction requires an 

entire re-design for the CT scanner. The following image displays the filtered back 

projected image (Figure 8.7).  
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Figure 8.7 Filtered backprojection image reconstruction (Smith, 1997) 
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Chapter 9 Medical Image Perception 

In clinical practice, missing a lesion can be life threating and falsely detecting 

abnormalities can cause the patient to undergo unnecessary procedures such as biopsy. 

Although computer technology such as computer-aided diagnosis (CAD) and artificial 

intelligence can assist in detecting lesions/abnormalities, they can never replace human 

expertise (Sabih, Sabih, Sabih, & Khan, 2011). Therefore visual perception remains an 

essential part of medical imaging and must be included as part of this research. 

In a visual perception experiment, an image or a set of images is viewed by an 

observer and a set of predetermined questions are answered about the images in order to 

create an interpretation of the image data. In order to avoid confusion and ambiguity for 

the observer, the questions have to be clear, specific, and related to the objective of the 

research. For instance, the observer might be asked about the presence of a lesion within 

the image. It is essential for the observer to know what he/she is looking for in the 

images. 

9.1 FACTORS IN PERCEPTION STUDIES 

This section is aimed to discuss the factors which are necessary to conduct visual 

perception studies. These factors include the number of samples/observers, the 

methodologies employed, the sources of errors, speed/accuracy, and the effect of the 

observation environment. 

9.1.1 Numbers 

In a perception experiment the number of samples, observers, and repeated 

readings per observer have to be determined prior to the experiment. Typical numbers of 

samples for pilot studies are tens of cases. While clinical studies will often have hundreds 

to thousands of cases. Depending on the goals of the studies, the appropriate number of 
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observers can vary between studies (Obuchowski, 2004). For example in a visual 

perception study with mammograms and power-law noise (Burgess, Jacobson, & Judy, 

2001), three observers participated while in another perceptual study over one hundred 

observers performed the visual perception tasks (Beam, Layde, & Sullivan, 1996). In 

most of the perception studies, a minimum of three observers are employed and in large-

scale clinical trials tens or even hundreds of observers can be used (Samei & Li, 2010) 

Variations in the number of observers/sample size can be justified by the nature of 

the study. In the studies with significant differences in results between observers, 

increasing the number of observers/samples might lead the study to acquire more 

accurate and robust results. In contrary, in the studies which can be performed adequately 

with a smaller number of observers and sample size, increasing the number of 

observers/sample size could increase the cost of the study. 

In order to measure the reliability of the acquired data by the observers there are a 

variety of methods to measure inter-rater (between readers or observers) reliability. These 

methods can help to see if the number of samples/observers was sufficient. Kappa and 

intraclass correlation coefficient are examples of methods for measuring the reliability of 

the acquired data by independent observers (Gisev, Bell, & Chen, 2013). This research 

has used intraclass correlation coefficient to measure the reliability of the data. 

9.1.2 Methodology 

In the medical imaging field two common methodologies are employed used to 

perceive the images visually; alternative forced choice (AFC) and receiver operating 

characteristic (ROC). This section is intended to discuss the main principles of AFC and 

ROC.  
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9.1.2.1 Alternative Forced Choice (AFC) 

The AFC method has been used in various studies (Tugwell, et al., 2014) (Allen, 

Hogg, Ma, & Szczepura, 2013).  

In the Alternative Forced Choice (AFC) method, multiple sets of images are 

compared against each other in order to assess the presence of an abnormality within one 

of the images. The number of images being compared at a time is typically represented 

by a prefix to the AFC acronym. Two-alternative forced choice (2AFC) denotes that two 

images are compared with each other while four alternative forced choice (4AFC) would 

compare four images.  

In 2AFC one of the images would act as a reference image while the other might 

contain an abnormality such as a lesion. The observer is asked to identify the image with 

the abnormality. A Likert scale is sometimes employed to score the random image 

compared to the reference one (Tugwell, et al., 2014) (Allen, Hogg, Ma, & Szczepura, 

2013). After collecting and analysing all the data, the results are used to assess the 

percentage of the correct decisions (Samei & Li, 2010). This is carried out by dividing the 

number of correctly detected images by the total number of trials (Svahn & Tingberg, 

2014).   

9.1.2.2 Receiver operating characteristics (ROC) 

Receiver operating characteristics (ROC) graphs are widely used in medical 

decision making (Tourassi, 2010). In ROC study the observer classifies the presence 

(positive) or absence (negative) of the disease to the diagnostic cases. For example, the 

presence of a lesion in a mammogram is a positive state while the absence of the lesion is 

the negative state assigned to the diagnostic case. The observer’s classification is 

compared to the gold standard reference (Fawcett, 2006) .  
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In the interpretation of radiographs there is a trade-off between sensitivity and 

specificity. Sensitivity, also known as the true positive rate measures the proportion of 

actual positives identified, while specificity (true negative rate) measures the amount of 

the cases where the abnormality is correctly identified as not being present. Basically a 

ROC curve (Figure 9.1) shows a simple variation of the sensitivity versus specificity. 

This trade-off depends on the observer’s threshold for considering a case positive. Low-

threshold exams have high sensitivity and lower specificity while high-threshold exams 

have low sensitivity and higher specificity. In high sensitivity systems, fewer positive 

cases will be missed whereas with high specificity fewer negative cases will be 

mistakenly called positive. 

 
Figure 9.1 ROC curve (Eng, 2005) 

The area under the ROC curve (AUC) can be used to show the diagnostic 

performance or average accuracy of the diagnostic test. This area can be interpreted as 

the average sensitivity over the entire range of possible specificities or the average 

specificity over the range of possible sensitivities. AUC values range from 0 to 1.  AUC 
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is 1 for 100% sensitivity and specificity and 0.5 for blind guessing. The graph below 

(Figure 9.2) shows the plots for the 100% sensitivity/specificity and the random guessing. 

 
Figure 9.2 100% sensitivity/specificity and the random guessing (Tourassi, 2010) 

The advantage of using AUC over the traditional methods such as classification 

accuracy based on true positive, true negative, false positive and false negative is  the 

independency of the test from the threshold that the observer selects (Tourassi, 2010). 

Although ROC analysis is commonly used in clinical research to express the 

diagnostic accuracy of imaging examinations, it is not always a well-equipped method for 

all types of clinical studies. For example, conventional ROC cannot be useful when the 

location of the lesion in addition to its presence is required to be known (Eng, 2005).  

Conventional ROC is not also suitable for the cases when more than one occurrence of 

the abnormality such as a lesion happens in an image (Eng, 2005). Depending on its 

application, ROC has some derivatives. These derivatives include localization ROC 

(LROC), free-response ROC (Eng, 2005), and jack-knife free-response ROC (JAFROC) 

(Chakraborty, 2005). 
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9.1.2.3 Comparison of AFC and ROC 

Generally speaking, ROC provides improved statistical power and clinical 

relevance in comparison to AFC. One of the examples of clinical irrelevance of AFC is 

that, unlike ROC curve, AFC does not present a trade-off between sensitivity and 

specificity (Samei & Li, 2010). Since the evaluation of the images is direct in AFC, this 

method results in a lower level of variation. Reading times in AFC are also faster than in 

the ROC method (Svahn & Tingberg, 2014). The AFC method can be used to compare 

the subtle differences between the performances of various imaging modalities 

effectively. Although, the scenario of comparing two or more random images with each 

other is not performed clinically (Svahn & Tingberg, 2014), it is used as a method to 

evaluate the image quality in phantom studies (Tugwell, et al., 2014) (Allen, Hogg, Ma, 

& Szczepura, 2013).   

9.1.3 Sources of errors in medical image perception 

Errors associated with visual perception experiments can be categorized as visual 

or cognitive errors. Visual errors (55% of the errors) are usually due to an incomplete 

search. Alternately, cognitive errors (45% of the errors) occur when the observer makes 

the wrong decision while evaluating an image (Samei & Krupinski, 2010). Not detecting 

a lesion in an image can be an example of visual errors and recognizing the lesion, but 

calling the cancer lesion non-cancerous (false negative) due to a wrong decision can be 

an example of a cognitive error. 

According to Manning et al, the majority of errors were failures of decision 

making rather than detection (Manning, Ethell, & Donovan, 2004). Visual errors might 

happen because of not looking at the area of abnormality or not fixating on the 

pathological territory for sufficient amount of time (Samei & Krupinski, 2010).  
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Most information collected from the eye is during a fixation. The highest spatial 

resolution or ability to see the detail happens when the visual input falls on the fovea 

centralis (fovea) area of the retina. In perception research it is necessary to search or scan 

with the fovea, especially the small and low-contrast features of the image (Krupinski, 

2010) .  

9.1.3.1 Sources of errors in mammographic perceptions 

Interpreting mammograms is a tedious task because of the uniqueness of each 

mammogram. Unlike the brain, uterus, liver and other organs, the mammograms are like 

a unique map for every individual. Moreover, the mammogram of a patient changes over 

time based upon the age, hormonal changes, and menopausal status (Zuley, 2010). Since 

breast cancer is the most commonly diagnosed cancer among women (Zuley, 2010), 

addressing the source of errors in the visual perception in mammograms is extremely 

important. 

Zuley has classified the mistakes in perceiving mammogram into three categories: 

search errors, recognition errors, and decision making errors. In search errors, the area of 

lesion is never identified by the reader. Recognition errors occur when the lesion is fixed 

on by the eye but quickly dismissed. The eye does not re-fix on the lesion again. 

Satisfaction of search (SOS) is a well-known occurrence in radiology, in which the 

lesions remain undetected after identifying the initial lesions (Mello-Thoms, Trieu, & 

Brennan, 2014). SOS can play an important role in missing abnormalities within an 

image. In this case, an experienced observer might ignore some possible abnormalities 

after finding the first one. 

 Decision making errors occur when the lesion is found but the assessment of its 

nature is incorrectly made. This results in the lesion either being falsely identified as 
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cancerous (false-positive) or being dismissed as benign when it is actually cancerous 

(false-negative). Normal tissue structure in medical radiographs or anatomical noise can 

mask the abnormal tissue. Anatomical noise is one of the main contributors in decision 

errors.  Decision making errors will cause either false positive or false negative decisions 

while search and recognition errors cause only false negatives (Zuley, 2010). The 

following diagram (Figure 9.3) depicts these three types of perceptual mistakes in reading 

mammograms. 

 

Source of 
perception errors

Search error
False negative 

decisions

Recognition error
False negative 

decisions

Decision making 
error

False positive or 
false negative 

decisions

A lesion is fixed by 
fovea, but quickly 
dismissed: no re-

fixation on the 
lesion 

The lesion is 
never seen : 

fovea not fixing 
on the finding

The lesion is 
identified as 

potentially abnormal

 
Figure 9.3 Zuley's classification of perceptual errors (Zuley, 2010) 

9.1.4 Speed/Accuracy 

In visual perception studies, the speed of the search/detection and the accuracy of 

the assessment made, corresponding to the level of expertise is important.  Research has 

shown that the speed and the accuracy of the decisions are improved with experience 

(Krupinski & Borah). For example a radiologist who has read thousands of mammograms 

with normal variations of breast tissue, benign nodules and cancer lesions  has built up a 

mental catalogue or data base of normal and abnormal breast features in his/her mind. 
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This database helps him/her to be rapid and accurate perceptually. Several research 

studies have shown that wrong decisions take longer than correct ones. For example, in 

clinical studies, true positive decisions are faster that false positives and similarly true 

negatives are faster than false negatives (Zuley, 2010).  

9.1.5 The effect of the observation environment  

Observational environmental factors including monitor technology, calibration of 

the monitors, positioning and ambient lighting have crucial roles in visual perception 

tasks such as the assessment of mammograms. 

One of the key environmental factors for visual perception tasks is the display 

technology employed. Cathode ray tube (CRT) and liquid crystal display (LCD) monitors 

are two display technologies commonly used.  CRT displays have a high refresh rate with 

the screen being redrawn approximately 30000 times per minute. The LCD display 

technology does not require the entire screen to be redrawn and therefore can result in 

less eye fatigue for the observers. In order to be clinically acceptable, a display screen 

must have at least a five megapixel resolution (Zuley, 2010).  

Proper calibration of mammography monitors is essential to allow the observers 

to visualize different shades of grey in the mammogram from the brightest to the darkest 

regions.  All medical displays must comply with particular specifications. One of these 

specifications is the fixed relationship of the maximum and the minimum luminance 

output of any monitor pair. Detection of more shades of grey can be achieved by having 

the higher maximum luminance. Since there is a fixed relationship between the maximum 

and minimum luminance, the minimum luminance has to increase too. The maximum and 

minimum luminance control how white and black the bright and dark areas will appear 

respectively (Zuley, 2010).   



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 116 of 365 July 2015 

Due to the limitation of maximum luminance in CRT monitors, there should be no 

light in the room at perception time. Conversely, for LCD monitors a low level of 

background ambient light is recommended.  

For better visual perception, it is also recommended by the manufacturers to turn 

the monitors slightly toward each other. This allows the observer to see the entire image 

without the need for leaning his/her body or head. This results in a lower level of strain 

on the neck/eyes and decreases the fatigue (Zuley, 2010).  

9.2 PERCEPTUAL ISSUES IN MAMMOGRAPHY   

The viewing conditions in mammography have influence on the results of the 

image perception. The screening mammograms are read in batches, possibly several 

hundred cases in some busy hospitals. Viewing numerous normal cases (approximately 3 

cancer cases in 1000 screening mammograms) requires more awareness in order to avoid 

false negatives (Zuley, 2010). It is worth mentioning that 11% of the suspicious cases 

have to come back for further tests. Due to overlapping breast tissue and/or benign 

fibrocystic problems, a large proportion of the recalled cases are incorrectly assessed and 

become false positives. Interpretation of high volume of mammograms, short viewing 

time and rare cases of cancer might cause physical/mental fatigue leading to 

misperceptions. Therefore, it is essential to optimize the screening reading environment 

in order to reduce the rate of misperceptions (Zuley, 2010).  
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Chapter 10 Methods  

10.1 METHODS FOR THE DEVELOPMENT OF PVAL PHANTOM AND LESIONS 

The aim of this chapter was to demonstrate how to design and fabricate the PVAL 

phantoms with embedded lesions. In order to simulate phantoms/lesions similar to human 

tissue, the X-ray and mechanical properties of the phantoms/lesions have to be similar to 

the breast tissue and cancer lesions. Therefore several experiments have been performed 

to assess this resemblance.  

This chapter has been classified into the following categories: Producing the 

PVAL phantoms by heating the solution followed by freezing-thawing; measuring the 

mechanical and X-ray properties of the phantoms/lesions; determining the adequate 

amount of contrast agent doped with the lesions; and evaluating the shelf life of the 

PVAL lesions based on the effect of the environment.  

10.1.1 Equipment used for the formation and analysis of the PVAL gel  

In this research, the equipment listed in the following table (Table 10.1) was 

employed in order to fabricate PVAL breast phantoms/lesions. Some of the materials 

such as staple gun and ratchet strap were utilised in order to attach the phantom to the 

wooden torso for the mammography procedure. 
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Material Use 

1 litre three socket boiling flask To prepare the aqueous solution of PVAL 

Glass Thermometer   To measure the temperature of the PVAL solution 

Digital Thermometer (VWR, 

EU620-0916, -50 °C to +200 °C) 

To measure the temperature of  the water bath 

500 mm Air Condenser To condense the PVAL/water steam during 

preparing PVAL solution  

Magnetic bar To stir the PVAL solution 

Water Bath To control the temperature of the PVAL solution 

Ceramic hotplate/stirrer VWR 

Model 444-0599 

To boil the PVAL solution by heating and stirring 

the solution 

Digital scale To measure PVAL crystal 

Measuring cylinder To measure deionised water 

Clamp Stand To hold the boiling flask inside the water bath 

Fume cupboard To protect against the hot bath boiling water and  

possible  evaporated mixture of water and PVAL 

Flat bottomed plastic cylindrical 

moulds (140 cc) 

To make cylindrical phantoms measurable with the 

Instron machine 

Domestic chest freezer (Nova 

Scotia CF 380) 

To freeze the PVAL solution in order to make gel 

Axminster Digital Electronic 

Calipers (0 - 150 mm) 

To measure the height and diameter of the 

phantoms for Instron machine 

Nylon Thread To suspend the PVAL lesions in the PVAL solution 

Bead cutter  To make 9 mm round lesions 

Ratchet strap To attach the wooden board to the mammography 

unit 

Wooden board with the base To attach the breast phantom/skin to the board 

during the mammographic imaging 

Plastic breast mould To fabricate breast-shaped phantom  

Staple gun To attach the latex skin to the wooden board  

Table 10.1 Equipment for development of PVAL breast phantoms/lesions  
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The following image (Figure 10.1) shows the equipment used inside the fume 

cupboard. 

 
Figure 10.1 Equipment used inside a fume cupboard: A magnetic hotplate/stirrer, water bath, 

glass thermometer, digital thermometer, air condenser, and clamp stand. 

10.1.2 Materials used in the formation of the phantoms and lesions 

The following materials listed in the following table (Table 10.2) were utilised in 

order to fabricate PVAL breast phantoms/lesions.  

 

Material Use 

PVAL from Sigma-Aldrich - having an 

average molecular weight from 85,000-

124,000 and 99+% degree of hydrolysis 

To produce PVAL phantom/lesion 

Deionised water To make PVAL phantom 

Optiray 320 - Non-ionic X-ray contrast 

agent 

To increase the attenuation coefficient of 

PVAL lesions  

Ultrasound gel To lubricate the latex skin of the breast 

phantom during breast compression 

 

Latex paint  To make latex skin for the breast phantom 

 

Table 10.2 Materials used in this research 
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The following image (Figure 10.2) shows the PVAL crystal and the Optiray 

contrast agent used in this research. 

 
Figure 10.2 Left to right: PVAL from Sigma-Aldrich and Optiray 320 contrast agent. 

10.1.3 Producing a PVAL solution 

As is illustrated in Figure 10.3, a water bath was filled half way with tap water 

and placed on a magnetic hotplate and brought to a boil at 100 °C. The hotplate was set to 

400 °C in order to bring the water bath to a boil at 100 °C (Appendix A). The PVAL 

solutions were prepared by dissolving weighed amounts (wt%) of  PVAL crystal in 

deionised water. Deionised water is usually used in lab experiments due to low ionic 

contents and dissolved solids (Puretec Industrial Water, 2012) . 
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Figure 10.3 Apparatus used for the dissolving PVAL crystals into solution 

The initial experiment created a solution of PVAL in deionised water by adding 

40 g of PVAL crystals to 360 ml of deionised water. The phantoms which were made 

with this amount of PVAL crystals are called 10 wt% (weight percent in solution) or 10% 

PVAL phantoms throughout this thesis (Mehrabian & Samani, 2009). This means that the 

PVAL comprised 10% of the weight of the entire mixture. If the amount of deionised 

water and PVAL crystals doubled, the phantoms are still called 10% PVAL phantoms. 

 The mixture was placed in a 3 socket round bottomed boiling flask with a magnet 

bar (Figure 10.3). A glass thermometer was connected to the first socket of the boiling 

flask. A 500 mm glass air condenser was connected to the second socket of the boiling 

flask in order to minimise the loss of solution by bringing the drops of the evaporated 

solution back into the boiling flask. The final socket was capped as it was not needed for 

this experiment. 
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The boiling flask was then suspended, using a clamp stand, in the water bath until 

the level of the water in the bath was level with the solution in the flask. The magnetic 

hotplate was set to stir at 400 rpm. Once the water bath had returned to a boil, the internal 

temperature of the solution was measured to have reached 95 °C. This was then 

continuously heated for an hour until the solution was transparent with no visible un-

dissolved PVAL crystals. The undissolved crystals do not take part in the polymeric 

network of the PVAL phantom results in the unstable and non-rigid phantoms. 

The aqueous PVAL solution then was allowed to rest at room temperature for 3 

hours to remove any air bubbles resulting from the process of stirring while heating 

(Figure 10.4). The removal of air bubbles from the aqueous solution of PVAL helps not 

to add undesirable extra features such as air bubbles to the CT images and mammograms. 

This experiment was then repeated with the following PVAL concentrations: 

2.5%, 5%, 7.5%, and 15%. Since the human breast and cancer lesions can have various 

levels of stiffness, different percentages of PVAL were tested in this research in order to 

simulate the appropriate rigidity for the breast phantoms/lesions. 5% and 10% PVAL 

phantoms were already used by researchers (Mehrabian & Samani, 2009), hence in 

addition to 5% and 10% PVAL,  concentration lower than 5%, between 5% and 10% and 

above 10% were taken into consideration in this study. 
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Figure 10.4 transparent PVAL solution before freeze-thaw cycles 

10.1.4 Creation of a PVAL gel from a PVAL solution using freezing/thawing  

Freezing the PVAL solution is the next phase in PVAL gel formation. As the 

PVAL solution cooled to room temperature, a skin formed on the surface. Before pouring 

the solution into the moulds, this skin was removed and discarded in order to ensure that 

the PVAL solution was homogenous. The gel was then poured into flat bottomed 

cylindrical plastic moulds and placed into a domestic freezer (Nova Scotia) at -26 °C for 

12 hours (7.3 on page 95). The frozen gel was then thawed at room temperature until it 

was fully thawed. The phantom was considered thawed when no solid lumps could be 

detected by gently squeezing the phantom. Once the phantoms were fully thawed, they 

were immersed in deionised water in order to keep them from becoming dehydrated and 

stored in a refrigerator at 5 °C (King, Moran, McNamara, Fagan, & Browne, 2011).  

As a result of these experiments, a set of deformable, mechanically stable, non-

transparent PVAL phantoms ranging from PVAL concentrations of 2.5% to 15% were 

produced (Figure 10.5). Examining the phantoms by hand indicated the highest rigidity 

and stiffness for 15% PVAL phantom and in contrast the lowest rigidity and stiffness for 

the 2.5% phantom. It is important to mention that this experiment was not a convincing 
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prelude to estimation of breast phantom compressibility. Hence, later on an Instron 

machine was utilised to measure the Young’s modulus of the breast phantoms. 

 
Figure 10.5 PVAL gel created using a single freezing-thawing cycle (FTC) 

10.1.5 Measuring the HU for the prepared phantoms 

Due to the availability of a CT scanner within the University of Salford (16-slice 

Toshiba - Aquilion TSX-101A), the HU of the PVAL phantoms (2.5%, 5%, 7.5%, 10% 

and 15%) were measured by this machine. A suitable CT protocol was derived for CT 

imaging the PVAL phantoms. In this protocol, mAs=100, kVp=120, Window Length 

(WL)=0 and Window Width (WW)=300. This protocol was used throughout this 

research. The kVp of 120 was used in this research in order to increase the likelihood of 

the Compton scattering (see 8.1.3 on page 100). This kVp is also commonly used in 

clinical practice (Huda, Scalzetti, & Levin, 2000) (Johnson & Robins, 2012). 

The CT scanner reached specification on rigorous quality assurance tests and it 

was operated in accordance with the manufacturer’s specifications. Although the latest 

CT machines, up 320-slice, can provide a higher sensitivity, shorter examination time, 

and reduced likelihood of motion artefacts, the 16-slice CT scanners are still considered 

as good general purpose scanners (Centre for Evidence-based Purchasing, 2009).  

In order to measure the optimal Hounsfield unit, a proper location and size with 

low standard deviation for the region of interest is required. Avoiding the edges of the 
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samples, water and air pockets, and other types of possible artefacts are other factors 

affecting the reading of the HU. A rectangular area in the centre of the phantom image 

midway from the surface and the bottom of the phantom was selected as the region of 

interest (ROI) for the measurements. The following image (Figure 10.6) illustrates how 

the ROI was selected in a CT image of a 5% PVAL phantom.  

 
Figure 10.6 CT image of a 5% PVAL phantom with the ROI (WL=0, WW=300) 

10.1.5.1 Results and analysis 

The following table (Table 10.3) and graph (Figure 10.7) demonstrate the initial 

exploratory HU in relation to PVAL concentration. 1 FTC indicates that the number of 

freezing-thawing cycle was 1. 

 

PVAL%  1 FTC HU ± sd 

2.5% 25.50±5.7 

5% 25.60±4.2 

7.5% 43.60±4.3 

10% 39.10±2.7 

15% 45.60±3.3 

Table 10.3 Initial exploratory HU in relation to PVAL concentration 
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Figure 10.7 Initial exploratory HU in relation to PVAL concentration 

The HU measurements of the specimens acquired show the highest HU values 

belonged to the specimens with a 15% PVAL concentration and the lowest values 

belonged to those with a 2.5% PVAL concentration. The data demonstrates the rise of the 

HU in relation to the PVAL concentration.  

By increasing the concentration of PVAL, the density of PVAL (𝜌) increases. 

This results in an increase of the attenuation coefficient (µ) of the X-rayed PVAL. 

Therefore, an increase of the attenuation coefficient results in an increase of the HU (see 

8.1.1 on page 98) (Kalender, Computed Tomography, 2011). 

10.1.6 Measuring of the compressibility of the prepared phantoms 

In order to prepare an anthropomorphic breast phantom, it is essential to simulate 

mechanical compressibility properties similar to the breast tissue. Young’s modulus is a 

measure of the stiffness of materials and this has been used as the measure of the 

mechanical compressibility properties.  
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An Instron machine (model 4469 Series IX) was used to measure the Young’s 

modulus of the PVAL gel. This machine was available within the mechanical engineering 

department of the University of Salford and is commonly used for testing a wide range of 

materials in tension or compression.  

The Instron machine with the assistance of Instron software measures the 

Young’s modulus of various materials (Figure 10.8). Literature shows that Instron 

machine has been utilised to measure the mechanical properties of PVAL in order to 

calculate Young’s modulus (Fromageau, Brusseau, Vray, Gimenez, & Delachartre, 

2003).  To measure the Young’s modulus of the phantoms, first the height and diameter 

of the cylindrical specimen have to be measured by a digital calliper. The sample is then 

pressed by the crosshead of the machine. Displacement of the crosshead and the load 

based on Newton are main parameters to measure the Young’s modulus by the software. 

The formulation below shows how the Young’s modus is calculated. 

Young’s modulus is the ratio of axial stress to axial strain or E=
σ

ε
  where σ=

𝐹

𝐴
 

(Force/cross sectional Area) and ε=
ΔL

L
 (Changes in the length/original length). The cross 

sectional of cylindrical objects is A=πR
2
 where R is the radius of the cylinder (Erkamp, 

Wiggins, Skovoroda, Emelianov, & O’Donnell, 1998). 

The Instron machine was operated in accordance with manufacturer guidance and 

quality control checks indicated it to be working within manufacturer specification. 

Measuring the YM of the above set of phantoms using an Instron machine was the 

next exploratory experiment. The above 5 phantoms were compressed individually by the 

Instron machine. Due to the lack of rigidity of 2.5% PVAL, it was not practical to 

measure the YM for that phantom. The following image shows (Figure 10.8) how the 

phantom was placed in the designated area below the compressor of the Instron machine. 

The initial load (1 N) or pre-compression force was determined manually using the left 
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panel of the machine and the type and compression parameters were controlled utilizing 

the Instron software.  

The Instron software required the height and diameter of the samples in order to 

measure the YM. Therefore the height and diameter of the samples had to be measured 

with a digital calliper prior to utilizing the machine.  The measuring of the height and 

diameter of 5% and 7.5% phantoms with 1-FTC with a digital calliper was quite 

challenging due to the softness and flexibility of these phantoms. To determine the 

correct height and diameter for the Instron machine’s software, the measurement was 

performed three times and the average of the height and diameter were entered in the 

software. The following table (Table 10.4) shows an example of three readings of the 

height and diameter of a 5% phantom. The small standard deviation demonstrates a high 

consistency in the measurement.  

 

5%PVAL 

phantom 

 First 

reading 

Second 

reading 

Third 

reading 

Average  SD 

Height  35.94 35.63 35.82 35.79  0.15 

Diameter  41.63 41.47 42.02 41.70  0.28 

Table 10.4 Height and diameter of a 5% cylindrical phantom 
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Figure 10.8 An Instron machine compressing a PVAL phantom 

10.1.6.2 Results and analysis 

The YM of the phantoms are demonstrated in Table 10.5 and Figure 10.9. 

 

PVAL%   1 FTC Young’s modulus (kPa) 

2.5% NA 

5% 27.50 

7.5% 13.50 

10% 10.60 

15% 41.70 

Table 10.5 YM in relation to PVAL concentration in initial exploratory 
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Figure 10.9 YM of PVAL with various concentrations 

The results show 3.9 times increase of YM of the 15% PVAL phantom compared 

to 10%. Generally, the YM of the PVAL gels is expected to increase in relation to the 

increase in the PVAL concentration. The decrease in the YM of the 5% to 10% can be 

explained by the uneven surface of the phantoms. When the phantom gelled in the freeze-

thaw cycle, the surface bulged in the centre. The Instron machine requires that the shape 

of the measured sample have a flat surface perpendicular to the axis of the compression.  

 In the experiments that follow, the bulged surfaces were flattened by a cutter and 

the YM increased in a more predictable manner. This eliminated the error when 

measuring YM due uneven surfaces. 

10.1.7 Measuring the HU and YM of PVAL phantoms with multi freeze-thaw cycles  

In order to assess the number of freeze thaw cycles required to adequately 

represent the Young's modulus and imaging properties of breast tissue, the following 

experiment was conducted. Fifteen 120 ml cylindrical samples were made: five each of 
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the 5%, 7.5% and 10% solutions (Figure 10.10). The 2.5% and 15% solutions were 

excluded due to the issues with the rigidity as demonstrated in previous experiments.  

 
Figure 10.10 PVAL phantoms with 1-5 FTC 

The following process was utilised for each wt% set of solutions to create one 

sample of each of the following FTC: 1 FTC, 2 FTC, 3 FTC, 4 FTC, and 5 FTC.  

Into each of five identical plastic cylindrical containers, 120 ml of the desired 

concentration PVAL solution was measured. In order to allow for expansion during the 

freezing thawing process containers with a capacity of 140 ml were chosen. Prior to 

beginning the first FTC the poured samples were allowed to rest at room temperature for 

3 hours in order allow any bubbles in the solution to come to the surface. 

The samples then underwent a series of freeze-thaw cycles, freezing for 12 hours 

at -26 °C and then thawing at room temperature. After each successive FTC one phantom 

was removed from the set, placed in deionised water, and stored in a refrigerator at 5 °C. 
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This process was repeated until one sample of each of the desired numbers of FTC had 

been created. Each sample was flattened using a cutter. 

Once all samples had been created, Young’s modulus and Hounsfield units were 

measured and recorded for the samples.  

10.1.7.1 Results and analysis 

The effect on YM and HU is summarised in Table 10.6, Figure 10.11 and Figure 

10.12. The standard deviation (±sd) in Table 10.6 was within the ROI as displayed by the 

CT unit. In this pilot study, in order to narrow down the range of the PVAL 

concentration, one sample per FTC for each concentration (5%, 7.5%, and 10%) was 

built. The total number of samples was 15. The HU and YM of multiple samples of the 

right concentration of PVAL were measured later in this research.  

 

FTC 5% PVAL 7.5% PVAL 10% PVAL 

HU ± sd YM (kPa) HU ± sd YM (kPa) HU ± sd YM (kPa) 

1 FTC 23.9±4.3 8.5 32.5±4.1 8.8 43.2±3.7 13.9 

2 FTC 27.5±3.2 16.9 33.0±3.5 33.6 43.3±2.9 42.9 

3 FTC 28.1±3.0 20.6 33.3±3.3 45.3 43.2±3.2 66.2 

4 FTC 28.6±3.1 25.0 34.7±3.5 67.7 43.8±3.2 79.9 

5 FTC 29.3±3.4 26.5 35.3±3.6 88.9 44.5±3.1 94.0 

Table 10.6 HU and YM for phantoms by PVAL concentration and number of FTC 
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Figure 10.11 YM of 5%, 7.5% and 10% PVAL phantoms with 1-5 FTC 

 
Figure 10.12 HU of 5%, 7.5% and 10% PVAL phantoms with 1-5 FTC 
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Based on Figure 10.11 and Figure 10.12 the graphs demonstrate the increase in 

HU and YM in relation to the increase of PVAL concentration. The increase of PVAL 

concentration generates more molecular bonds in the polymeric network resulting in a 

higher PVAL stiffness in the gel.  

The increase in FTCs demonstrated an increase in YM across each PVAL 

concentration. The increase of YM for 5%, 7.5%, and 10% PVAL with 5FTCs is 3.1, 

10.10, and 6.7 times more than 1FTC.  However, the effect of increasing FTCs on HU, 

for each concentration, was less notable (see the corresponding equation on the HU 

graph). This means that the increase in the number of freeze-thaw cycles does not have a 

remarkable effect on the HU. 

The YM graph (Figure 10.11) demonstrates a steeper curve for the 10% FTCs 

compared to 5%. As the graph shows, the slope for 10% and 5% PVAL are 19.72 and 

4.41 respectively. This means that the number of freeze-thaw cycles has greater impact 

on YM with increasing PVAL concentrations. 

As the YM graph (Figure 10.11) shows there is no notable difference between the 

YM of the PVAL phantoms with 1-FTC, especially between the YM of the 5% and 7.5% 

PVAL gels which are 8.5 and 8.8 respectively. The phantoms with 1-FTC have PVAL 

molecules which are not tied to the polymeric network. This incompletion of the 

polymeric network of PVAL causes the lack of rigidity for the phantoms with 1-FTC 

(Ru-yin & Dang-sheng, 2008). As the graph (Figure 10.11) shows, the effect of FTC in 

increasing the stiffness of the gel due to the increase in the crosslinked PVAL molecules 

(see 7.1 on page 91) is more observable with higher number of freezing-thawing cycles.  
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10.1.7.2 Discussion 

A typical Young’s modulus for soft tissues such as breast and liver is 20 kPa 

(Fromageau, Gennisson, Schmitt, Maurice, Mongrain, & Cloutier, 2007). As the graph 

above (Figure 10.11) shows, the YM of a 5% gel with 2 FTCs exhibits 16.9 kPa and the 

YM of the 5% gel with 3 FTCs shows 20.6 kPa. The proximity of the results to 20 kPa 

makes the 5% gel with 2 FTCs, and 3 FTCs good candidates for fatty and glandular 

tissues. Since the focus of this research is fabricating breast phantoms similar to breast 

fat, and the YM of fat is less than 20 kPa (Samani, Zubovits, & Plewes, 2007) a 5% 

PVAL with 2 FTCs with lower YM compared to 3 FTC was chosen as candidate for the 

breast fat (Table 10.6). 

Based on a research by Samani and his research collaborators, the fibroadenomas 

has nearly twice the stiffness of normal breast fat.  According to other findings by these 

researchers, the YM of fibrocystic breast condition and malignant lesions show 3-6 times 

higher than normal breast fat while the YM of invasive ductal carcinoma is up to 13 times 

higher (Samani, Zubovits, & Plewes, 2007). Based on the YM results from Table 10.6, a 

10% phantom with 5 FTCs can be a good candidate for the malignant lesions. The YM of 

this phantom is 94 kPa which is 5.5 times higher than the YM of the breast fat candidate 

(5% PVAL, 2 FTCs) which is 16.9 kPa. This is in agreement with the range that has been 

introduced by Samani’s research for the malignant lesions.  

According to Boone et al. (Boone, Nelson, Lindfors, & Seibert, 2001), the HU of 

the breast fat, glandular, and cancer lesions are -180, 40, 80 respectively (Figure 10.13). 

Whereas based on the acquired results from this research, the HU was ranged from 23.9 

(5%, 1 FTC) to 44.5 (10%, 5 FTCs) at 120 kVp. Since the HU difference between the 

breast fatty tissue and the cancer lesions is 260 (80-(-180)), this HU difference can be 

simulated by increasing the HU of the lesion.  As was discussed in 6.2.2.1 on page 61, a 
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contrast agent can be employed in order to increase the attenuation coefficient of the 

region of interest. The lesions mixed with contrast agent exhibit higher contrast compared 

to the surrounding phantom area. This high contrast simulates the contrast between the 

cancer lesions and the fatty tissues.  

 
Figure 10.13 HU for breast cancer, glandular tissue, adipose tissue, and water (Boone, Nelson, 

Lindfors, & Seibert, 2001). 

 

10.1.8 Measuring the HU of the final candidate for the breast phantom  

In order to verify the reliability and reproducibility of HU of  5% PVAL phantom 

as a candidate for breast mimicking tissue, 6 phantoms with 5%  PVAL and 2 FTCs were 

produced. The HU of each phantom was measured and the average and standard 

deviation were calculated. 

10.1.8.1 Results and analysis 

The following table (Table 10.7) shows the average HU (≃17) for six 5% 

phantoms (Phan1 to Phan6) with 2FTCs. 
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HU-
Phan1 

HU- 
Phan2 

HU-
Phan3 

HU-
Phan4 

 
 

HU-
Phan5 

HU-
Phan6 

Average 
HU 

sd 

17.81 23.89 15.44 14.92  16.82 14.64 17.25  3.4
6 

Table 10.7 HU of 5% PVAL phantom with 2FTCs 

10.1.8.2 Discussion 

The average HU of a 5% PVAL with 2 FTCs is 17.25 with the standard deviation 

of 3.46. As was discussed earlier, the difference between HU of the breast fatty tissue and 

the cancer lesions is 260 (80-(-180)) which means  the HU of the lesion needs to be 277 

in order to make the 260 HU difference between the breast phantom and the PVAL lesion 

(Table 10.8).  

 

Tissue Type (at 120 kVp) HUReal HUTarget 

Adipose -180 17 

Cancerous 80 277 

Table 10.8 Adjusted target values by tissue type 

10.1.9 Measuring the YM of the final candidate for the breast phantom/lesion 

In order to check the reliability of the phantom production, the Young’s modulus was 

measured independently for three batches of the 5% and 10% PVAL concentrations for 2, 

3, 4 and 5 FTCs, additionally a 6 FTC was measured for the 10% PVAL concentration 

(Table 10.9). Since the YM of lesions such as invasive ductal carcinoma can be 13 times 

more than the YM of the breast (20 kPa) and the maximum YM measured with 5 FTCs 

was 94 kPa, an additional FTC was added to the number of FTCs to cover broader range 

of simulated cancer lesions.   
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PVAL 
concentration 

FTCs Number 
of 
batches 

Batch1 -
number 
of 
phantoms 
per FTC 

Batch2 - 
number 
of 
phantoms 
per FTC 

Batch3 - 
number 
of 
phantoms 
per FTC 

Total 
number 
of 
phantoms  
per FTC 

Total 
number 
phantoms 
for all 
FTCs 

5% 2-5 3 1 5 5 11 44 

10% 2-6 3 1 4 4 9 45 

Table 10.9 Number of phantoms and FTCs for measuring the YM of 5% and 10% PVAL 

phantoms 

PVC piping was used to ensure consistent diameters of the samples, the samples were cut 

to ensure all surfaces were flat, and then the Young’s modulus was measured for all 

samples as in the previous experiments (Figure 10.14).  

 
Figure 10.14 PVC moulds 

The YM of the phantoms were measured using an Instron machine (Figure 10.15). 

The bulged surfaces of the phantoms were flattened by a sharp cutter in prior to the 

measurement (Figure10.16). Uneven surfaces can deteriorate the accuracy of data 

acquired by Instron machine, as indicated earlier. 
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Figure 10.15 PVAL lesions, 2 to 6 FTCs, 4 phantoms per FTC 

 
Figure10.16 Phantom on the left with flat surface 

Due to the aging process, PVAL phantoms produce secondary crystallites which 

results in changes in the stiffness of the phantoms (Hassan & Peppas, 2000) (Willcox, et 

al., 1999). However, in these studies, the rate of increase of YM over time is not clear.  

Hence, in this research, the X-ray properties of the phantoms/lesions will be measured 

over time. If fresh phantoms/lesions are required in order to complete the research due to 

time related changes in the X-ray properties, then the measurement of YM of PVAL 

phantoms over time will not be necessary. 

10.1.9.2 Results and analysis 

The following graphs (Figure 10.17 and Figure 10.18) show the YM for 5% and 

10% phantoms with 2-5 and 2-6 FTCs respectively. 
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Figure 10.17 YM of 5% phantom from 2-5 FTCs  

 
Figure 10.18 YM of 10% phantom from 2-6 FTCs 

Both graphs display the increase of YM corresponding to the increase of FTC. 

The graphs are the average of the results of the YM for three separate batches of 5% and 

10% PVAL phantoms. Since the average YM of breast tissue is about 20 kPa which 
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includes the glandular, fat and other breast structures, therefore, the YM of a 5% PVAL 

phantom with 2 FTCs (17.34 kPa) is acceptable as the successful candidate for the breast 

phantom. Although the YM of the 5% phantom with 3FTCs (22.56 kPa) is also near 20 

kPa, the 5% with 2 FTCs is a better candidate to simulate the fat-based breast since the 

YM of the fat is under 20 kPa (Samani, Zubovits, & Plewes, 2007). 

In order to compare the acquired YM for the breast phantoms/lesions with 

Samani’s research (Samani, Zubovits, & Plewes, 2007), the ratio of the YM of 10% 

PVAL lesions with 2-6 FTCs to the YM of the breast phantom (17.34 kPa) was 

measured. The following table and graph (Table 10.10 and Figure 10.19) display the ratio 

of the YM of the phantom lesions to the YM of breast phantom. The ratios of the YM of 

the PVAL cancer lesions to the PVAL breast phantoms are in agreement with Samani 

et.al (Samani, Zubovits, & Plewes, 2007). According to Samani’s research, the 

Fibrocystic and malignant lesions show 3-6 times increased stiffness and high grade 

invasive carcinoma exhibits up to 13 times increase in stiffness compared to 

fibroglandular tissue. The following table and graph show this ratio for PVAL lesions 

from three batches of 10% PVAL solution. 

 

FTC Y1/17.34 Y2/17.34 y3/17.34 Average 

2-FTC 5.00 4.20 4.75 4.65 

3-FTC 8.75 6.63 7.89 7.76 

4-FTC 9.89 9.25 11.16 10.10 

5-FTC 10.13 10.71 11.72 10.85 

6-FTC 11.34 12.03 14.02 12.46 

Table 10.10 The ratio of the YM of the PVAL lesion to breast phantom  
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Figure 10.19 the ratio of YM of the PVAL lesion to PVAL breast phantom 

10.1.9.3 Discussion 

The YM values acquired in this research for 10% PVAL lesions are in agreement 

with Samani et al. (Samani, Zubovits, & Plewes, 2007). 10% PVAL phantoms with 2 

FTCs can cover the Fibrocystic and malignant tumours and 10% PVAL phantoms with 3, 

4, 5 and 6 FTCs can cover the high grade invasive ductal carcinoma.  

10.1.9.4 Conclusion  

Based on these YM measurements, a 5% PVAL, 2 FTCs phantom has similar 

mechanical properties to breast fatty tissue with a measured YM of 17.34 kPa 

10% PVAL lesions with 2-6 FTCs have similar mechanical properties to benign 

and cancer lesions. The number of FTCs can be chosen based on the type of the cancer 

lesion. 2 FTCs can mimic fibrocystic and malignant tumours, whereas higher FTCs 

mimic the varying high grade invasive ductal carcinoma.  
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10.2 METHODS FOR DETERMINATION OF THE RIGHT AMOUNT OF CONTRAST AGENT 

The focus of this section is to determine the correct amount of contrast agent to 

dope with the PVAL lesions. This measured amount of contrast agent increases the linear 

attenuation coefficient of the PVAL lesions in the mammograms. Excess amount of 

contrast agent makes the lesion too bright in the radiograph resulting in dissimilarity to 

cancer lesions. While an inadequate amount of it does not allow the lesions to be 

visualized in the radiographs. Therefore the right amount of contrast agent was required 

to be measured and doped correctly with the PVAL solution.   

In order to find the adequate amount of contrast agent for the PVAL caner lesions 

multiple lesions with various concentration of contrast agent from 0.1 ml to 5 ml in 20 ml 

of PVAL were conducted through several separate experiments. 

Due to a leeching problem with contrast agent (Goergen, 2009) (Maddox, 2002) 

doped with the PVAL lesions inside the phantoms, the shelf life of the embedded lesions 

in the PVAL phantoms was specified. The leeching PVAL lesion causes the edge of the 

lesion to be blurred when imaged. Since the blurred edge of the lesion hinders the 

experiments regarding the determination of lesion visibility in relation to the changes in 

breast phantom thickness, it was necessary to find ways to reduce the leeching and find 

the optimum time of the usage of the phantom with the embedded lesions. 

10.2.1 HU in relation to the concentration of contrast agent mixed with PVAL 

phantoms 

In order to determine an appropriate amount of contrast agent, first the 

relationship between the various concentration of contrast agent and the HU of the mixed 

solution of contrast agent and PVAL was determined. This experiment determined a 

baseline relationship for HU of the CA in PVAL.  
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This experiment starts with the preparation of 10% PVAL aqueous solution. 120 

ml of PVAL solution was poured into 5 cylindrical plastic moulds with a 60 ml syringe 

respectively. 1-5 ml radiopaque contrast agent (Optiray 320) was added to each PVAL 

solution respectively. To ensure that the contrast agent dissolved uniformly in the PVAL 

solution, a separate simple test was achieved by mixing 3 ml of contrast agent in one drop 

of food colouring. Then the food/contrast combination was mixed with 120 ml of PVAL 

solution. This demonstrated visually that after stirring, the coloured contrast was mixed 

evenly with the PVAL solution. For comparative purposes, another mould was filled with 

120 ml of 10% PVAL with no contrast agent. 5 PVAL gels were prepared. After thawing 

the phantoms, the phantoms were placed in a container, covered with deionised water, 

and placed in a refrigerator at 5 °C. The samples were then imaged by a CT scanner and 

the results were demonstrated in Table 10.11. 

10.2.1.1 Results and analysis 

Figure 10.20 shows the relationship between the HU of PVAL phantoms mixed 

with CA.  
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CA (ml) HU± sd 

0  47.60±4.2  

1  88.00±3.6 

2  143.20±5.9 

3  221.80±6.4 

4  305.70±16.4 

5  330.40±14.6 

Table 10.11 HU of 10% PVAL, 1 FTC with 1-5 ml of contrast agent 

 
Figure 10.20 HU of 10% PVAL, 1 FTC in relation to 1-5 ml of contrast agent  

The above graph (Figure 10.20) displays a linear increase of HU in relation to the 

increase in the concentration of CA.  

10.2.2 Matrix of PVAL lesions - visualization of the PVAL lesions in mammography 

The following experiments (10.2.2.1 and 10.2.2.2) were conducted in order to 

evaluate and compare the visibility of the PVAL lesions enriched with various 

concentrations of contrast agent in CT images and mammograms. Since CT scanners and 

mammography units employ difference image acquisition mechanisms (Chapter 6, 

Chapter 8), comparison between the acquired images from CT and mammograms was 

necessary in order to utilise the right amount of contrast agent mixed with the lesions to 

make them visible in mammograms.  
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Since the right amount of contrast agent was not determined at this stage of the 

research, these experiments were carried out in order to narrow down the range of 

concentration of contrast agent. 

10.2.2.1 Determine a contrast agent to HU curve covering the needed HU values 

for the cancer-mimicking lesions  

A matrix of 10% aqueous solution of PVAL was prepared (Figure 10.21). For the 

matrix, 20 ml of 10% PVAL solution was poured into each cup of a 12-cup silicon 

baking tray respectively. The PVAL solution in each cup was then enriched with contrast 

agent starting from 0.1 ml in the first cup, increased by 0.1 per cup until 1 ml was added 

to the 10th cup. The last two cups were used as control with no contrast agent. The 

phantoms underwent 2 FTCs.  

 
Figure 10.21 A Lesion matrix with 10% PVAL enriched with 0.1 - 1 ml contrast agent 

10.2.2.2 Evaluation of the visibility of the PVAL lesions doped with contrast 

agent in mammogram 

20 ml of 10% PVAL was poured into each compartment of an eighteen 

compartment bead organizer (Figure 10.22). 0.1 ml to 1.8 ml of CA was added to each 

compartment and stirred with toothpicks. The bead organizer then underwent 3 FTCs. 

The cancer mimicking lesions were removed from the compartments and were sewed 

together with nylon thread into two sets of nine blocks (Figure 10.22 right). 5% PVAL 
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solution was then added to the lesions and both sets underwent 2 FTCs. Both phantoms, 

one with 9 block PVAL lesions from 0.1 to 0.9 ml of CA and the second one with 9 block 

PVAL lesions from 1 ml to 1.8 ml of CA underwent the mammography procedure right 

after fabrication. 

 
Figure 10.22 Left: PVAL cancer lesions doped with 0.1 ml to 1.8 ml of CA in a bead sorter. 

Right: blocks of lesions sewed to each other and placed in 5% PVAL phantom 

10.2.2.3 Results and analysis 

The graph below (Figure 10.23) shows a linear increase of HU in relation to the 

concentration of contrast agent. All the lesions were visible in the CT images.    

 
Figure 10.23 HU vs. CA (ml) for a matrix of PVAL phantoms doped with 0.1-1 ml of contrast 

agent 

The following mammograms show the blocks of PVAL lesions enriched with 

various concentration of contrast agent. The PVAL lesions with lower concentrations of 
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CA (0.1 ml to 0.8 ml) were observed vaguely in mammogram (Figure 10.24) and PVAL 

cancer lesions with higher concentrations of CA (1.3 ml to 1.8 ml) were partially visible 

in mammogram (Figure 10.25). It is also noted that the more visible lesions do not 

demonstrate homogenous brightness in the entire PVAL lesion block. 

 
Figure 10.24  Mammogram of a phantom with embedded PVAL cancer lesions doped with 0.1 ml 

to 0.9 ml of CA 

 
Figure 10.25 Mammogram of a phantom with embedded PVAL cancer lesions doped with 1.0 ml 

to 1.8 ml of CA 

10.2.2.4 Discussion 

As was discussed earlier, the required HU for the PVAL cancer mimicking 

lesions is about 277. Based on the graph (Figure 10.23) the phantoms doped with 0.4 ml 

of contrast agent provide the HU of 267.7. This HU number is close to 277 (10.1.8) 
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which is the desirable HU for the cancer mimicking PVAL lesions. The mammography 

has shown that lower concentration of contrast agent up to 1.3 ml generates vague lesions 

which cannot be used in the visibility study. This means that the 0.4 ml of contrast agent 

is inadequate to provide the sufficient visibility in mammograms. In order to address this 

issue, three factors had to be taken into consideration: first increase of the amount of 

contrast agent, second, the improvement of the process of doping the contrast agent and 

aqueous PVAL solution, and third controlling the leeching of the contrast agent from the 

PVAL lesions.  

As the mammograms (Figure 10.24 and Figure 10.25) demonstrated, the lesions 

were shown blurred with unsharp edges. Even the more visible lesion blocks displayed 

the uneven brightness through the entire block of lesion. The inhomogeneity of the 

brightness was possibly due to the insufficient mixing process. While the invisibility of 

the lesions, was due to insufficient amount of contrast agent and the possible leeching of 

the contrast agent to the adjacent regions. Leeching of the contrast agent from the PVAL 

lesion to the surrounding PVAL region reduces the concentration of the contrast agent 

resulting in a decrease in the attenuation coefficient of the PVAL lesion. The reduction of 

the attenuation coefficient decreases the visibility of the PVAL lesion. Hence, further 

experiments were carried out in order to address these three issues. 

10.2.2.5 Conclusion 

Due to the insufficient visibility of the PVAL lesions enriched with 0.1-1.8 ml of 

contrast agent, the following factors have to be taken into consideration: first increase of 

the amount of contrast agent, second, the improvement of the process of doping the 

contrast agent and aqueous PVAL solution, and third controlling the leeching of the 

contrast agent from the PVAL lesions. 

https://www.google.co.uk/search?espv=2&biw=1680&bih=965&q=inhomogeneity&spell=1&sa=X&ei=VXW6U47jFrKM7AbBjICACg&ved=0CBoQvwUoAA
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10.2.3 Making homogenous mixture of PVAL and contrast agent 

In Figure 10.24 and Figure 10.25, the uneven brightness of the PVAL lesion 

blocks was assumed due to the inadequate stirring of the mixture of contrast agent and 

the aqueous solution of PVAL. This experiment was aimed to prove first the assumption 

of inadequate stirring was correct, then to find a solution to produce a homogeneous 

mixture of PVAL solution enriched with contrast agent. The corresponding experiments 

have been classified into part1 and part2. 

10.2.3.1 Making homogenous mixture of PVAL and contrast agent - part1 

20 ml of 10% PVAL was poured into three 40 ml glass jars respectively (20 ml 

per jar). 1 ml of CA was added to each jar and the solution was stirred gently with a 

toothpick for 60 seconds. The solution was then put through 2 FTCs to produce a 

phantom. The phantom was then CT imaged and the resultant images were analysed.   

10.2.3.2 Making homogenous mixture of PVAL and contrast agent - part2 

Four samples of 20 ml of 10% PVAL solution were doped with 0.5 ml CA 

respectively and placed into 40 ml glass jars. Each sample was first stirred manually with 

a toothpick tor 60 seconds. The jar was then sealed and gently inverted and rolled by 

hand for 4 minutes until it was no longer possible to distinguish the CA in the solution 

with the naked eye. 

This method was then repeated 5 more times with each successive set increasing 

the CA quantity by 0.5 ml of CA until the final set contained 20 ml PVAL solution and 3 

ml CA. In total 24 samples were prepared in 6 different CA concentrations. The 

percentage of CA by volume produced is shown in Table 10.12. 
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CA (ml) in 20 ml 
PVAL 

% CA by Volume 

0.5 2.44% 

1.0 4.76% 

1.5 6.98% 

2.0 9.09% 

2.5 11.11% 

3.0 13.04% 

Table 10.12 Percentage of CA by volume when added to 20 ml of PVAL solution 

The 24 samples were then placed through 1 FTC. The samples (Figure 10.26) 

were CT scanned three times over a five day period, after each scan an additional FTC 

was performed on the samples. The samples were never kept in deionised water through 

the entire experiment. 

 
Figure 10.26 Left- 10% PVAL mixed with CA in sealed jars. Right- 24 samples ready for CT 

scan. 

10.2.3.3 Results and analysis 

Table 10.13 and Figure 10.27 show the average HU of 0.5-3 ml CA mixed with 

10% PVAL on day0, day3, and day4. The low standard deviations indicate the high 

consistency and low errors in the HU of the samples with the same concentration of CA.  
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Days Ave 0.5 sd Ave 1.0 sd Ave 1.5 sd Ave 2.0 sd Ave 2.5 sd Ave 3.0 sd 

0 260.02 5.84 468.00 5.92 653.05 23.81 804.42 5.67 936.77 23.12 1085.92 4.12 

3 283.27 5.42 483.67 7.47 686.02 11.25 849.67 4.25 1003.67 22.87 1148.17 8.31 

4 293.32 4.08 491.67 7.99 687.20 3.69 854.52 8.03 1003.87 13.941 1156.20 6.20 

Table 10.13 Average (Ave) HU 0f 10% PVAL lesions doped with 0.5-3 ml CA on day0, day3, 

and day4 

 
Figure 10.27 HU 0f 10% PVAL mixed with 0.5-3 ml CA on day0, day3 and day4 

There is an increase in the HU of the samples from day0 to day4. The increase 

from left to right (Table 10.13) is due the concentration of CA and the increase in each 

column from top to bottom is due to the increase in FTC. The increase of HU from day0 

to day3 for 0.5 ml, 1 ml, 1.5 ml, 2 ml, 2.5 ml and 3 ml lesions doped with CA are 33.30, 

23.67, 34.15, 50.10, 67.10 and 70.27.  

The CT images in Figure 10.28 show the separation between the PVAL and CA 

indicating the ineffectiveness of the mixing technique (10.2.3.1). Figure 10.29 

demonstrates CT images of the lesions from day0 to day4 (10.2.3.2). The phantoms look 

homogenous in the images and the gap from day0 to day4 did not cause the separation of 

the contrast agent from the PVAL phantoms. 
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Figure 10.28 Separation of PVAL and CA in PVAL phantoms (WL=0, WW=300) 

 
Figure 10.29 a sample PVAL lesion enriched with contrast agent. The left phantom was CT 

scanned on day0, middle on day3 and right one on day4 (WL=0, WW=300) 

10.2.3.4 Discussion 

The rectified mixing technique of contrast agent and PVAL solution has shown a 

remarkable improvement in the results. The acquired images of 24 samples with various 

concentration of contrast agent show that the contrast agent did not separate from the 

PVAL lesions between freezing thawing cycles and after the completion of all the cycles.  

10.2.3.5 Conclusion 

Enriching the aqueous solution of PVAL with CA by stirring, inverting and 

rolling the sealed containers for 5 minutes resulted in a homogenous mixture of PVAL 

and CA. 

10.2.4 The effect of environment of the PVAL lesions 

In the previous sets of experiments regarding finding the appropriate mixing 

technique, the lesions were not kept in deionised water. Therefore, the effect of the water 

on the HU of the lesions was not determined. Generally, during production of PVAL in 

order to keep the samples fresh, the phantoms are kept in deionised water. The surface of 

PVAL phantoms exposed to the air gets dry over time. The dryness of the 

phantoms/lesion makes the phantoms stiff resulting in changes in the value of 
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compressibility (YM). Hence, the PVAL phantoms are stored in deionised water after 

fabrication.  

In a phantom with an embedded lesion mixed with contrast agent, the PVAL phantom 

bulges in the water which means the water penetrates inside the phantom. The presence 

of water inside the phantom can wash the contrast agent resulting in a decrease in the HU 

of the lesion. The decrease in the final phantom used for the visibility study, deteriorates 

the visibility of the lesions in the mammograms. Therefore, in these series of experiments 

the effect of water on the HU of the PVAL lesions with various concentrations was 

determined. Conversely, the effect of dryness (dehydration) on the HU of the lesions was 

conducted in order to see if the dryness can prevent the leeching effect.  

The aim of series of experiments was to minimize the changes in the value of the 

accepted HU of the lesions from the time that the lesions are produced until the end of 

mammography procedure. 

10.2.4.1 HU of samples kept in deionised water (hydrated) measured over 5 

consecutive days 

The rectified mixing method was used to prepare four samples of 10% PVAL 

solution doped with 0.5 ml of CA. 

This method was then repeated 5 more times with each successive set increasing 

the CA quantity by 0.5 ml of CA until the final set contained 20 ml PVAL and 3 ml of 

CA. In total 24 samples were prepared in 6 different CA concentrations. Cancer 

mimicking lesions were then created by putting the PVAL solutions through 5 FTCs.  

The samples stored in deionised water were then CT scanned over a 5 day period 

with each successive day’s scan being taken roughly 24 hours after the previous scan. 

The DICOM (see glossary on page 305) images were collected for each scan and the HU 

of the samples were measured using the ROI manager tool of ImageJ software. 
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ImageJ is a Java-based open source image processing program which includes 

standard image processing functions. This program can display, analyse, and process 

various image formats such as DICOM (Ferreira, 2012). 

10.2.4.2 Results and analysis 

Each HU in the following table (Table 10.14) is the average of the HU of the four 

PVAL samples in each concentration group (0.5 ml to 3.0 ml of CA). The low standard 

deviations indicate the high consistency and low errors in the HU of the samples with the 

same concentration of CA.  

The following graph (Figure 10.30) show the HU of PVAL lesions mixed with 

0.5-3 ml of contrast agent from day0 to day4.  

 
Days Ave 

0.5  

Sd Ave 
1.0  

sd  Ave 
1.5  

sd Ave  
2.0  

sd Ave 
2.5  

sd Ave 3.0  sd 

0 274.42 2.59 474.39 3.16 649.67 15.41 798.50 3.34 945.47 4.60 1083.66 2.51 

1 254.23 3.48 443.15 6.67 603.23 9.89 748.93 5.28 894.81 5.59 1009.12 2.45 

2 236.75 3.85 415.55 5.86 556.97 5.96 696.16 7.32 841.67 9.47 922.64 13.42 

3 230.95 3.14 403.34 8.52 534.73 4.49 674.72 10.32 814.34 4.61 847.11 32.77 

4 235.36 6.48 421.92 11.43 551.43 9.32 701.98 14.35 841.07 13.74 851.88 43.39 

Table 10.14 Average (Ave) HU of 10% PVAL lesions doped with 0.5 to 3 ml CA, kept hydrated 

and measured from day0 to day4. 
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Figure 10.30 HU of hydrated lesions doped with 0.5 to 3 ml CA from day0 to day4 

The following tables (Table 10.15 and Table 10.16) display the changes in the HU 

from day0 to day4. 

 

Days 0.5 ml CA 1.0 ml CA  1.5 ml CA  2.0 ml CA 2.5 ml CA 3.0 ml CA 

0 N/A N/A N/A N/A N/A N/A 

1 -20.19 -31.23 -46.44 -49.56 -50.65 -74.53 

2 -17.47 -27.59 -46.26 -52.76 -53.14 -86.47 

3 -5.80 -12.21 -22.24 -21.44 -27.32 -75.53 

4 +4.41 +18.58 +16.70 +27.26 +26.72 +4.76 

Table 10.15 Average day on day change in HU by amount of CA 

 

0.5 ml CA 1.0 ml CA  1.5 ml CA  2.0 ml CA 2.5 ml CA 3.0 ml CA 

39.06 52.47 98.24 96.54 104.40 231.78 

Table 10.16 Drop of the HU from day0 to day4 

Each of the series in Figure 10.30 follows the similar pattern which is a drop in 

HU from day0 to day3 (3 full days) and increase in HU from day3 to day4. 

Table 10.15 shows an increase in day-to-day HU drop for the PVAL cancer 

lesions from day1 to day3 from left to right based on the concentration of CA. For 
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example, the drop of HU from day0 to day1 for a lesion doped with 0.5 ml of CA was 

20.19 whereas the drop for the lesion doped with 3.0 ml of CA was 74.53. 

Table 10.16 displays the drop of the HU from day0 to day4 for 0.5 ml - 3 ml of CA 

mixed with the PVAL phantoms. A larger drop of HU is observed for the higher 

concentration of the contrast agent.  For example the drop of the HU on day4 for a PVAL 

phantom doped with 3 ml of contrast agent is about 21% of the initial HU.   

Figure 10.31 shows the CT images of a PVAL cancer lesions doped with 2 ml of 

CA from day0 to day4 (left to right). The sample looks homogenous and there is no 

separation between the PVAL gel and the contrast agent. 

 
Figure 10.31 Left to right: CT images of 10% PVAL mixed with 2 ml of CA day0 to day4 

(WL=0, WW=300) 

10.2.4.3 Dryness (dehydration) of 10% PVAL doped with contrast agent over a 

several hour period 

The rectified mixing method was used to prepare four samples of 10% PVAL 

solution doped with 0.5 ml CA. 

This method was then repeated 5 more times with each successive set increasing 

the CA quantity by 0.5 ml of CA until the final set contained 20 ml PVAL and 3 ml CA. 

In total 24 samples were prepared in 6 different CA concentrations. 

Cancer mimicking lesions were then created by putting the PVAL solutions 

through 5 FTCs. The PVAL lesions were then CT scanned 3 times after the last FTC over 

a 5 hour period. The first scan was directly after the last FTC followed by subsequent 

scans at 1 hour and 5 hours respectively. 
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 The samples were exposed to the air during the imaging period. The DICOM 

images were collected for each scan and the HU of the samples were measured using 

ImageJ software. 

10.2.4.4 Results and analysis 

 Table 10.17 and Figure 10.32 show the HU of the PVAL samples mixed with 

0.5-3 ml of CA over a period of 5 hours.  

 

CA (ml) First 
(t+0hrs) 

Second 
(t+1hrs) 

HU change 
in 1 hour 

Third 
(t+5hrs) 

HU change 
in 5 hours 

Drop % 

0.5  279.40 277.77 -1.63 274.16 -5.23 1.87 

1.0  486.01 485.60 -0.40 475.31 -10.70 2.20 

1.5  658.84 657.51 -1.32 646.95 -11.89 1.80 

2.0  825.10 825.51 +0.40 811.63 -13.47 1.63 

2.5 966.21 964.33 -1.88 952.81 -13.39 1.38 

3.0  1103.86 1106.95 +3.08 1091.24 -12.62 1.14 

Table 10.17 HU of PVAL mixed with 0.5 ml - 3 ml CA exposed to the air over a period of 

several hours 

 
Figure 10.32 HU of PVAL lesions doped with 0.5 ml - 3 ml of CA exposed to the air over a 

period of 5 hours. t+0 , t+1 and t+5 were starting time, an hour later and 5 hours later 

respectively. 
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The “HU change in 5 hours” column (Table 10.17) shows a higher drop for the 

higher concentrated PVAL lesions than the lower ones (For example, -5.23 for 0.5 

compared to -13.39 for the 2.5 ml of CA). The drop in HU can be justified due the 

leeching of CA from the PVAL samples. 

The linear series in Figure 10.32 are nearly overlapped. In other words, the 5 hour 

period of dryness did not make a big difference in the HU of the PVAL lesions. The 

correlation coefficient between the samples in the first and fifth hours is > 0.99. 

10.2.4.5 Effect of dryness (dehydration) on HU over a 5 day period 

Four PVAL doped with 2.5 ml of CA and four PVAL lesions doped with 3 ml of 

CA were selected from the previous experiment as candidates for this experiment. The 

reason that the high concentrated PVAL lesions were selected for this experiment was 

due to their better visibility in the CT images and higher HU drop from day-to-day.   

The samples then were kept sealed (dehydrated) in their 40 ml sealed jars over a 5 

day period. It is worth mentioning that the samples were exposed to the air on the first 

day for 5 hours to perform the previous experiment.  

All the 8 samples were CT scanned over a 5 day period and the DICOM images 

were collected for each scan. The HU of the samples were measured using ImageJ 

software. 

10.2.4.6 Results and analysis 

The following tables (Table 10.18 and Table 10.19) and their corresponding 

graphs (Figure 10.33 and Figure 10.34) show the average HU and standard deviation of 

the phantoms from day0 to day4 for PVAL lesions with 2.5 ml and 3 ml of CA. 
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Days Sample1 Sample2 Sample3 Sample4 Average HU sd 

0 958.53 961.55 963.41 981.35 966.21 10.29 

1 913.08 903.18 916.16 935.16 916.90 13.37 

2 879.79 872.96 866.17 898.91 879.46 14.11 

3 879.63 858.27 848.62 893.10 869.90 20.17 

4 903.26 858.70 912.57 883.47 889.50 23.84 

Table 10.18 Effect of dryness on the HU of PVAL lesions doped with 2.5 ml of CA from day0 to 

day4 

 
Figure 10.33 Effect of dryness on the HU of PVAL lesions with 2.5 ml of CA from day0 to day4 

Days Sample1 Sample2 Sample3 Sample4 Average HU sd 

0 1102.13 1105.44 1106.62 1101.27 1103.86 2.56 

1 1054.21 1057.21 1046.61 1038.01 1049.01 8.58 

2 1015.29 1014.72 997.47 994.90 1005.59 10.91 

3 998.39 1003.05 989.20 976.90 991.88 11.52 

4 997.08 1004.38 978.75 984.45 991.17 11.67 

Table 10.19 Effect of dryness on the HU of a lesion with 3 ml CA from day0 to day4 
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 Figure 10.34 Effect of dryness on the HU of a lesion with 3 ml CA from day0 to day4 

The HU drop for 2.5 ml and 3 ml PVAL samples  from day0 to day4 were 76.71 

(7.9% drop) and 112.70 (10.2% drop) respectively.  

Table 10.20 shows the change of HU from day0 to day4 for PVAL lesions doped 

with 2.5 ml and 3 ml of CA.  
 

Days 2.5 ml CA 3.0 ml CA 

0 N/A N/A 

1 -49.31 -54.85 

2 -37.43 -43.41 

3  -9.55 -13.70 

4 +19.59 -0.71 

Table 10.20 Average day on day change in HU for PVAL lesions doped with 2.5 ml and 3.0 ml of 

CA 

10.2.4.7 Comparison between the HU of a hydrated and sealed lesions 

Two phantoms (5% PVAL, 2 FTCs) including two embedded lesions in each 

were prepared for this experiment.  The lesions were prepared and embedded in each 

phantom based on the following steps: four lesions were prepared with 20 ml of 10% 

PVAL solution doped with 2.5 ml of CA.  After three FTCs, the lesions were divided into 
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two groups. Two of the lesions were kept sealed in 40 ml glass jars with no deionised 

water (sealed lesions) for three days and the other two lesions were stored in deionised 

water (hydrated lesions) for three days.  The reason that a three day period was picked for 

this part of the experiment is due to the predictable drop of HU in a three day period 

(10.2.4.6). Two PVAL lesions (one hydrated and one sealed) were each suspended inside 

a plastic mould using nylon thread attached to plastic straws (Figure 10.35).  

 
Figure 10.35 Sealed and hydrated lesions ready to be embedded in 5% PVAL solution.  

The lesions were neither in contact with each other nor the plastic mould and were 

placed midway between the surface and bottom of the container. In order to distinguish 

between the lesions in the CT and mammography images, a metal marker was placed 

near the sealed lesion. After placing the sealed and hydrated lesions into the container 

and adding 5% PVAL solution, the solution/lesions underwent 2 FTCs before the CT 

scan procedure. Similarly, the second phantom with two lesions was fabricated. 

The total FTCs for all the lesions were 5 days, three days before the three day 

storage period and two days after the storage period. Two phantoms, each with two 

lesions were the result of this part of the experiment. Both phantoms were CT scanned 

over a two week period right after fabrication and the DICOM images were collected for 

each scan. The HU of the samples were measured using ImageJ software. Note: both 
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phantoms were stored in deionised water in order to avoid dehydration of the phantoms 

over the two week period of scanning. 

The phantoms prepared in this experiment underwent mammography procedure 

two days after preparation. The mammography unit used in this experiment was Hologic 

Lorad Selenia utilizing kVp= 29 and mAs=129. No compression force was applied in this 

experiment to the phantoms. 

10.2.4.8 Results and analysis 

Figure 10.36 displays the mammogram of the sealed and hydrated lesions. Both 

sealed and hydrated lesions doped with 2.5 ml of CA embedded in 5% PVAL phantoms 

were shown in mammogram without applying compression force during mammography. 

The hydrated lesion was more visible than the other one. The edges of both lesions were 

unsharp and difficult to observe.  

 
Figure 10.36 Mammogram of a sealed (left) and hydrated (right) PVAL lesions 

Figure 10.37 shows the CT images of the sealed lesion from day0 to day9 of the 

following week acquired from ImageJ. The sealed lesion becomes less visible from left to 

right due to the leeching of contrast agent over time. The lesion looks quite clear and 

visible in the first week from day0 to day3 with clear well defined edge. 
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Figure 10.37 CT images of sealed lesion in phantom1 (day0, day1, day2, day3, day6, and day9) 

(WL=0, WW=300) 

Figure 10.38 shows the edges of the sealed lesion over a two week period using 

Find Edge function based on Sobel edge detector in ImageJ. The edge of the lesion (far 

right) is completely unclear and ill-defined.  

 
Figure 10.38 Delineated edges applying ImageJ edge detector for CT images of sealed lesion in 

phantom1 

The line profiles (Figure 10.39, Figure 10.40, Figure 10.41 and Figure 10.42) of 

both lesions in phantom1 and phantom2 show the drop of grey value over time. The 

following graphs demonstrate that the fresh lesions which had been sealed display higher 

grey value. It is important to mention that the grey values in CT images correspond to X-

ray attenuation (University of Texas, 2014). In other words, the grey values demonstrate 

the HU of the imported DICOM files to ImageJ.  
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Figure 10.39 Profile of the sealed lesion in phantom1 

 
Figure 10.40 Profile of the hydrated lesion in phantom1 
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Figure 10.41 Profile of the sealed lesion in phantom2 

 
Figure 10.42 Profile of the hydrated lesion in phantom2 

As Figure 10.45 (combination of Figure 10.43 and Figure 10.44) shows, The HU 

of the sealed lesions in phantom1 and 2 is higher than the hydrated ones.  In phantom1, 

the HU difference dropped from 111.60 on day0 to 8.40 on day9 (Table 10.21). 
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178.20 to 25.30 (Table 10.22). The HU drops over 9 days for the sealed and hydrated 

lesions in phantom1 were 601.40 (75.5% drop), 498.20 (72.7% drop) and 582.80 

(74.6%), 429.90 (71.3% drop) for the phantom2 respectively. Although the grey value of 

the fresh sealed phantoms show higher values, the percentage of the drop displays higher 

for the sealed phantoms. 
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Days HU-
sealed-
Ph1  

sd-sealed-
Ph1 

HU-hydrated-
Ph1 

sd-hydrated-
Ph1 

HU diff between sealed & 
hydrated 

0 796.60 61.60 685.00 70.50 111.60 

1 632.50 56.80 550.20 55.70 82.30 

2 477.70 49.40 426.40 39.60 51.30 

3 428.70 31.60 335.40 25.30 93.30 

6 263.10 13.20 241.40 14.80 21.70 

9 195.20 14.80 186.80 7.50 8.40 

Table 10.21 HU of sealed and hydrated lesions in phantom1 

 
Figure 10.43 HU of sealed and hydrated lesions in phantom1 from day0 to day9 

Weekdays HU-sealed-Ph2 sd-sealed-Ph2 HU-hydrated-Ph2 sd-hydrated-Ph2 HU-diff 

0 781.30 72.10 603.10 58.20 178.20 

1 642.10 62.10 484.60 47.00 157.50 

2 494.90 49.30 373.70 31.30 121.20 

3 409.70 31.20 331.20 26.00 78.50 

6 264.10 12.80 210.50 9.50 53.60 

9 198.50 6.60 173.20 6.10 25.30 

Table 10.22 HU of sealed and hydrated lesions in phantom2 
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Figure 10.44 HU of sealed and hydrated lesions in phantom2 from day0 to day9 

 
Figure 10.45 HU of sealed and hydrated lesions in phantom1 and 2 from day0 to day9 
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The phantom was then wrapped in cling film in order to reduce the effect of the 

dryness (Figure 10.46) and stored in a sealed plastic container. The phantom was CT 

scanned on day0 and day3.  

 
Figure 10.46 Phantom wrapped in cling film 

10.2.4.10 Results and analysis 

The drop of HU (210.2) from day0 to day3 was less than the drop in the sealed 

and hydrated PVAL cancer lesions from day0 to day3. The drops were 367.90 and 349.60 

in sealed and hydrated PVAL cancer lesions for phantom1 and 371.60 and 271.90 in 

sealed and hydrated lesions for phantom2 (see 10.2.4.7 on page 161). 

10.2.4.11 Discussion  

Based on the acquired HU values from both hydrated and dehydrated lesions after 

fabrication, there is a demonstrated drop in HU for both experiments over time. The drop 

of HU for the hydrated lesions was due to the presence of water in the lesions. This 

facilitated the dilution of the contrast agent within the lesion.  In the lesions which were 

not stored in deionised water, rather than dilution of the contrast agent, the agent instead 

leeched out of the sample.  

Given that the PVAL solution forms a skin while cooling, it was postulated that 

the resulting phantom may also form a skin when exposed to the air. Two tests were 
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performed to evaluate this possibility: storing the lesion in a sealed container, and storing 

the lesion in an open container. In each case the lesions were held for several days. In 

both cases the leeching effect could not be eliminated by either storage method.  

The rates of the leeching of contrast agent into the surrounding tissues for both the 

hydrated and dehydrated samples were observed to be linear in the first three days before 

reaching stability. Some samples showed a slight increase in HU on the fourth day. It is 

suggested that this may be due to the formation of additional crystallites in PVAL lesions 

(Peppas, 1976). While this change is interesting, further investigation of this is outside 

the bounds of this research.  

Exposing the lesions to the air for a few hours did not change the HU remarkably 

(1.4% for 3 ml of CA). This experiment indicates that the HU of the lesion will not 

suddenly drop after fabrication of the lesion.  

In order to determine the best storage method for the lesions during the 

fabrication process, a comparison between the sealed lesion and the hydrated lesions was 

performed. The result of this experiment shows that the HU of the lesions with identical 

amount of contrast agent which were not stored in deionised water was higher than the 

ones which have been hydrated after fabrication. This suggests that the lesions stored in 

water are more affected by the leeching process than those stored in a sealed container.  

As was demonstrated in the last experiment of these sets, keeping the breast 

phantom wrapped in a cover such as cling film caused the HU of the embedded lesions to 

reduce less compared to the lesions which had been kept sealed or hydrated. Therefore 

the utilisation of a skin for the breast phantom is recommended in order to decrease the 

HU reduction of the lesions and to protect the breast phantom during the mammography 

procedure. 
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10.2.4.12 Conclusion 

Based upon the results from the experiments related to the effect of the 

environment on the PVAL lesions mixed with contrast agents, it is probable that the 

lesions could not be stored for an extended period of time. Therefore it is concluded that 

any experimentation should be performed with freshly created lesions embedded within 

PVAL phantoms. This also explains why further testing of the YM over time was not 

needed.  

 Based on the results, it is not advised to keep the phantoms in deionised water 

during storage. The mammography procedure should be performed soon after the 

fabrication of the phantom/lesions. 

Due to the unsharpness of the edge and inadequate visibility of the lesions made 

up of 2.5 ml of contrast agent in mammogram, it is important to utilise higher amount of 

contrast agent. This is discussed in the next chapter. 
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Chapter 11 Methods 

The aim of this chapter is to obtain the relationship between the lesion visibility 

and the breast phantom thickness. In order to find this relationship the embedded lesion 

had to be visible in mammograms. Based on the results from Chapter 10, a fresh 5% 

PVAL phantom with 2 FTCs containing a 10% lesion with 6 FTCs was appropriate for 

mammography. In the previous chapter contrast agent with higher concentration than 2.5 

ml in 20 ml of PVAL solution was suggested. Therefore the experiments in this chapter 

started with the evaluation of the visibility of the lesions with higher concentration of 

contrast agent (>2.5 ml) in mammograms.  

Compression of the PVAL phantom/lesion, data collection, and evaluation of the 

visibility of the lesions are also covered in this chapter. Evaluation of the lesion visibility 

was based on visual and mathematical methods. For the visual assessment, a 2AFC 

method was utilised and for the mathematical evaluation, CNR, SNR, FOM, and profile 

analysis were employed.  

Once a suitable phantom/lesion was found, the method was repeated multiple 

times. This provided the means to acquire robust datasets for data analysis. The acquired 

mammograms were evaluated visually and mathematically based on the phantom 

thickness. 

11.1 MAMMOGRAPHY OF BREAST PHANTOM INCLUDING A LARGE EMBEDDED LESION  

A flexible plastic breast mould (Figure 11.1) was utilised to fabricate the breast 

phantom.  In order to produce skin for the breast phantom, the mould was painted with 

latex paint. The number of coats for the paint was dependent upon the consistency of the 

latex paint. It can vary from 5 to 14 coats in order to make a sufficient thickness of 0.8 

mm similar to human breast skin (Pope, Read, Medsker, Buschi, & Brenbridge, 1984). 
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 Figure 11.1 Breast mould 

A domestic hair dryer was used to accelerate the latex paint drying time from 4 

hours to 10 minutes.  A 4 FTC disk-shaped PVAL lesion (20 ml of 10%PVAL solution + 

3 ml CA) was placed in the bottom of the mould, then 5% PVAL solution was added to 

the mould. The breast mould including the latex skin, PVAL lesion and PVAL solution 

underwent 2 FTCs (Figure 11.2). 

 
Figure 11.2 Breast phantom with an embedded lesion inside a breast mould painted with layers of 

latex paint. 

In order to fabricate the top surface of the phantom, a thick flat latex skin with 

100 gr of latex paint was made in a tray separately. The latex paint was first poured into 

the tray and the tray was tilted until it was covered with the paint evenly (Figure 11.3).  
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Figure 11.3 Top surface (chest part) of the breast phantom made up of latex paint. 

In this experiment the breast phantom was not kept in deionised water instead the 

phantom was covered with the latex skin. The latex skin kept the phantom hydrated. 

First the wooden torso (45.72 cm X 95.25 cm X 1.9 cm of plyboard) was painted 

with latex paint. After drying the surface, the top surface was peeled gently from the tray 

and laid on the dried coat of latex paint on the plyboard. The skin of the thawed phantom 

was gently peeled from the mould with the phantom in. The skin including the breast 

phantom then was laid on the surface skin and with the assistance of a staple gun the 

breast skin was stapled to the wooden torso. In order to avoid the interference of the 

metal staples in the mammography procedure, they needed to be hammered to have a flat 

surface. About 5 coats of latex paint were required to cover the staples and to attach the 

breast skin to the top surface (Figure 11.4).  



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 176 of 365 July 2015 

 
Figure 11.4 Attachment of the breast phantom/skin to the wooden torso 

The CT scan was performed over a 6 day period (Figure 11.5). In order to 

measure the drop of HU per minute, the first CT scan was performed immediately after 

fabrication of phantom. This took 10 minutes continuously every one minute.  

The DICOM images were collected and the grey scale was measured utilizing 

ImageJ software.  

 
Figure 11.5 A breast phantom wrapped in latex skin in CT scanner 

The CT scan performed on the first day right after fabrication of phantom, on the 

third, fourth, fifth, and sixth days. The mammography procedure was performed 5 hours 

after the second CT scan. The breast phantom was compressed applying 51 N to 132 N. 

The compression paddle used in this experiment was 24x30 cm. The resultant 
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mammograms were collected and visualized. The 2AFC (Two-alternative forced choice) 

method was utilised in this experiment. Molybdenum (Mo) was the target anode and 

experiment was based on the increase of the compression force. The following table 

(Table 11.1) demonstrates the mAs, kVp, compression force and the breast phantom 

thickness.  

 

Compression (N) 51   65 92 106 117 132 

Thickness (cm) 9.4 8.5 8.0 7.6 7.3 6.8 

mAs 238.2 282.7 229.5 271.1 247.7 219.8 

kVp 34 33 33 32 32 32 

Table 11.1 Settings for the mammography of a breast phantom. 

11.1.2 Results and analysis 

11.1.2.1 CT results 

The following table (Table 11.2) and graph (Figure 11.6) display the drop of HU 

over 10 minutes. The initial and final HU values were recorded as 633.17 and 632.21 

respectively over 10 minutes.  

 

Time (min)   Area HU 

1 298.14 633.17 

2 298.14 633.13 

3 298.14 633.07 

4 298.14 633.10 

5 298.14 632.85 

6 298.14 632.70 

7 298.14 632.67 

8 298.14 632.41 

9 298.14 632.35 

10 298.14 632.21 

Table 11.2 HU of an embedded lesion in a breast phantom with skin over 10 minutes 

https://www.google.co.uk/search?espv=2&biw=1344&bih=740&q=molybdenum&spell=1&sa=X&ei=WHznU-LUJsOR7AaUvIDwDQ&ved=0CBoQvwUoAA


Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 178 of 365 July 2015 

 
Figure 11.6 HU of an embedded lesion in a breast phantom with skin over 10 minutes 

The measured drop of HU per minute was 0.0969/min (0.15% drop over 10 

minutes). 

As Figure 11.7 shows, the border of the lesion becomes less delineated and 

defined over time. The CT image on day0, right after fabrication of the breast 

phantom/lesion shows a sharp border of the lesion with a good contrast with the 

background. 

 
Figure 11.7 Left to right: CT image of an embedded lesion in a phantom with latex skin on day0, 

day3, day4, day5, and day6 (WL=0, WW=300) 

The drops of HU were 152.80, 37.50, 55.70, and 26.90 respectively from day0 to 

day6. The results (Table 11.3) shows the smaller HU drop (609-336.1=272.90) over a 

week period for a sealed phantom in latex skin compared to the sealed and hydrated 

PVAL lesions from Chapter 10. The HU drops in phantom1 (Table 10.21) for the sealed 

and hydrated lesions over a week period were (796.60-263.10= 533.50) and (685.00-
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241.40= 443.60). The drops for the sealed and hydrated PVAL lesions in phantom2 were 

(781.30-264.10=517.20) and (603.10-210.50=392.60).  

 

Days HU  

0  609.00  

3 456.20  

4 418.70  

5 363.00  

6  336.10 

Table 11.3 HU of an embedded lesion in a phantom with latex skin on day0, day3, day4, day5, 

and day6 

The following graph (Figure 11.8) shows the drop of the HU for the embedded 

lesion from day0 to day6 of the following week. The trend line shows a linear relation 

between the HU and the time. 

 
Figure 11.8 HU of an embedded lesion in a phantom with latex skin on day0, day3, day4, day5, 

and day6 
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11.1.2.2 Mammography results 

The embedded lesion was visualized successfully in the mammograms (Figure 

11.9) applying 51 N to 132 N compression force. Comparing the far left image and the 

far right images visually shows the slight improvement in the lesion visibility based on 

the increase of compression force. The phantoms looks expanded with slightly reduced 

noise. Even though the mammograms show slight improvement visually between the far 

left image and the far right image, it is still difficult to evaluate the image quality of the 

middle images perceptually. Therefore further experiments with a larger sample size are 

required to confirm the results. Mathematical evaluations are also required for additional 

and complementary evaluation of the image quality. 

 
Figure 11.9 From left to right:  51, 65, 92, 106, 117 and 132 N were applied to the breast 

phantom. The lesion shows in the nipple area 

The following graph (Figure 11.10) shows the linear relation between the 

compression force and the breast phantom thickness. The higher pressure results in 

reduction in the thickness. 
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Figure 11.10 Compression vs. thickness for the breast phantom 

11.2 MAMMOGRAPHY OF BREAST PHANTOMS WITH 9 MM EMBEDDED LESIONS  

Three 5% phantoms were prepared separately. Due to the large size of the breast 

moulds (2L) used in this experiment, the aqueous solution of PVAL was prepared in a 5L 

round bottom boiling flask. The boiling flask was put in a large water bath during heating 

(Figure 11.11). Magnetic stirrer was set between 60 RPM - 200 RPM. 

 
Figure 11.11 Right: The setup used in the current experiment.  Left:  The setup used in the 

previous experiments 
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The lesions utilised in this experiment were 9 mm sphere-shaped of 200 ml of 

10% PVAL doped with 30 ml of CA. Since the size of the human breast tumours can be 

smaller than 1 cm and larger than 5 cm (Elkin, Hudis, Begg, & Schrag, 2005), therefore 9 

mm for diameter of the lesions was in the range of breast tumours. One of the reasons 

that the round-shaped lesions were chosen in this research was because the real breast 

masses can be round (Bassett, 2000). The other reason for constructing the round-shaped 

lesions was consistency in size and shape throughout this research compared to the shape 

of spiculated masses.  

A 9 mm plastic bead cutter (Figure 11.12) was employed as a mould to form the 

round cancer mimicking lesions. The bead cutter was closed and sealed immediately after 

immersing into the container of the PVAL doped with contrast. The beat cutter can be 

sealed with a bulldog clip or clothespin. After sealing the homogeneous and transparent 

lesion solution in the bead cutter, the mixture was placed into the freezer and underwent 4 

FTCs. 

 
Figure 11.12 A plastic bead cutter to make round cancer mimicking lesions. 

After drying the latex paint in the breast mould, one lesion per breast phantom 

was suspended in the middle of the breast moulds with the assistance of 10 cm nylon 

thread (Figure 11.13). 
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Figure 11.13 A 0.9 cm cancer mimicking lesion suspended in a painted breast mould 

All three phantoms were put into a domestic freezer for 2 FTCs (Figure 11.14). 

Consequently, the 5% breast phantoms underwent 2 FTCs and the 10% embedded lesions 

underwent 6 FTCs (4 FTCs in prior to their embedment). 

 
Figure 11.14 Three large beast phantoms in the freezer. 
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After 2 FTCs, the skin of the thawed breast phantoms was attached to the wooden 

torso (Figure 11.15). Then the phantoms attached to the wooden torso underwent the CT 

scan procedure (Figure 11.16). The DICOM images were collected and the grey scale 

was measured utilizing ImageJ software.  

 
Figure 11.15 Large breast phantoms with 0.9 cm cancer mimicking lesions per phantom attached 

to the wooden torsos 
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Figure 11.16 Three large breast phantoms in a CT scanner. 

The phantoms underwent mammography procedure an hour after CT imaging. 

The compressions forces applied for the phantoms were 197 N, 193 N and 163 N 

respectively utilizing an 18x24 cm compression paddle. The maximum compression was 

applied for each phantom in order to see if the lesions were visible with the highest 

compression.  

Table 11.4 shows the force, the phantom thickness, kVp, mAs, filter and paddle 

used in this experiment.  
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Phantoms #1 #2 #3 

Force (N) 197 193 163 

Thickness (cm) 6.2 6.6 7.2 

kVp 31 32 32 

mAs 268.1 224.8 264.5 

Filter Rh Rh Rh 

Paddle 24cmx29 cm 24cmx29 cm 24cm x29cm 

Table 11.4 Mammography parameters 

As the following image illustrates (Figure 11.17), the breast phantom, attached to 

the wooden torso, approximates the human female anatomy. The image shows the breast 

phantom at maximum compression between the compression paddle (top) and the support 

table (bottom). 

 
Figure 11.17 A compressed breast phantom during mammography 
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11.2.2 Results and analysis 

The embedded lesions were barely visible in the CT images (Figure 11.18). The 

lesions were not visible in the mammograms (Figure 11.19). 

 
Figure 11.18 CT images of three large breast phantoms with one 0.9 cm embedded lesion in each 

(WL=0, WW=300) 

 
Figure 11.19 Mammograms of three large breast phantoms with one 0.9 cm embedded lesion 

(WL=0, WW=300) 

11.2.3 Discussion  

In this research, a suitable PVAL breast phantom with embedded lesions must 

have X-ray imaging properties similar to human female breast tissue. These imaging 

properties can be evaluated using CT imaging and are affected by electron density and 

atomic number (Z) (Thomas, 1999). The electron density of each tissue influences its 

linear attenuation coefficient (absorption or weakening of the X-ray). In CT, the 

Hounsfield unit (HU) is a function of the linear attenuation coefficient. This means that 

the HU is indirectly a function of electron density. The HU is also affected by the kVp 

and since the kVp range in CT and mammography are completely different, the 

attenuation of the objects is different from CT to mammography. For example, a phantom 

may simulate the human tissue at certain energy, but could display inaccurate properties 
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in other energy ranges.  CT scan and mammography are good examples of these energy 

differences (Dewerd & Kissick, 2014). The energy difference between mammography 

and CT could make the visibility of the lesion different between those imaging 

modalities.  

In order to find an adequate attenuation for the breast phantom/lesion, the 

acquired images have to be compared between these two imaging modalities. After 

acquiring the sufficient attenuation in mammography for the lesion, the recorded HU 

from the CT procedure is accepted as an appropriate HU for the breast phantom/lesion.  

Generally, in order to make a phantom similar to human tissue, the appropriate 

properties for the phantom are critical. The most common property to represent the tissue 

equivalence is attenuation coefficient.  

This experiment is the extension of a previous experiment (11.1 on page 173). 

One of the differences between this experiment and the previous one was the size of the 

lesion. Although the amount of contrast agent in this experiment was 0.5 ml more than 

the previous experiment, the size and location of the lesion made it harder to view in CT 

images and impossible to view in mammograms. According to the literature, there is a 

linear relationship between the signal difference to noise ratio (SDNR) and the lesion size 

in mammography. This means that the SDNR which is the product of radiation contrast 

and signal to noise ratio (Yaffe, 2010) improves with the increase of the lesion size 

(Kempston, Mainprize, & Yaffe, 2006).  

 In the previous experiment the lesion was placed in the nipple area (bottom of the 

mould) which was close to the detector while in this experiment the lesion was instead 

located in the middle of the phantom which was further away from the detector. This 

could decrease the visibility of the lesion due to the increased distance between the lesion 

and the detector. 
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One solution to overcome the visibility differences between CT images and 

mammograms is the increase of the contrast agent in the lesion. Since the visibility of the 

lesion is related to its size, location within the phantom, and the thickness of the breast 

phantom, the right amount of contrast agent has to be calculated, measured and utilised in 

the next experiment. It is noted that the excess amount of contrast agent, will make the 

lesions easily detectable. It will also help keep the lesion from being anthropomorphic. 

One of the encountered problems in this experiment was the presence of water in 

the phantom which possibly has caused the dilution of the contrast agent in the lesion. 

This issue might be addressed by imaging the fresh phantoms immediately after 

fabrication. 

Making three phantoms at the same time also increased the temperature of the 

freezer consequently increasing the freezing time. In the experiment, the freezing started 

5 hours after the insertion of the phantoms into the freezer (7.2 on page 94). 

Another factor which might have affected the presence of water in the phantom 

might have been the usage of a 5L boiling flask during heating. Although the temperature 

of the water bath in this setup reached to 100 °C, the size and the thickness of the boiling 

flask may have affected the temperature of the PVAL solution, consequently leaving 

some un-dissolved PVAL in deionised water behind.  

In order to view the lesions, another experiment was carried out. During this 

experiment, only one phantom was placed into the freezer at a time and a 1L boiling flask 

which was used in early experiments was utilised. The freshly prepared phantom was 

imaged immediately after fabrication. 
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11.3 IMPROVEMENT OF FABRICATION OF BREAST PHANTOMS/LESIONS - PART1  

This experiment was conducted in order to overcome the inability to visualize the 

PVAL lesion in a large breast phantom.  

In order to fill a 2L breast mould, three batches of 5% aqueous PVAL solution 

were prepared with 40 gr of PVAL and 760 ml of deionised water per batch. 10% PVAL 

solution with 80 gr of PVAL and 720 ml of deionised water was prepared to make 

lesions. Both 10% and 5% PVAL solutions were boiled in a 1L round-bottom boiling 

flask. For the lesion part, 200 ml of 10% PVAL was doped with 50 ml of CA.  

 The intensity formula, I=I0e
- µx (The Collaboration for NDT Education, 2012) was 

used to measure the amount of contrast agent. Because of the mammographic visibility of 

the lesion used in the above experiment (see 11.1 on page 173), the lesion with the height 

of 1.5 cm and 3 ml of CA in 20 ml of PVAL solution was considered as a reference. 

Based upon the intensity formula, the equivalent intensity was expected, therefore the 

ratio of the µ of the lesion used in this experiment (0.9 cm) to the lesion used in of the 

above (1.5 cm) became 1.66 (1.5/0.9). In order to provide the desired intensity, the 

amount of the contrast agent had to be trebled (1.66x3 = 4.98 ml≈5 ml). In this 

experiment 50 ml of contrast agent in 200 ml of PVAL solution was utilised. 

One 10% PVAL/CA lesion with 4 FTCs fabricated in a bead cutter was 

suspended in the middle of the breast mould. 2 L of 5% PVAL solution was then poured 

over the lesion into the latex painted mould. The breast mould including the PVAL 

solution and one lesion was placed into a domestic freezer for 2 FTCs. CT and 

mammography procedures were carried out after thawing the phantom. The CT 

procedure was repeated 4 days after fabrication of the phantom. 
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The mammography procedure was carried out an hour after the CT scan. The high 

compression was applied first in order to make sure that the lesion was viewable under 

high pressure. The paddle size was 24x29cm. 

11.3.1 Results and analysis 

11.3.1.1 CT results 

The lesion was seen in the CT image (Figure 11.20) of freshly thawed phantom. 

The HU of the lesion was 90 and the surrounding tissue was 12. 

 
Figure 11.20 CT image of a fresh phantom right after thawing (WL=0, WW=300) 

The lesion was barely visualized in the CT image (Figure 11.21) of the same 

phantom 4 days later.  

 
Figure 11.21 CT scan of the breast phantom 4 days after fabrication (WL=0, WW=300) 

11.3.1.2 Mammography results 

The table (Table 11.5) shows the data acquired from the mammography 

procedure. Due to the thickness of the phantom, the mammography unit cut out on 
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exposure 60 N. The last column of the table is the repetition of the first column with 197 

N to ensure that the lesion has similar visibility and the pressure changes did not 

deteriorate the lesion.  

 

Force (N) Compression (cm) KvP mAs Filter Organ (mGy) Entrance (mGy) 

197 5.9 30 275.5 Rh 7.04 29.00 

190 6.1 31 227.5 Rh 6.41 26.70 

173 6.4 31 259.2 Rh 7.14 30.70 

177 6.4 31 258.1 Rh 7.11 30.60 

164 6.5 32 214.1 Rh 6.50 28.60 

152 6.9 32 253.3 Rh 6.87 31.20 

139 7.0 32 242.2 Rh 7.00 32.20 

130 7.2 32 245.2 Rh 7.00 32.80 

119 7.7 32 295.1 Rh 8.11 40.20 

110 7.8 32 307.1 Rh 8.39 42.00 

100 8.3 33 264.9 Rh 7.69 40.30 

90 8.6 33 276.6 Rh 7.86 42.60 

80 8.9 33 295.4 Rh 8.20 45.90 

70 9.3 34 256.7 Rh 7.62 44.10 

60 cut out  
on exposure 

9.6 34 154.5 Rh 4.49 26.80 

197 6.1 31 242.5 Rh 6.84 28.40 

Table 11.5 Mammography parameters 

  



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 193 of 365 July 2015 

The lesion was viewed in the mammograms (Figure 11.22) with low visibility. All 

the mammogram images are in Appendix C.  

 
Figure 11.22 Mammograms of the breast phantom with various compressions 

11.4 IMPROVEMENT OF FABRICATION OF BREAST PHANTOMS/LESIONS - PART2  

This experiment was conducted in order to improve the visibility of the lesion in 

mammograms. Low mammographic visibility such as the one in the previous experiment 

(see 11.3 on page 190) would make the visual perception and mathematical evaluation 

methods either difficult or impossible to employ. For example, the insufficient visibility 

of the lesion will hinder the observers’ ability to evaluate the details of the lesions. 

Examples of the details which could be hindered include the sharpness of the edge and 

the contrast of the lesion and its surrounding area. Therefore, mammographic 

improvement of the lesion visibility is required in order to assess the image quality for 

the phantom/lesion.  The following experiment is aimed at improving visibility of the 

lesions in mammograms.  

Two medium sized (1L, 5% PVAL and 2 FTCs) breast phantoms were fabricated 

in this experiment. Based on the mastectomy specimen volume results by Kayar et al, a 

one litre breast phantom is appropriate as breast volume. In Kayar’s research, the breast 

volumes ranged from 150–1490 mL (Kayar, Civelek, Cobanoglu, Gungor, Catal, & 
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Emiroglu, 2011). The one litre mould used in this research was originally a mastectomy 

prosthesis cradle (mould) to hold the prosthesis undamaged. 

 Each phantom included two 10% lesions with 6 FTCs. The lesions were made up 

of 5 ml and 3 ml of CA mixed with 20 ml of PVAL solution. One of the each lesion was 

embedded in each phantom. In order to save contrast agent, the lesions were made in the 

bead cutter slightly different than in the previous experiment. A smaller batch of 10% 

PVAL doped with contrast agent was made and poured into each side of the bead cutter. 

The two hemispheres were then pressed together after the first freezing/thawing cycle. 

Surgical tweezers were used in order to reduce the contact between the lesions and the 

fingers. 

CT scan and mammography were performed immediately after fabrication of 

phantoms. In the mammography procedure using AEC, the compression force ranged 

from 50 N to 150N with an interval of 10 N (Table 11.6 and Table 11.7) and paddle size 

18x24 cm. After applying 150 N, 50 N was re-applied in order to see the changes in the 

visibility of the lesions from the first application of 50 N (last row of Table 11.6 and 

Table 11.7). The filter used in mammography was molybdenum (Mo) throughout the 

procedure. This means that due to the inadequate thickness of phantom for the rhodium 

filter, this filter was not required during the mammography procedure. 

  



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 195 of 365 July 2015 

 

Breast phantom 5% PVAL, 1FTC with 2 lesions 
Force (N) Compression (cm) kVp mAs Filter Organ (mGy) Entrance (mGy) 

47 3.2 25 89.1 Mo 2.10 7.86 

59 3.1 25 87.4 Mo 2.09 7.68 

70 2.9 24 105 Mo 2.13 7.66 

80 2.6 24 87.3 Mo 2.08 6.59 

85 2.7 24 92.2 Mo 2.08 6.98 

99 2.5 24 81.6 Mo 1.95 6.14 

109 2.4 24 80.9 Mo 1.98 6.06 

117 2.2 24 71.3 Mo 1.84 5.31 

129 2.2 24 70.5 Mo 1.82 5.25 

138 2.0 24 65.0 Mo 1.75 4.81 

141 2.0 24 66.0 Mo 1.78 4.88 

50 3.0 25 76.1 Mo 1.85 6.67 

Table 11.6 Mammography parameters for the medium size breast shaped phantom (5%PVAL, 

1FTC) with two lesions. 

 

Cylindrical phantom 5%, 2FTCs  with 2 lesions 

Force (N) Compression (cm) KvP mAs Filter Organ (mGy) Entrance (mGy) 

50 3.5 26 88.2 Mo 2.32 8.91 

61 3.3 25 107.6 Mo 2.50 9.52 

69 3.0 25 90.2 Mo 2.19 7.90 

79 2.7 24 103.3 Mo 2.33 7.89 

92 2.6 24 89.9 Mo 2.09 6.78 

100 2.5 24 88.1 Mo 2.10 6.63 

107 2.3 24 85.7 Mo 2.15 6.40 

114 2.3 24 81.1 Mo 2.04 6.06 

130 2.2 24 76.1 Mo 1.96 5.67 

137 2.1 24 75.3 Mo 1.99 5.59 

149 2.2 24 80.9 Mo 2.08 6.03 

52 3.0 25 85.3 Mo 2.07 7.48 

Table 11.7 Mammography parameters for a cylindrical phantom (5%PVAL, 2FTCs) with two 

lesions 

In this experiment, Two-alternative forced choice (2AFC) as a visual perception 

method was applied to evaluate the image quality of the lesions based on 5-point Likert 

scale (1= much worse, 2=worse, 3=equal, 4= better, 5=much better). The Likert scale, 

commonly used in research, is a scale which is used in questionnaires to obtain the 
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observers’ degree of agreement with the set of statements (criteria) (Mathers, Fox, & 

Amanda, 2009). In this research a 5-point Likert scale was chosen over a 3-point scale in 

order to collect more detailed perceived image quality opinions from the observers. The 

clarity of the lesion edges was the selected criteria in this experiment. 

 In order to select the reference image, enter the scores from the visual evaluation 

and collect the results of scoring the images a bespoke software (Blindell & Hogg, 2012) 

was utilised to perform the 2AFC method. The following image (Figure 11.23) depicts 

the main user interface of this 2AFC software. The images employed in 2AFC 

experiments, the reference image, the criteria and other 2AFC options are specified in 

this user interface. 
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Figure 11.23 The main user interface of the 2AFC software 

11.4.2 Results and analysis 

11.4.2.1 CT results 

Figure 11.24 shows the line profiles of two embedded lesions in one of the breast 

phantoms. 
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Figure 11.24 Left: CT scan of a breast shaped phantom with two lesions. Right: line profile of the 

lesions acquired from ImageJ 

The brighter lesion (right) was made up of 5 ml of CA in 20 ml of 10% PVAL 

and the blurry lesion (left) was made up of 3 ml of CA in 20 ml of 10% PVAL. The 

bright and blurry lesions are called High Density (HD) and Low Density (LD) in this 

experiment. Similarly, the lesion with 5 ml of CA was displayed brighter in the second 

phantom. 

The HU of the HD and LD lesions were 382 and 182 respectively. The HU of the 

surrounding breast mimicking tissue was 14. 

11.4.2.2 Mammography results 

The following mammogram (Figure 11.25) shows the lesions embedded in the 

breast phantom. The brighter lesion (top) in the image was made up of 5 ml of contrast 

agent while the other lesion was made up of 3 ml of contrast agent. All the mammograms 

are in Appendix D. 
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Figure 11.25 Mammograms of the breast phantom with two lesions 

11.4.2.3 2AFC results 

The following graph (Figure 11.26) was acquired based on the edge clarity 

criteria.  

 
Figure 11.26 2AFC, 3 repetitions for the High Density lesion in a cylindrical phantom 

The graph shows three readings for the same lesion. The jagged results show 

improvement from 61 N to 69 N. The drop was observed at 92 N and 137 N. The rest of 

the edge clarity graphs are in Appendix E. 
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11.4.3 Discussion  

In order to improve the visibility of the 9 mm lesions in breast phantoms, two sets 

of experiments were performed (11.3 and 11.4). In both sets of experiments, lesions were 

fabricated using the same amount of contrast agent (5 ml of contrast agent in 20 ml of 

10% PVAL). The main difference between these two sets of experiments was the size of 

the breast mould. In the first set, a 2L breast mould was employed while a 1L breast 

mould was utilised in the second set of experiments. The lesion which was embedded in a 

1L breast mould was more conspicuous than the lesion which was produced in a 2L 

breast mould. Clinically the size of the breast can affect the mammogram. Women with 

large breasts might require more images taken than women with small breasts (Espat, 

2012). Therefore in this study, using a 1L medium breast mould was suggested instead of 

a 2L large breast mould. 

11.4.4 Conclusion  

This experiment, having successfully produced a phantom in which lesions could 

be viewed in a mammography procedure, provides a basis for the evaluation of the lesion 

in relation to the breast phantom. This shows that a 5% PVAL phantom with 2FTCs 

fabricated in a 1L breast mould is appropriate for the breast phantom as required for this 

research. It also shows that a 10% PVAL lesion enriched with 5 ml of contrast agent is 

appropriate for the embedded lesions in the lesion visibility studies. 

11.5 EVALUATION OF THE VISIBILITY OF THE LESION BASED ON THE BREAST 

PHANTOM THICKNESS  

After completion of the design and fabrication of a breast phantom with 

embedded lesions, the following sets of experiment were conducted in order to determine 

the lesion visibility in relation to the phantom thickness.     
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A 5% breast phantom with one embedded lesion was created and underwent 2 

freeze-thaw cycles. An embedded lesion was prepared with 10% PVAL solution doped 

with 5 ml of CA. The lesion underwent 4 freeze-thaw cycles prior to being placed in the 

5% PVAL solution. A 1L plastic breast mould was utilised to shape the breast phantom 

during fabrication. As Figure 11.27 shows, the lesion was suspended from plastic 

supports 4.5 cm below the top of the mould utilising nylon thread. 

 
Figure 11.27 Suspended lesion inside the breast mould. 

In order to keep the surface of the mould level, the mould was placed into a 

plastic container (Figure 11.28). Then, a 5% PVAL solution was poured slowly into the 

mould until the mould was filled completely. The 5% PVAL solution underwent 2 FTCs. 

Each freezing cycle was 12 hours at -26 °C. After the completion of each freeze cycle, 

the phantom was left out at room temperature to thaw. The phantom was considered 

thawed when no solid lumps could be detected by manual manipulation. The first 

thawing took 13 hours and the second thawing took 18 hours at room temperature. The 

total freezing/thawing time for both cycles took 55 hours. 
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Breast Mould

Plastic Container  
Figure 11.28 Levelling the breast mould 

After thawing the phantom, the phantom was imaged by a CT scanner followed 

by the mammography imaging (Figure 11.29). As the image shows, the phantom was 

attached to a wooden frame and secured to the mammography unit with the assistance of 

a ratchet strap. The base of the wooden frame was tilted by placing an object under one 

side of the frame in order to position the top of the frame 1.5 cm away from the 

compression paddle. This gap allows the paddle to move easily without being blocked by 

the wooden frame during compression. It also prevents damaging the mammography unit 

by the wooden torso. 

 
Figure 11.29 Mammography of a breast phantom attached to a wooden torso 

The following image depicts (Figure 11.30) the gap between the mammographic 

paddle and the wooden torso. 
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Figure 11.30 Gap between the wooden board and the mammographic paddle 

Prior to the imaging procedure, the phantom was lubricated with ultrasound gel in 

order to reduce friction during the compression which could result in tearing the latex 

skin and damaging the phantom. This transparent ultrasound gel did not interfere with 

acquired mammograms.  

In order to simulate the mammography experiment similar to the mammography 

of the real breast tissue, AEC and Auto-Filter were both utilised during the 

mammography procedure.  They both were set “on” prior to the mammography on the 

mammographic acquisition workstation. The Hologic Lorad Selenia mammography unit 
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employed in this research supports three Automatic Exposure Control (AEC) modes: 

Auto-time, Auto-kV, and Auto-filter.   

In the Auto-Filter mode, the machine automatically switches between Rhodium 

(Rh) and Molybdenum (Mo) filters. The machine decides which filter to utilise based 

upon the compression thickness of the tissue being imaged and a lookup table. The Auto-

kV mode fixes the filter based upon the anode being utilised. If the anode utilised is Mo 

then a Mo filter will be employed. If a tungsten (W) anode is utilised then a Rh filter will 

be used.  The machine computes the appropriate kV based upon thickness and a lookup 

table.  With the Auto-Time mode, the filter and kV are user-selected. In all three modes 

the mAs is calculated based upon the results of a pre-exposure scout pulse (Hologic Inc.).   

Common clinical practice when performing mammography is to use AEC with 

the Auto-Filter mode and allow the mammography unit to control a wide range of 

exposure factors (Astley, 2006). Therefore, this study relied on the Auto-Filter mode to 

control the imaging factors and determine the optimal filter together with the optimal X-

ray tube voltage based on the breast phantom thickness. 

The compression was started with the thickness of 9 cm and was gradually 

increased manually by 2 mm intervals using an 18x24 cm flexible paddle. The last image 

was acquired when no more compression could be applied. The imaging was continued 

by reducing the compression thickness by 4 mm from the last thickness to reach the 

starting thickness. 28 mammograms were acquired from increasing of the compression 

force and 14 mammograms were acquired from decreasing of the compression force. The 

reduction of compression resulted in collecting more datasets and helped verify if the 

phantom/lesion had been damaged because of the compression. 

The following image (Figure 11.31) shows the phantom with initial compression 

on the left and maximum compression on the right (5.4 cm thickness reduction). As the 
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image shows the compressed phantom (right) looks more spread out than the phantom 

with initial compression. The lesion has higher visibility with sharper edge and higher 

contrast on the phantom with maximum compression. The image on the left with initial 

compression looks noisier than the image with maximum compression. 

 
Figure 11.31 Phantom1 with 1 embedded lesion - left: Initial compression. Right: Final 

compression 

The same experiment was repeated with two lesions inserted into two separate 

quadrants of the phantom. The lesions were placed in the phantoms diagonally in order to 

avoid being overlapped during mammography. The reason that two lesions were chosen 

was to visualise the effect of location on the visibility of the lesion. This also helped 

collect more datasets.  As the following image (Figure 11.32) shows, the location (left) of 

the two lesions was determined prior to suspending them inside the painted breast mould 

utilizing a plastic support. 

 Figure 11.33 shows the breast phantom including two lesions with the initial 

compression (left image) and the final compression (right image). The image with initial 

compression displays some artefacts. These artefacts are mostly on the surface or skin of 
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the breast phantom and they are less visible with the reduction of the thickness (left 

image).  

 
Figure 11.32 Measuring (left) and suspending (right) two PVAL lesions in a breast mould 

 
Figure 11.33 Phantom6 with 2 embedded lesions - left: Initial compression. Right: Final 

compression 

In order to provide robust and reliable results, this experiment was repeated 6 

times using 3 phantoms with one embedded lesion and 3 phantoms with two embedded 

lesions. In total 228 mammograms were acquired (38 images per phantom). 
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The images were evaluated perceptually and mathematically. In the perceptual 

experiment, a 2AFC method was utilised using a bespoke software (Blindell & Hogg, 

2012). A 5-point Likert scale (1=much worse, 2=worse, 3=equal, 4=better, 5=much 

better) was used to score the images. The criteria for visual perception included lesion 

visibility, sharpness, contrast, noise and size of the lesion.  

Since image quality in mammography is affected by sharpness, contrast and noise 

( (Rajendran, Krishnapillai, Tamanang, & Chelliah, 2012), these criteria were added to 

the visual perception of this research. Generally unsharpness or blurring in the image 

limits the visibility of the details. Not being able to visualise the details in the breast 

image such as spicules of spiculated cancer lesions or microcalcifications might cause 

false negative or misdiagnosis. Since visualizing the shapes and margins of the lesions 

helps to differentiate a benign lesion from a malignant one, taking this criterion into 

account is valid. Similar to sharpness, a noisy image can hide the subtle lesions or fine 

microcalcifications; hence it is important to include noise to the criteria.  

One of the challenges in mammography is to distinguish cancer lesions from 

glandular tissue. This differentiation becomes harder in denser breast with larger 

glandular tissue. Having a good contrast between breast structures facilitates the detection 

of cancer lesions. Therefore contrast can be considered as an appropriate criterion in 

mammographic visual perception studies (Smith, 2014). 

One of the main purposes of this research is to assess the relationship between the 

lesion visibility and the breast phantom thickness, thus, it is necessary to include 

visibility as a criterion in visual perception studies. It is important to mention that 

visibility of a lesion is affected by multiple factors such as brightness, contrast, sharpness, 

noise and the presence of artefacts. 
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The size as a criterion was considered in the visual perception part of this 

research. This was to see if the lesion size was perceived wider due to the spreading out 

of the compressible PVAL lesion with the increase of the compression force. 

Three observers (see 9.1.1 on page 107) with medical imaging background 

evaluated the lesions in 6 phantoms separately. The observers did not have to be qualified 

with medical imaging background since this part of the research was perceptual not 

cognitive. These observers wore corrective lenses as required for 2AFC. 3 datasets were 

collected for data analysis. 

In a dimmed room (a low level of background ambient light) at Salford 

University, two calibrated 5 Mega-Pixel diagnostic monitors, slightly angled towards 

each other were utilised to evaluate the images. In order to reduce the effect of eye strain 

on the evaluation, the readers only evaluated one set of mammograms in maximum 30 

minutes at a time for images related to a single phantom. The reader would then take a 

break whilst another reader would evaluate the same set of mammograms.  

During the visual experiment (2AFC), each participant had to evaluate/score a set 

of images in a randomized order with no identifying information per phantom against a 

reference image. There was no information presented to observers regarding breast 

thickness and observers scored the images blind. 

The reference images with average quality were selected prior to the 

commencement of the visual experiment by one experienced medical physicist and one 

experienced radiographer. These observers were different than the three observers who 

evaluated the image quality of the images. The selection was carried out by going 

through the images sequentially from the first acquired image to the last. The two 

observers were blinded to the acquisition conditions. For each phantom, one average 

quality image was selected from the decreased thickness set of images and one average 
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quality image was selected from the increased thickness set. The reason that an average 

quality image was selected as a reference image was to cover scores above and below the 

reference image, not necessarily only above or below.  

The collected scores from a .tsv file were copied to an Excel file and the related 

graphs were plotted per criteria as a function of the change in thickness (thickness 

reduction). Since the raw data acquired from the 2AFC experiment were in a random 

order, the results needed to be sorted prior to the plotting.  

In the non-perceptual analysis, four different measures were calculated and 

plotted. These measures were contrast-to-noise ratio (CNR), signal-to-noise ratio (SNR), 

Figure of Merit (FOM), and line profile (noise profile). 

CNR and SNR measures are directly related to the visibility of lesions in the 

mammograms. This is diagnostically important for clinicians. The decrease of the CNR 

and SNR results in the increase of the possibility of missing features such as lesions 

(Smith & Webb, 2010).  In order to measure CNR and SNR, homogeneous regions were 

first selected as region of interest (ROI) for the lesions and the backgrounds. The region 

of interest was measured by following a method from Bushberg et al. (Bushberg, Seibert, 

Leidholdt, & Boone, 2011). Then the mean grey value of the lesions/background and the 

standard deviation of the background (noise) were collected using ImageJ. The mean 

grey values of the lesions/backgrounds were used in the following equations to measure 

CNR and SNR (Cush, 2007): 

𝐶𝑁𝑅 =
𝑚𝑒𝑎𝑛𝑔𝑟𝑒𝑦𝑣𝑎𝑙𝑢𝑒(𝑙𝑒𝑠𝑖𝑜𝑛) − 𝑚𝑒𝑎𝑛𝑔𝑟𝑒𝑦𝑣𝑎𝑙𝑢𝑒(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)

𝑠𝑡𝑑𝑒𝑣(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
 

𝑆𝑁𝑅 =
𝑚𝑒𝑎𝑛𝑔𝑟𝑒𝑦𝑣𝑎𝑙𝑢𝑒(𝑙𝑒𝑠𝑖𝑜𝑛)

𝑠𝑡𝑑𝑒𝑣(𝑏𝑎𝑐𝑘𝑔𝑟𝑜𝑢𝑛𝑑)
 

In general, Figure of Merit (FOM) as a numerical quantity is used to characterize 

the performance of the devices. In digital mammography, FOM is a tool which evaluates 
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the performance of the mammography system in terms of image quality and patient 

radiation dose (Acton, 2013). In order to measure the FOM, various formats and 

definitions have been used in mammography. One of these definitions is signal-

difference-to-noise ratio (SDNR) squared per unit exposure or radiation dose (Samei, 

Dobbins III, Lo, & Tornai, 2005). Since the CNR is another definition for SDNR, 

therefore CNR squared can be used as numerator of the formula to measure FOM. Mean 

glandular dose (MGD), as a denominator in FOM formula is commonly used to calculate 

FOM.  

The breast glandular tissues are more radiosensitive and at a higher risk from X-

ray exposure compared to fatty tissues (International Atomic Energy Agency, 2013). 

Therefore, the estimation of the MGD dose (the average dose to the breast glandular 

tissue) as a specific mammographic radiation dose is essential (Donga, et al., 2002). 

MGD cannot be measured directly from the mammography procedure, but research has 

shown the similarity between the organ dose which is displayed on the console of the 

mammography unit and the measured MGD dose. MGD can also be read from the 

DICOM header (McCullagh, Baldelli, & Phelan, 2010). 

In order to measure the MGD, the entrance surface exposure, or air kerma to the 

breast has to be calculated. Kinetic energy released per unit mass (kerma) is the amount 

of radiation energy placed in or absorbed in a unit of mass of air. In other words, air 

kerma is the absorbed dose in air.  The unit of air kerma is J/Kg which is the radiation 

unit (Gy) (Sprawls, 1995). 

The air kerma can be directly measured by placing small dosimeters on the breast. 

MGD is the product of the air kerma and the dose factors. The amount of dose factors are 

related to the size and composition of the breast (percentage of fat/glandular), and the 

characteristics of the X-ray radiation. The characteristics of the X-ray beam are defined 
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by the target/filter materials and the energy of the beam (Sprawls, 1995) (Dance, Skinner, 

Young, Beckett, & Kotre, 2000). The following formula calculates the MGD (Dance, 

Skinner, Young, Beckett, & Kotre, 2000). 

𝑀𝐺𝐷 = 𝐾 ∙ 𝑔 ∙ 𝑐 ∙ 𝑠  

Where K is the entrance surface air kerma and g, c and s are conversion factors 

for X-ray radiation and breast characteristics. 

FOM can be measured using SNR squared divided by MGD (Borg, Badr, & 

Royle, 2011). Regardless of the applied FOM formula, the higher values of FOM 

represent better imaging performance in terms of image quality at lower radiation dose.  

In this research, the following equations were used to measure FOM. Radiation 

dose in the FOM formula was replaced with organ dose and entrance dose acquired from 

the mammography procedure.  

𝐹𝑂𝑀𝑆𝑁𝑅 =
𝑆𝑁𝑅2

𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑠𝑒
 

𝐹𝑂𝑀𝐶𝑁𝑅 =
𝐶𝑁𝑅2

𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑑𝑜𝑠𝑒
 

Generally, line profiles demonstrate a two-dimensional graph of the pixels values 

(grey values) along a line within the image. Line profile graphs are able to show how 

sharp the edges of the objects are within the image. They also can display how noisy the 

images are. In this method, the line profile graphs utilizing the ImageJ software were 

employed in order to compare the magnitude of the noise and the sharpness of the edge of 

the lesions in multiple mammograms of the same phantom with various thickness 

reductions.  

In the visual perception study, in order to evaluate the reliability of the 

measurements (inter-rater reliability) a specific test was carried out utilising a piece of 

statistical software called MedCalc. This test is referred to as intraclass correlation 
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coefficient (ICC). The ICC model 2 with “consistency” and “absolute agreement” types 

were employed to measure the reliability of the scores collected by the three observers 

(MedCalc , 2015).   

11.5.1 Results and analysis 

11.5.1.1 CT results 

The following CT images with the corresponding profile graphs plotted in ImageJ 

(Figure 11.34, Figure 11.35, Figure 11.36, and Figure 11.37) demonstrate a lesion in a 

breast phantom containing two lesions and a lesion in a phantom holding one lesion 

respectively. Both graphs show the maximum grey value over 300.  

The lesions in the CT images look sharp and visible with high contrast. As was 

mentioned in 10.2.4.8 on page 163, the grey values demonstrate the HU of the lesions in 

the DICOM files imported to ImageJ.  
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Figure 11.34 CT scan of a lesion in a two-lesion phantom (WL=0, WW=300) 

 
Figure 11.35 Profile plot of a lesion in a two-lesion phantom 

 
Figure 11.36 CT scan of a lesion in a one-lesion phantom (WL=0, WW=300) 

 
Figure 11.37 Plot profile of a lesion in a one-lesion phantom 

11.5.1.2 Mammography results 

The following mammograms (Figure 11.38) demonstrate the fabricated lesions 

compared to a real breast mass.  As the images show, the visible phantom lesions (left) 

and the breast lesion (right) all resemble each other. While The PVAL phantom has a 

homogenous texture compared to the real breast.  
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Figure 11.38 Left: Embedded lesions in PVAL phantom. Right: Craniocaudal mammogram of the 

left breast (Harish, Konda, MacMahon, & Newstead, 2007) 

The data acquired from the mammography of 6 phantoms are demonstrated in 

Appendix F. The following table (Table 11.8) as a sample mammographic data 

demonstrates thickness of the breast, force, kVp, mAs, Target/Filter, organ dose and 

entrance dose. 
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Breast phantom: 5% PVAL, 2 FTCs 
Lesion(s): One lesion, 10% PVAL, 5 ml CA, 6FTCs 
Paddle size: 18x24 

Thickness 
(cm) 

Force (N) KvP mAs Filter Organ dose 
(mGy) 

Entrance dose 
(mGy) 

9.0 -------- 34 205.9 Rh 6.24 35.00 

8.8 -------- 33 258.4 Rh 7.23 40.00 

8.6 -------- 33 254.3 Rh 7.23 39.10 

8.4 -------- 33 238.4 Rh 6.88 36.40 

8.2 45 33 219.1 Rh 6.41 33.20 

8.0 50 33 211.0 Rh 6.25 31.80 

7.8 54 32 260.8 Rh 7.11 35.70 

7.6  53 32 235.0 Rh 6.51 31.90 

7.4 60 32 223.6 Rh 6.29 30.10 

7.2 64 32 211.4 Rh 6.03 28.30 

7.0 71 32 202.3 Rh 5.85 26.90 

6.8 75 32 198.7 Rh 5.86 26.20 

6.6 81 32 185.1 Rh 5.57 24.30 

6.4 87 31 226.8 Rh 6.25 26.90 

6.2 92 31 206.6 Rh 5.78 24.30 

6.0 100 31 198.9 Rh 5.65 23.20 

5.8 104 30 228.4 Rh 5.90 23.90 

5.6 113 30 213.2 Rh 5.62 22.20 

5.4 120 29 244.7 Mo 7.59 36.60 

5.2 127 29 225.7 Mo 7.11 33.50 

5.0 138 29 212.3 Mo 6.79 31.30 

4.8 145 28 268.1 Mo 7.73 35.40 

4.6 157 28 247.1 Mo 7.27 32.40 

4.4 171 27 327.0 Mo 8.60 38.20 

4.2 182 27 269.1 Mo 8.00 34.40 

4.0 196 27 280.0 Mo 7.75 32.30 

3.8 207 26 352.5 Mo 8.80 36.00 

3.6 217 26 318.5 Mo 8.24 32.30 

Table 11.8 Acquired data from the mammography procedure of the compressed phantom 

 Since the purpose of this research is to find the relationship between the breast 

thickness and the visibility of the lesion, recording the breast thickness was crucial. 

Organ/entrance dose were gathered in order to measure the figure of merit (FOM). Mo 

was the target through the entire mammography procedure, but the filter altered between 
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Rh to Mo, depending on kVp, therefore recording the automatically selected filter was 

important to see the effect on radiation dose and image quality, thereby representing 

clinical reality. 

The force below 45 N was not recorded by the mammography unit. Therefore all 

the graphs were plotted based on the thickness of phantom not the force. The initial 

compressed phantom was 9 cm and before each exposure, the phantom was manually 

compressed by 2 mm. The last image was taken with a phantom thickness of 3.6 cm. This 

equates to a 5.4 cm reduction of thickness from the starting point. 

The following data (Table 11.9) shows the effect of compression on the 

mammograms as the compression on the breast was reduced from maximum compression 

(minimum breast thickness) down to minimum compression (maximum breast thickness). 

In this set, the first image is taken with a breast phantom thickness of 4 cm. Successive 

images were taken each time reducing compression and increasing thickness of the 

phantom by 4 mm per exposure. It is worth mentioning that, in the following graphs, 

‘inc’ and ‘dec’ in the “chart title” refer to the increase of compression (decrease of the 

thickness) and decrease of the compression (increase of the thickness) respectively.  
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Breast phantom: 5% PVAL, 2 FTCs 
Lesion(s): One lesion, 10% PVAL, 5 ml CA, 6FTCs 
Paddle size: 18x24 

Thickness 
(cm) 

Force (N) KvP mAs Target/Filter Organ dose 
(mGy) 

Entrance dose 
(mGy) 

3.6 217 26 318.5 Mo 8.24 32.30 

4.0 153 27 241.5 Mo 6.68 27.90 

4.4 117 27 271.0 Mo 7.13 31.70 

4.8 96 28 228.4 Mo 6.59 30.20 

5.2 78 29 184.1 Mo 5.80 27.30 

5.6 64 30 171.0 Rh 4.51 17.80 

6.0 48 31 154.8 Rh 4.40 18.10 

6.4 -------- 31 176.6 Rh 4.88 20.90 

6.8 -------- 32 151.7 Rh 4.48 20.00 

7.2 -------- 32 171.7 Rh 4.90 23.00 

7.6 -------- 32 190.4 Rh 5.28 25.90 

8.0 -------- 33 167.5 Rh 4.97 25.20 

8.4 -------- 33 181.0 Rh 5.26 27.50 

8.8 -------- 33 193.3 Rh 5.45 29.80 

9.2 -------- 34 160.7 Rh 4.81 27.50 

Table 11.9 Acquired data from the mammography procedure of the compressed phantom during 

the reduction of the compression 

As the following graphs (Figure 11.39 and Figure 11.40) show, the breast 

phantom thickness changes corresponding to the applied compression force.  
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Figure 11.39 Force vs. change in thickness - decreasing thickness 

 
Figure 11.40 Force vs. change in thickness - increasing thickness 
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The following entrance and organ dose graphs (Figure 11.41 to Figure 11.44) 

were directly recorded from the mammographic data (Table 11.8 and Table 11.9).  

 
Figure 11.41 Organ dose vs. change in thickness - decreasing thickness  
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Figure 11.42 Entrance dose vs. change in thickness - decreasing thickness  

 
Figure 11.43 Organ dose vs. change in thickness - increasing thickness  
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Figure 11.44 Entrance dose vs. change in thickness - increasing thickness 
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Phantoms 5 in the above graphs (Figure 11.41 and Figure 11.42) shows higher 

radiation dose. This is due to the lack of utilisation of the Rh filter through the 

mammography during the increased compression. This problem was automatically 

resolved during mammography with the decreased compression (Figure 11.43 and Figure 

11.44). 

The following graphs (Figure 11.45 and Figure 11.46) show the average 

organ/entrance dose for 6 phantoms for both increased and decreased compression.  

 
Figure 11.45 Entrance dose for 6 phantoms 

 
Figure 11.46 Organ dose for 6 phantoms 
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The ‘inc’ series show the radiation dose increase after 3.4 cm of thickness 

reduction and the ‘dec’ series demonstrates the radiation dose increase after 3.6 cm of 

thickness reduction. The increase of the entrance dose is 14.08 mGy from 3.4 to 3.6 cm 

thickness reduction (inc) and 11.34 mGy from 3.6 to 4 cm thickness reduction (dec). The 

increase of organ dose shows as 1.99 mGy from 3.4 to 3.6 cm thickness reduction (inc) 

and 1.58 mGy from 3.6 to 4 cm thickness reduction (dec). The organ dose ranged from 

6.56-9.38 mGy in decreased thickness (inc) and 5.07-8.08 mGy in increased thickness 

(dec) for 3.6-9 cm phantom thickness. Based on European Guidelines, mean glandular 

dose (MGD) ranged from 1.5-6.5 mGy for 3-7cm PMMA thickness (Perry, Broeders, De 

Wolf, Törnberg, Holland, & Von Karsa, 2013).  

As the thickness of the breast phantom decreases, the amount of photon energy 

required to penetrate through the breast phantom decreases.  Therefore the filter changes 

automatically from Rh to Mo. At the point where the filter changes from Rh to Mo, the 

mAs increases. This is the point which kVp drops from 30 to 29.       

The following graphs (Figure 11.47 to Figure 11.49) show the relationship 

between the kVp and mAs in relation to the thickness reduction.  

 
Figure 11.47 Mammographic kVp vs. change in thickness for 6 phantoms 
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Figure 11.48 Mammographic mAs vs. change in thickness for 6 phantoms - decreasing thickness 

 
Figure 11.49 Mammographic mAs vs. change in thickness for 6 phantoms - increasing thickness 
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in more modern mammographic systems (Sechopoulos, 2014). Typically mammographic 

tube currents are between 80 to 200 mA. The exposure time varies between 1 to 4 

seconds depending on the type of the breast (Huda & Slone, 2007). For example for a 3-

second exposure time with the mA of 80, the calculated mAs would be 240. In this 

experiment, the employed kVp (26-34) and mAs (151.7-399.8) are clinically appropriate. 

 As was discussed above, the maximum radiation dose reduction occurred at 3.4 

cm and 3.6 cm of thickness reduction in increase and decrease experiments respectively. 

In the increased compression experiment, the average mAs at 3.4 cm thickness reduction 

was 245.38 and in the decreased compression experiment, the average mAs at 3.6 cm 

thickness reduction was 195.61. The data for the following graphs (Figure 11.51 to 

Figure 11.53) were acquired from the mammograms of the 6 phantoms in ImageJ in order 

to measure CNR and SNR. CNR and SNR are measures used in medical imaging to 

quantify the quality of the images. These numbers show the ratio of contrast to noise and 

signal to noise. CNR and SNR were used to calculate the figure of merit based on organ 

dose and entrance dose. 

Mean grey value of the lesion, background and the standard deviation of the 

background were used to measure the SNR and CNR. The ROI for the lesion was a circle 

inside a homogenous area of the lesion and the ROI for the background was the nearby 

homogenous area around the lesion (Figure 11.50). The mean grey value of the lesion and 

background were plotted against the thickness. The standard deviation of the background 

(noise) was plotted against the thickness. These plots show the variations of the 

background noise and grey values against the thickness of phantoms. 
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Figure 11.50 Left: ROI for the lesion. Right: ROI for the background 

 
Figure 11.51 Grey value of the lesion vs. change in thickness for 6 phantoms 

 
Figure 11.52 Mean grey value of the background vs. change in thickness for 6 phantoms 
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Figure 11.53 Standard deviation of the background or noise vs. change in thickness for 

6phantoms 

The mean grey value of the lesion and the background show the decrease 

followed by the increase in the grey value. A similar pattern is observed for the noise or 

standard deviation of the background. The minimum and maximum noise for the 

increased compression phantoms were at 1 cm and 5.4 cm of thickness reduction.  The 

minimum and maximum noise for the decreased compression phantoms were at 1.6 cm 

and 5.2 cm of thickness reduction.  
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thickness 
(mm)  

Image 
noise 

Visibility Sharpness  Contrast Size SUM-IQ 

9.0 2 2 2 2 3 8 

8.8 3 2 2 2 2 9 

8.6 3 2 2 2 2 9 

8.4 3 1 2 2 3 8 

8.2 3 2 2 2 2 9 

8.0 3 2 2 3 3 10 

7.8 3 3 3 3 3 12 

7.6 4 4 3 3 4 14 

7.4 3 3 3 3 3 12 

7.2 2 3 3 3 3 11 

7.0 4 4 4 4 3 16 

6.8 3 3 3 3 3 12 

6.6 4 4 4 4 3 16 

6.4 3 4 3 4 3 14 

6.2 3 4 4 4 4 15 

6.0 3 4 4 4 4 15 

5.8 2 4 5 4 5 15 

5.6 3 4 4 4 3 15 

5.4 3 4 4 3 3 14 

5.2 3 3 3 4 3 13 

5.0 3 3 4 3 3 13 

4.8 3 4 4 4 3 15 

4.6 4 4 4 4 3 16 

4.4 4 4 4 4 4 16 

4.2 4 4 4 4 3 16 

4.0 3 5 4 5 4 17 

3.8 5 5 5 5 5 20 

3.6 4 5 4 5 4 18 

Table 11.10  An example of measuring the image quality per participant.   

The average score of the participants per criteria for each phantom (Table 11.11) 

and the average of the averages for multiple phantoms (Table 11.12) were calculated and 

plotted versus the change in thickness. The standard deviation of the participants for each 

phantom and average score of multiple phantoms were calculated and added to the 

graphs. The low standard deviations indicate that the scores from the readers were close 

to each other. 

 The average scores for the 6phantoms, 3phantoms with one lesion and three 

phantoms with two lesions were calculated and plotted separately (Appendix G). The 
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graphs for the phantoms with 2 lesions were classified into top and bottom lesions. In the 

collected mammograms the lesions which were closer to the detector show on top and the 

lesions farther from the detector show below the top lesions. Because of this in the 

graphs, the lesions were labelled as top and bottom. The 6phantom graphs are based on 

the average scores of three phantoms with one lesion, three phantoms with the top lesion 

and three phantoms with the bottom lesion. 
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Change in 
Thickness 
(mm) 

contrast- 
R1 

contrast- 
R2 

contrast- 
R3 

Phan1- 
contrast- 
inc 

stdev 

0.0 2 2 1 1.66 0.57 

0.2 2 2 2 2.00 0.00 

0.4 2 2 1 1.66 0.57 

0.6 2 2 2 2.00 0.00 

0.8 2 2 3 2.33 0.57 

1.0 2 3 2 2.33 0.57 

1.2 3 3 3 3.00 0.00 

1.4 4 3 3 3.33 0.57 

1.6 4 3 3 3.33 0.57 

1.8 4 3 3 3.33 0.57 

2.0 4 4 5 4.33 0.57 

2.2 4 3 3 3.33 0.57 

2.4 4 4 3 3.66 0.57 

2.6 4 4 3 3.66 0.57 

2.8 4 4 3 3.66 0.57 

3.0 4 4 4 4.00 0.00 

3.2 4 4 4 4.00 0.00 

3.4 4 4 4 4.00 0.00 

3.6 4 3 3 3.33 0.57 

3.8 4 4 3 3.66 0.57 

4.0 4 3 3 3.33 0.57 

4.2 4 4 4 4.00 0.00 

4.4 4 4 4 4.00 0.00 

4.6 4 4 4 4.00 0.00 

4.8 4 4 4 4.00 0.00 

5.0 4 5 4 4.33 0.57 

5.2 4 5 4 4.33 0.57 

5.4 4 5 4 4.33 0.57 

Table 11.11 Example of calculation of average of contrast scored by 3 separate readings (R1, R2 

and R3 were visual perception participants/readers) 
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Change in 
Thickness 
(mm) 

Phan1-
contrast-
inc 

Phan2-
contrast-
inc 

Phan3-
contrast-
inc 

Phantoms
123-Ave-
inc-
Contrast 

Std 

0.0 1.66 1.66 1.00 1.44 0.38 

0.2 2.00 1.66 1.33 1.66 0.33 

0.4 1.66 2.33 1.33 1.77 0.50 

0.6 2.00 2.00 2.00 2.00 0.00 

0.8 2.33 2.33 1.66 2.11 0.38 

1.0 2.33 2.00 1.66 2.00 0.33 

1.2 3.00 2.33 2.00 2.44 0.50 

1.4 3.33 2.33 2.00 2.55 0.69 

1.6 3.33 2.33 2.00 2.55 0.69 

1.8 3.33 2.33 2.66 2.77 0.50 

2.0 4.33 2.66 2.33 3.11 1.07 

2.2 3.33 2.33 2.33 2.66 0.57 

2.4 3.66 2.33 2.33 2.77 0.76 

2.6 3.66 3.00 3.00 3.22 0.38 

2.8 3.66 3.00 2.33 3.00 0.66 

3.0 4.00 2.66 2.66 3.11 0.76 

3.2 4.00 2.66 2.66 3.11 0.76 

3.4 4.00 3.33 3.00 3.44 0.50 

3.6 3.33 2.33 3.00 2.88 0.50 

3.8 3.66 3.66 2.66 3.33 0.57 

4.0 3.33 3.33 2.66 3.11 0.38 

4.2 4.00 3.33 3.00 3.44 0.50 

4.4 4.00 3.66 4.00 3.88 0.19 

4.6 4.00 4.00 4.00 4.00 0.00 

4.8 4.00 4.00 4.00 4.00 0.00 

5.0 4.33 4.00 4.00 4.11 0.19 

5.2 4.33 4.33 4.00 4.22 0.19 

5.4 4.33 4.66 4.66 4.55 0.19 

Table 11.12 Example of average contrast of three phantoms (Ave=Average) 
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The following graphs (Figure 11.54 to Figure 11.59) display all the image quality 

graphs in relation to the reduction of the breast phantom thickness. These graphs are the 

results of the visual perception method. 

 

 
Figure 11.54 Average visibility of the lesions for 6 phantoms 

 
Figure 11.55 Average sharpness of the lesions for 6 phantoms 
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Figure 11.56 Average contrast of the lesions for 6 phantoms 

 
Figure 11.57 Average noise for 6 phantoms 
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Figure 11.58 Average size of the lesions for 6 phantoms 

 
Figure 11.59 Average Image Quality (IQ) for 6 phantoms 
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(Figure 11.58). This means that the largest size for the lesion was observed when the 

phantom thickness was at a minimum.  

Figure 11.59 shows the overall image quality score which was the average of 

summation of visibility, sharpness, contrast, and noise for all 6 phantoms. This means 

that first the summation of visibility, sharpness, contrast, and noise per phantom for each 

thickness (IQ𝑖) was calculated and then the average (
∑ IQ𝑖

6
1

6
) for 6 phantoms was calculated 

and displayed in the graph (Figure 11.59). Since size was affected by the image quality 

parameters, it was excluded from the calculation of the image quality (IQ).  

Note: Appendix G displays all the related image quality score graphs. 

 

Phantoms Min image 
quality 
score-inc 

Max image 
quality 
score-inc 

Min image 
quality score 
- dec 

Max image 
quality score 
- dec 

6Phantoms 6.48 18.70 6.51 16.48 

Phantoms123 6.77 17.66 6.33 14.66 

Phantoms456-TopLesion 6.44 19.22 6.88 17.33 

Phantom6456-BottomLesion 6.22 19.22 6.22 17.44 

Table 11.13 Min/Max image quality (IQ) scores 

As Figure 11.59 shows, the increase in image quality (IQ) increases linearly with 

the decrease in phantom thickness. Comparison of the minimum and maximum IQ values 

in Table 11.13 shows the maximum image quality is roughly 3 times higher than the 

minimum.  

11.5.1.4 Plot profile results 

The following graphs (Figure 11.60) were acquired from ImageJ in order to see 

the profile of the phantom and lesion per compression force. The profile helps see the 

magnitude of the background noise of the lesion. It also shows the sharpness of the lesion 

related to the phantom thickness. 
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A horizontal straight line was drawn through the entire phantom including the 

lesion. The latex skin was excluded from the measurement since the main purpose of 

using latex skin was to hold the phantom attached to the wooden torso and to keep the 

phantom hydrated. 

 
Figure 11.60 Lesion - background profile. Left: Initial compression. Right: Final compression of 

breast phantom 

The magnitude of the noise drops from the initial thickness reduction to the final 

thickness reduction. The edge of the lesion also looks sharper for the reduced thickness 

phantom. This analysis has been repeated three times for both increase and decrease of 

the compression force in three phantoms with one embedded lesion. All the results 

unanimously have proved the improvement of the edge sharpness with the increase of 

compression force. It is also noticeable that the noise magnitude is higher around the 

chest wall which is the thicker part of the phantom compared to the nipple area which is 

thinner. The thicker part of the phantom causes more scattering of the X-ray beam than 

the thinner part, so the higher amount of noise shows in that area. 

11.5.1.5 CNR, SNR, and FOM results 

The following graphs (Figure 11.61 to Figure 11.64) Show the relationship 

between CNR and the thickness reduction. The CNR graphs demonstrate improvement of 
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image quality up to 3.4 cm and 3.6 cm of thickness reduction for the increased and 

decreased compression phantoms respectively.  

 
Figure 11.61 Average CNR for 6 phantoms 

 
Figure 11.62 Average CNR for phantoms 1, 2 and 3 
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Figure 11.63 Average CNR for the top lesions of phantoms 4, 5 and 6 

 
Figure 11.64 Average CNR for the bottom lesions of phantoms 4, 5 and 6 

The following graphs (Figure 11.65 to Figure 11.68) show the relationship 

between SNR and the thickness reduction.  
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Figure 11.65 Average SNR for 6 phantoms 

 
Figure 11.66 Average SNR for phantoms 1, 2 and 3 
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Figure 11.67 Average SNR for the top lesions of phantoms 4, 5 and 6 

 
Figure 11.68 Average SNR for the bottom lesions of phantoms 4, 5 and 6 

The following graphs (Figure 11.69 to Figure 11.72) demonstrate Figure of Merit 

(FOM) for 6 phantoms.  
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Figure 11.69 FOM (CNR - Organ dose) 

 
Figure 11.70 FOM (CNR-Entrance dose) 
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Figure 11.71 FOM (SNR-Organ dose) 

  
Figure 11.72 FOM (SNR - Entrance dose) 
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compression). Since FOM is inversely related to radiation dose and radiation dose 

increases after 3.4 cm (inc) and 3.6 cm (dec), then FOM decreases after these points.  

11.5.1.6 Intraclass correlation coefficient  

 Appendix H shows the results of the intraclass correlation coefficient (ICC). The 

results display a high consistency and agreement among the three observes. Generally, an 

ICC is measured on a scale of 0 to 1; where 1 represents perfect reliability and 0 indicates 

no reliability. The majority of the acquired ICC results for image quality (visibility, 

sharpness, and contrast) display a high reliability over 0.9 (+0.9). The majority of the 

acquired ICC results for noise was over 0.8 (+0.8).  

Among all the criteria of visibility, sharpness, contrast, noise and size, ICC 

displays the lowest reliability for the size criterion. This is mostly noticeable for the 

phantoms with only one lesion. For the size criterion of phantoms with two lesions, the 

percentage of “consistency” over 0.8 (+0.8) among the readers is 83.33% while the 

percentage of “absolute agreement” is 58.33%. Size was excluded from the measurement 

and graphs of image quality.   

The high rate of consistency and agreement among the observers variability 

describes how strongly the measurements by various readers resemble each other. Due to 

the high percentage of the similarity between the readers, this test also shows the number 

of the observers for this specific research was adequate.  

11.5.2 Discussion  

In this research, it was found that applied compression force and the resultant 

change in thickness are inversely related, as expected. This means that increase of 

compression force resulted in a decrease in the breast phantom thickness and vice versa. 

Therefore the initial mammographic experiments were based on compression force with 
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the recording thicknesses. However, the advantage of using thickness over force in the 

graphs/tables is that there is always a reading for each thickness, but not for each force. 

For the lower compression forces, below 45, the mammography unit is unable to record 

the compression force (N). The main sets of experiments of this research (11.5 on page 

200) were completely based on the breast phantom thickness.  

In reality, due to the variations of breast density, a specific amount of 

compression force might not reduce the breast thickness sufficiently to view the cancer 

lesions. Hence, relying on the breast thickness reduction provides more consistent and 

reproducible data for the lesion visibility studies.  

Research shows differences between the readout and measured thickness by the 

mammography units. The discrepancies between the readout and measured breast 

thickness might be due to the tilted paddle, mechanical/electrical design of the readout 

unit, or the compressible structure of the breast which tries to push back to the original 

shape. Some studies have suggested corrective methods to measure the actual breast 

thickness during the mammography procedure (Hauge, Hogg, Connolly, McGill, & 

Claire, 2012) (Mawdsley, Tyson, Peressotti, Jong, & Yaffe, 2009). Generally, in clinical 

practice during the screening and diagnostic mammography, the machine readout is used. 

Therefore, in this research, the machine readout was utilised to simulate the clinical 

mammography procedure. 

During the decrease/increase thickness experiment (11.5.1.5 on page 236), in 

addition to radiation dose, the measurements of CNR and FOM as mathematical image 

quality parameters demonstrated decreased values once the breast phantom had been 

reduced in thickness beyond 3.4 cm (37.7%) thickness reduction. This result was also 

reflected in the increase thickness/decrease compression experiment (11.5.1.5 on page 
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236) after 3.6 cm (40%) thickness reduction. This means that the CNR and FOM drop 

when the breast phantom thickness is approximately 5.5 cm. 

SNR is one of the most meaningful metrics to demonstrate the visibility of an 

object. It has been selected as one of the mathematical metrics for image quality.  

According to the Rose Criterion, an object will be recognizable and detectable if the 

value of SNR ≥ 5 (Bushberg, Seibert, Leidholdt, & Boone, 2011). Unlike all other image 

quality parameters, only SNR graphs demonstrated the signal to noise ratio improvement 

up to 1 cm of the thickness reduction. However, the value of SNR was greater than 5 for 

all the data points (11.5.1.5 on page 236). This indicates that regardless of the breast 

phantom thickness, all the lesions were detectable in the phantoms. 

The visual perception results have shown a reduction in the amount of noise for 

the reduced thickness. Similarly, the profile plots of the lesions have demonstrated the 

noise reduction for the reduced phantom thickness. However, the standard deviation 

graphs of the background (around the lesion) have displayed a decrease followed by an 

increase of the noise around the lesion. The increase of the noise is contradictory with the 

results of the visual perception and the profile plot. Generally speaking, the standard 

deviation is a metric which is employed in order to quantify the noise in the image. This 

metric does not measure the noise texture (Bushberg, Seibert, Leidholdt, & Boone, 2012). 

Therefore, this might be the cause of the discrepancy between the noise scored visually 

and the noise measured by standard deviation. This was discussed in 6.4.5 on page 81.  

The perceived size of the lesion increased with the decrease of the phantom 

thickness. The increase in size was possibly due to the improvement of image quality 

parameters such as sharpness of the lesion, contrast between the lesion and the adjacent 

region, and noise. This means that due to the improvement of the image quality, it was 

easier to see exactly where the actual edge of the lesion was. Another possible reason for 
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the improvement of the lesion size could be the spreading out of the lesion with the 

increase of the compression force. Similar to a malleable ball, the lesion can look wider 

from the top when it is compressed. The results of ICC for this experiment have shown 

low consistency and agreement for the phantoms with one lesion among the observers; 

however for the phantoms with two lesions the agreement and consistency among the 

observers have shown the improvement of the lesion size with the increase of the 

compression force.   

11.5.3 Conclusion 

In this research, based on the results from 2AFC, a consistent linear improvement 

relative to the decrease of the breast phantom thickness was observed for all of the 

following image quality criteria: lesion visibility, sharpness, contrast, noise and size of 

the lesion. Similar to 2AFC, the profile plot, as a mathematical method, demonstrated the 

improvement in the sharpness of the edge of the lesion. It also showed the reduction of 

noise corresponding to the reduction of the breast phantom thickness. Unlike the 2AFC 

and the profile plot, the values of CNR, SNR, and FOM graphs demonstrated increase up 

to certain points. This means that the results of CNR, SNR, and FOM as mathematical 

methods and 2AFC as perceptual method do not match after certain thicknesses. It is 

important to mention that visual perception does not take into account radiation dose, 

where FOM does. This means although image quality may improve in visual perception, 

the images are not necessarily optimised. 

As was mentioned in Chapter 1 on page 2, the reduction in tissue thickness has 

the effect of reducing the required radiation dose of radiation necessary to acquire the 

mammographic image. This was verified by this research up to the point that the filter 

was changed from Rh to Mo. After this point, the radiation dose increased regardless of 
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phantom thickness. It is important to mention that at this thickness, the FOM which 

represents the performance of the mammography system in terms of image quality and 

patient radiation dose dropped. The CNR, as a mathematical image quality parameter also 

dropped at this thickness. This indicates that the usage of Automatic Exposure Control 

(AEC) might not be the appropriate option for phantom studies for specific breast 

phantom thickness. This research shows that, for a breast phantom thickness of 

approximately 5.5 cm, alternative methods for the selection of exposure factors and filter 

may be required including manual selection. This is in agreement with the research by 

Bor et al. regarding variations in breast radiation doses for an automatic mammography 

unit (Bor, Tükel, Olgar, & Aydın, 2008).  

The results from this thesis are likely to have implications for clinical practice, as 

they support the need for compression/thickness reduction to enhance lesion visibility. It 

is suggested to compare the radiation dose, and image quality parameters such as FOM 

using AEC and manual selection when the breast thickness reaches to approximately 5.5 

cm during compression.  

11.5.4 Limitation/future work 

Microcacifications are tiny calcium deposits smaller than 1/50 of an inch in size 

which can appear as a cluster. The cluster of microcalcifications is a common 

mammographic indicator of ductal carcinoma in situ (DCIS) (Imaginis Corporation, 

2010). Since this type of breast cancer is associated with microcalcifications and 

detecting microcalcifications can help early detection of breast cancer, it is important to 

design and fabricate embedded clusters of microcalcifications. 

Masses with spiculated margins (stellate) as primary breast cancer indicators have 

a high chance of being malignant. Unlike well-defined margin masses, this type has thin 
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elongated pieces (spicules) of tissue coming out of the perimeter. Since this spiculated 

margin masses are the most common manifestation of invasive carcinoma (Fornage, 

2006) , design and fabrication of this shape of lesions in the future is recommended. 

In this study, the homogenous breast phantoms similar to fatty tissue were 

designed and fabricated. The real breast tissue is composed of fat and fibroglandular 

tissues; therefore fabrication of breast phantoms including both fatty and fibroglandular 

tissue creates higher resemblance to real human tissue. Since the percentage of glandular 

tissues change corresponding to the age and menopausal status, the breast phantoms can 

be designed with various percentages of fat and glandular tissues. For example 50% of fat 

and 50% glandular, 25% of fat and 75% of glandular or 75% of fat and 25% of glandular. 

Although the mammography unit used in this research supports multiple AEC 

modes, only the Auto-Filter mode was utilised. In the Auto-Filter mode, the machine 

automatically switches between Rh and Mo filters. The machine decides which filter to 

utilise based on the thickness of the tissue being imaged.  

As the radiation dose results from this research shows (Figure 11.41 on page 219 

to Figure 11.46 on page 222), a radiation dose increase occurred during the automatic 

filter change from Rh to Mo as the compression was increased. Future research could 

seek to minimise the radiation dose increase by utilising other AEC modes including 

manual mode. The following sections explain the clinical opportunities for the use of 

PVAL phantoms/lesions.  

11.5.4.1 Breast examination and biopsy purposes 

PVAL phantoms/lesions can be used to teach medical students how to perform 

clinical breast examinations. In order to make the PVAL lesions palpable, bigger-sized 

lesions can be produced and embedded in various locations of the different-sized beast 
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phantoms. In these phantoms, X-ray imaging is not performed, therefore the presence of 

contrast agent is not required.  

PVAL phantoms/lesions can also be used in multiple biopsy techniques. Usually, 

ultrasound-guided biopsy or stereotactic mammography is used in order to guide the needle 

to the location of the abnormalities. In these procedures, depending on the patient’s 

situation, different biopsy techniques can be performed to access the abnormalities. The 

removed sample of abnormal lesion is then sent to the pathology lab. These techniques 

include: Fine needle aspiration biopsy, core needle biopsy, and vacuum-assisted breast 

biopsy (Donahue, 2013).  

The PVAL phantoms designed in this research can be used for training purposes 

in various types of biopsy techniques. They also can be employed to perform quality 

control for different biopsy needles. In order to extract sample lesions, various shapes, 

sizes and locations have to be taken into account. Since mammographic stereotactic can 

be used to extract microcalcifications, it is important to design microcalcifications and 

embed them into various places of the PVAL phantoms.    

During mammographic stereotactic biopsy the breast tissue is compressed. Hence, 

in these types of studies, a compressible breast phantom is required. In order to make the 

lesions attenuating in stereotactic biopsy, the use of contrast agent is required.  

11.5.4.2 Comparing different mammography systems 

 Several studies have been carried out by researchers regarding dosimetry and 

measuring the image quality for different mammographic units using either CDMAM or 

PMMA phantoms (Emanuelli, Rizzi, Amerio, Fasano, & Cesarani, 2011) (Oberhofer, 

Fracchetti, Nassivera, Valentini, & Moroder, 2010) (Oberhofer & Bolzano, 2011). These 

phantoms do not have the mechanical properties of the human breast. The compressible 
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PVAL phantom could be used in these types of studies in order to compare the same 

system with various setups such as anode/filter or mammography units from various 

manufacturers. These phantoms can also be utilised to compare various detector 

technologies.  

11.6 SUMMARY OF THE RESEARCH 

As part of this research custom Polyvinyl alcohol (PVAL) breast phantoms with 

embedded lesions were fabricated and utilised. These breast phantoms exhibited 

mechanical and X-ray properties which were similar to female breast/breast cancer 

tissues.  

After acquiring the mammograms of phantoms under varying compression forces, 

the image quality of the embedded lesions were evaluated both perceptually and 

mathematically. The two-alternative forced choice (2AFC) perceptual method was used 

to evaluate the image quality of the lesions. For mathematical evaluation the following 

methods were utilised: line profile analysis, contrast- to-noise ratio (CNR), signal-to 

noise ratio (SNR) and figure of merit (FOM).  

Using the 2AFC method observers evaluated and scored the captured 

mammograms on a number of image quality measures including lesion visibility, 

sharpness of the edge of the lesion, contrast between the lesion and the surrounding area, 

noise and size of the lesion. The results were then plotted and analysis was performed on 

the resulting graphs. All of the graphs consistently demonstrated linear improvement in 

image quality related to the increase of compression force and decrease of the breast 

phantom thickness.  

Radiation dose graphs (organ and entrance) demonstrated a general reduction of 

radiation dose in relation to the thickness reduction. This reduction of radiation dose had 
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a thickness reduction threshold after which further reduction of thickness resulted in an 

increase in radiation dose rather than a decrease. 

Mathematical evaluation results also showed a correlation of improvement in the 

image quality with the reduction in breast thickness. The results showed that for the 

measures CNR, SNR, and FOM, the increase in image quality has a threshold after which 

the image quality ceases to improve and instead begins to degrade.  

The profile plot analysis of the phantoms/lesions displayed the improvement in noise and 

the lesion sharpness relative to the thickness reduction. This is in agreement with the 

visual perception results. 

11.6.1 Alternative approaches 

This section discusses the alternative approaches to this research. These 

approaches consist of the use of mastectomy breast specimen, production of lesion and 

gel, use of other types of materials to make the phantoms, utilisation of different 

mammography units, use of hybrid mammograms, and discussion of visual perception 

methods. 

11.6.1.1 Mastectomy breast specimen 

One of the alternative approaches to this research is using real breast with cancer 

lesions from the surgical mastectomy. Ethical approval and possibly patient consent are 

required for these types of research. The advantage of this method is that the use of 

synthetic phantom/lesions is not necessary. Diversity in the breast tissue and lesion 

shapes, sizes and locations can hinder the reproducibility of research. In other words, 

only one sample would be available to test for each case. The mastectomy specimen 

might have different mechanical and X-ray properties compared to the live breast tissue, 

hence, the mechanical and X-ray properties of the mastectomy specimen have to be 



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 252 of 365 July 2015 

tested. Furthermore, the methods for storing and transferring the samples to the research 

sites have to be taken into consideration. 

11.6.1.2 Production of lesions 

One of the problems with the employment of PVAL lesions doped with contrast 

agent is the leeching problem with the contrast agent to the surrounding area. 

Encapsulation of the lesions (making membrane) might stop leaching of contrast agent 

from the lesion to the surrounding area; therefore the phantom/lesions can be used for a 

longer period of time. Due to the possible changes in X-ray and mechanical properties of 

the encapsulated lesions, these properties have to be measured prior to use.   

11.6.1.3 Production of gel 

When a magnetic stirrer is used, especially with a higher concentration of PVAL 

crystals, the magnet in the magnetic stirrer can become stuck in the condensed solution. 

Due to the continuous stirring mechanism of a mechanical overhead stirrer, it could be 

more suitable than a magnetic stirrer in this case. 

11.6.1.4 Other types of materials  

The HU of PVAL phantoms cannot be negative, therefore in this research the 

presence of contrast agent was required in order to produce the HU difference between 

the simulated breast fatty tissue and the cancer mimicking lesions. On the other hand, the 

controlled mechanical properties of PVAL make this material desirable for biomedical 

engineering studies. X-ray properties of this material encourage the researchers to utilise 

other materials to acquire the required HU.  

Research shows that plastics can have a large range of HU from -125 to +364 

(Henrikson, Mafee, Flanders, Kriz, & Peyman, 1987) (Zhang, Roa, Sehga, He, & Al-

Ghazi, 2011). Materials such as polyethylene and polystyrene can have negative HU 
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which are suitable to simulate fatty tissue. Since the mechanical properties of these 

materials do not match the breast tissue’s mechanical properties, these materials could be 

blended with the appropriate percentage of PVAL in a controlled way. 

11.6.1.5 Mammography units 

The mammography unit used in this study was a Hologic Selenia with selenium 

flat panel detector, Mo anode and Mo/Rh filters. In order to compare the results among 

different mammography units, other systems could be tested. For example General 

Electric (GE) mammography unit with flat panel phosphor, dual-track (Mo/Rh) anode 

and Mo/Rh filters or a Sectra mammography unit with  photon counting detector and a 

W/Al anode/filter combination (McCullagh, Baldelli, & Phelan, 2011).  

11.6.1.6 Hybrid mammograms 

In reality, human breasts contain multiple internal structures. The glandular, fatty, 

and connective tissues make the breast heterogeneous and textured. In this study, the 

developed PVAL phantoms were homogeneous, In order to generate the real anatomical 

background, similar techniques such as hybrid images could be utilized (Li & Samei, 

2010). The hybrid images consist of the real anatomical background acquired from the 

patients’ mammograms and PVAL phantom/lesions images.  

11.6.1.7 Visual perceptual methods 

In this study, the visual perception goal is just to assess the quality of the target 

not the presence or absence of it. In other words, just noticeable differences between the 

images are important. Hence, two-alternative forced choice (2AFC) is an appropriate 

perceptual method in order to assess the image quality. 

Receiver operating characteristic (ROC) is not a suitable visual perception method 

for this study. Typical conventional ROC deals with two states which are either presence 
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or absence of the target in the images (Krupinski, 2010). In this research the target 

(lesion) is always present and visible in the image with different degree of visibility. 

11.6.2  Key findings 

 A 5% PVAL phantom with 2 FTCs, HU≈17, YM≈17.34 kPa is suitable 

for breast phantom. 

 A 10% PVAL phantom with 6 FTCs, HU≈43, YM≈216 kPa is suitable for 

breast cancer lesions. In order to make the PVAL lesions attenuation as 

invasive ductal carcinoma cancer lesions, 20 wt% of contrast agent is 

required to be mixed with 10% PVAL solution prior to FTCs.   

 Fresh PVAL phantoms/lesions are required in mammographic lesion 

visibility studies. It is important to mention that the fresh phantoms/lesions 

do not need to be stored in deionized water.   

 Linear improvement in the perceived image quality was observed in 

relation to the reduction of PVAL breast phantom thickness. 

 The intracass correlation coefficient (ICC) has shown a great consistency 

and agreement among the observers/readers for visibility, sharpness, 

contrast and noise. The ICC results are not as conclusive for the size 

criterion. 

 The profile plot displayed improvement in the sharpness of the lesion edge 

and also the noise in accordance with the thickness reduction. 

 Contrast to noise ratio (CNR) and figure of merit (FOM) improved in 

relation to the breast phantom reduction up to the point that the filter was 

changed from Rh to Mo. 
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 Signal to noise ratio (SNR) increased after about 1 cm of the thickness 

reduction followed by a decrease after this point. The reduction started 

before the changes in the filter from Rh to Mo. 

 Radiation dose versus breast phantom thickness dropped up to the point 

that the filter was changed from Rh to Mo, after this point the radiation 

dose increased. 

 The increase of radiation dose and the reduction of FOM and CNR started 

when the thickness of the breast phantom was about 5.5 cm (the initial 

thickness was 9cm) 
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Appendices 

APPENDIX A: FREEZER AND HOTPLATE CURVES  

 
Figure A.1 Freezer temperature curve of Nova Scotia chest freezer 
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Figure A.2 Hotplate calibration flow chart 
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Figure A.3 Water temperature vs. Hotplate Setting 

APPENDIX B: HU OF PVAL LESION OVER 10 - MINUTE PERIOD 

Time (min)                          Area                        HU 

1 298.14 633.17 

2 298.14 633.13 

3 298.14 633.07 

4 298.14 633.10 

5 298.14 632.85 

6 298.14 632.70 

7 298.14 632.67 

8 298.14 632.41 

9 298.14 632.35 

10 298.14 632.21 

Table B.1 HU of an embedded lesion in a breast phantom with skin over 10 minutes 
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Figure B.1 HU of an embedded lesion in a breast phantom with skin over 10 minutes 
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APPENDIX C: MAMMOGRAMS OF BREAST PHANTOM/LESION 
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Figure C.1 Mammograms of the breast phantom with various compressions 

APPENDIX D: MAMMOGRAMS OF BREAST PHANTOM/LESIONS  

The following mammograms (Figure D.1) show the lesions embedded in the 

breast phantom compressed from 50 N to 150 N. The last image shows the compressed 

phantom with 50 N after applying 150 N.  
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Figure D.1 Mammograms of the breast phantom with two lesions 

The following mammograms (Figure D.2) show the lesions embedded in a 

cylindrical phantom compressed from 50N to 150 N. The last image shows the 

compressed phantom with 50N after applying 150N. The recorded images were from 14 

to 25.  
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Figure D.2 Mammograms of a cylindrical phantom with two lesions 
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APPENDIX E: 2AFC GRAPHS FOR 2 PHANTOMS WITH 2 LESIONS 

 
Figure E.1 2AFC, 3 repetitions for the High Density lesion in breast phantom 

 
Figure E.2 2AFC, 3 repetitions for the Low Density lesion in breast phantom 
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Figure E.3 2AFC, 3 repetitions for the High Density lesion in a cylindrical phantom 

 
Figure E.4 2AFC, 3 repetitions for the Low Density lesion in a cylindrical phantom 
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APPENDIX F: DATA ACQUIRED FROM THE MAMMOGRAPHY PROCEDURE 

Breast phantom: 5% PVAL, 2-FTCs                                                                                                            

Lesion(s):  One lesion, 10% PVAL, 5cc CA, 6-FTCs                                                                                                                       

Paddle size: 18x24      

Thickness 

(cm) 

Force (N) kVp mAs Target/Filter Organ 

dose 

(mGy) 

Entrance 

dose(mGy) 

9 -------------- 34 221.9 Rh 6.72 37.70 

8.8 -------------- 33 279.9 Rh 7.83 43.40 

8.6 46 33 268.0 Rh 7.62 41.20 

8.4 48 33 257.7 Rh 7.43 39.40 

8.2 51 33 240.6 Rh 7.04 36.50 

8.00 54 33 234.0 Rh 6.94 35.20 

7.8 59 32 275.7 Rh 7.52 37.70 

7.6  63 32 263.7 Rh 7.31 35.80 

7.4 66 32 253.8 Rh 7.14 34.20 

7.2 72 32 240.1 Rh 6.85 32.10 

7.0 73 32 224.9 Rh 6.50 29.90 

6.8 74 32 214.0 Rh 6.32 28.30 

6.6 75 32 189.2 Rh 5.69 24.80 

6.4 79 31 234.9 Rh 6.47 27.80 

6.2 93 31 217.3 Rh 6.08 25.60 

6.0 99 31 206.6 Rh 5.87 24.10 



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 266 of 365 July 2015 

5.8 107 30 247.7 Rh 6.40 26.00 

5.6 114 30 225.5 Rh 5.94 23.50 

5.4 121 29 248.1 Mo 7.69 37.10 

5.2 131 29 230 Mo 7.25 34.10 

5.0 145 29 216.1 Mo 6.91 31.90 

4.8 144 28 271.8 Mo 7.84 35.90 

4.6 160 28 251.0 Mo 7.39 33.00 

4.4 172 27 329.8 Mo 8.68 38.60 

4.2 188 27 314.9 Mo 8.51 36.60 

4.0 197 27 285.5 Mo 7.90 33.00 

3.8 211 26 383.4 Mo 9.57 39.10 

3.6 225 26 365.9 Mo 9.47 37.10 

Table F.1 Mammography data 

Breast phantom: 5% PVAL, 2-FTCs                                                                                                            

Lesion(s):  One lesion, 10% PVAL, 5cc CA, 6-FTCs                                                                                                                       

Paddle size: 18x24      

Thickness 

(cm) 

Force (N) KvP mAs Target/Filter Organ 

dose 

(mGy) 

Entrance 

dose(mGy) 

4 163 27 259.3 Mo 7.18 29.90 

4.4 132 27 269.9 Mo 7.81 34.70 

4.8 101 28 246.0 Mo 7.10 32.50 
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5.2 86 29 204.6 Mo 6.45 30.40 

5.6 70 30 191.2 Rh 5.04 19.90 

6.0 58 31 173.9 Rh 4.94 20.30 

6.4 47 31 193.1 Rh 5.32 22.90 

6.8 -------------- 32 176.4 Rh 5.21 23.30 

7.2 -------------- 32 202.9 Rh 5.79 27.20 

7.6 -------------- 32 223.4 Rh 6.19 30.30 

8.0 -------------- 33 191.3 Rh 5.67 28.80 

8.4 -------------- 33 211.7 Rh 6.11 32.30 

8.8 -------------- 33 232.8 Rh 6.52 36.10 

9.2 -------------- 34 183.8 Rh 5.50 31.40 

Table F.2 Mammography data 

Breast phantom: 5% PVAL, 2-FTCs                                                                                                            

Lesion(s):  One lesion, 10% PVAL, 5cc CA, 6-FTCs                                                                                                                       

Paddle size: 18x24      

Thickness 

(cm) 

Force (N) KvP mAs Target/Filter Organ 

dose 

(mGy) 

Entrance 

dose(mGy) 

9 -------------- 34 247.7 Rh 7.51 42.10 

8.8 -------------- 33 305.1 Rh 8.54 47.30 

8.6 -------------- 33 303.9 Rh 8.64 46.80 

8.4 -------------- 33 275.5 Rh 7.95 42.10 
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8.2 -------------- 33 265.0 Rh 7.74 40.20 

8.00 -------------- 33 249.8 Rh 7.40 37.60 

7.8 -------------- 32 307.4 Rh 8.39 42.00 

7.6  -------------- 32 289.8 Rh 8.03 39.30 

7.4 -------------- 32 274.9 Rh 7.73 37.10 

7.2 51 32 253.7 Rh 7.24 34.00 

7.0 54 32 248.1 Rh 7.17 33.00 

6.8 58 32 229.4 Rh 6.77 30.30 

6.6 64 32 219.2 Rh 6.59 28.70 

6.4 69 31 260.7 Rh 7.18 30.90 

6.2 73 31 249.1 Rh 6.97 29.30 

6.0 76 31 237.2 Rh 6.74 27.70 

5.8 77 30 269.3 Rh 6.89 28.30 

5.6 87 30 250.9 Rh 6.61 26.10 

5.4 100 29 287.5 Mo 8.91 43.00 

5.2 108 29 263.8 Mo 8.31 39.20 

5.0 113 29 252.7 Mo 8.09 37.30 

4.8 121 28 313.1 Mo 9.03 41.40 

4.6 133 28 302.5 Mo 8.90 39.70 

4.4 142 27 376.8 Mo 9.91 44.10 
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4.2 153 27 346.4 Mo 9.36 40.20 

4.0 164 27 323.5 Mo 8.95 37.30 

3.8 168 26 395.4 Mo 9.87 40.30 

3.6 182 26 367.2 Mo 9.50 37.20 

Table F.3 Mammography data 

Breast phantom: 5% PVAL, 2-FTCs                                                                                                            

Lesion(s):  One lesion, 10% PVAL, 5cc CA, 6-FTCs                                                                                                                       

Paddle size: 18x24      

Thickness 

(cm) 

Force (N) KvP mAs Target/Filter Organ 

dose 

(mGy) 

Entrance 

dose(mGy) 

4.0 136 27 295.6 Mo 8.18 34.10 

4.4 104 27 338.5 Mo 8.91 39.60 

4.8 85 28 276.8 Mo 7.99 36.60 

5.2 67 29 233.4 Mo 7.36 34.60 

5.6 52 30 208.5 Rh 5.49 21.70 

6.0 -------------- 31 195.5 Rh 5.55 22.80 

6.4 -------------- 31 217.0 Rh 5.98 25.70 

6.8 -------------- 32 190.4 Rh 5.62 25.10 

7.2 -------------- 32 209.6 Rh 5.98 28.10 

7.6 -------------- 32 229.2 Rh 6.35 31.10 

8.0 -------------- 33 204.9 Rh 6.07 30.90 

8.4 -------------- 33 221.5 Rh 6.39 33.80 
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8.8 -------------- 33 227.8 Rh 6.38 35.30 

9.2 -------------- 34 193.1 Rh 5.77 33.00 

Table F.4 mammography data 

Breast phantom: 5% PVAL, 2-FTCs                                                                                                            

Lesion(s):  Two lesions, 10% PVAL, 5cc CA, 6-FTCs                                                                                                                       

Paddle size: 18x24      

Thickness 

(cm) 

Force (N) kVp mAs Target/Filter Organ 

dose 

(mGy) 

Entrance 

dose(mGy) 

9 -------------- 34 238.1 Rh 7.22 40.40 

8.8 -------------- 33 296.3 Rh 8.29 45.90 

8.6 -------------- 33 300.8 Rh 8.55 46.30 

8.4 -------------- 33 276.8 Rh 7.98 42.30 

8.2 -------------- 33 257.7 Rh 7.54 39.10 

8.00 -------------- 33 239.2 Rh 7.09 36.00 

7.8 -------------- 32 307.6 Rh 8.39 42.10 

7.6  -------------- 32 280.1 Rh 7.76 38.00 

7.4 -------------- 32 266.6 Rh 7.50 35.90 

7.2 -------------- 32 243.0 Rh 6.93 32.50 

7.0 45 32 234.5 Rh 6.78 31.20 

6.8 50 32 224.7 Rh 6.63 29.70 

6.6 54 32 207.2 Rh 6.23 27.20 
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6.4 59 31 245.5 Rh 6.76 29.10 

6.2 63 31 229.9 Rh 6.43 27.00 

6.0 68 31 216.3 Rh 6.14 25.30 

5.8 74 30 250.0 Rh 6.46 26.20 

5.6 78 30 233.4 Rh 6.15 24.30 

5.4 82 29 268.2 Mo 8.31 40.10 

5.2 88 29 249.6 Mo 7.87 37.00 

5.0 94 29 231.4 Mo 7.40 34.10 

4.8 102 28 286.6 Mo 8.27 37.90 

4.6 108 28 265.5 Mo 7.81 34.90 

4.4 113 27 328.4 Mo 8.64 38.40 

4.2 120 27 303.7 Mo 8.21 35.30 

4.0 128 27 285.6 Mo 7.90 33.00 

3.8 140 26 348.8 Mo 8.70 35.60 

3.6 149 26 317.5 Mo 8.22 32.20 

Table F.5 Mammography data 

Breast phantom: 5% PVAL, 2-FTCs                                                                                                            

Lesion(s):  One lesion, 10% PVAL, 5cc CA, 6-FTCs                                                                                                                       

Paddle size: 18x24      

Thickness 

(cm) 

Force (N) kVp mAs Target/Filter Organ 

dose 

(mGy) 

Entrance 

dose(mGy) 

4.0 106 27 254.9 Mo 7.05 29.40 
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4.4 82 27 287.5 Mo 7.56 33.60 

4.8 64 28 239.2 Rh 6.90 31.60 

5.2 51 29 207.4 Rh 6.54 30.80 

5.6 -------------- 30 191.1 Rh 5.03 19.90 

6.0 -------------- 31 171.2 Rh 4.86 20.00 

6.4 -------------- 31 197.5 Rh 5.44 23.40 

6.8 -------------- 32 178.6 Rh 5.32 23.50 

7.2 -------------- 32 208.5 Rh 5.99 27.80 

7.6 -------------- 32 242.9 Rh 6.73 33.00 

8.0 -------------- 33 200.3 Rh 5.94 30.20 

8.4 -------------- 33 229.5 Rh 6.62 35.10 

8.8 -------------- 33 230.2 Rh 6.44 35.70 

9.2 -------------- 34 185.9 Rh 5.56 31.80 

Table F.6 Mammography data 

Breast phantom: 5% PVAL, 2-FTCs                                                                                                            

Lesion(s):  Two lesions, 10% PVAL, 5cc CA, 6-FTCs                                                                                                                       

Paddle size: 18x24  

Note:    The system stopped a few times due to the heat problem. The filter never 

changed to Rh. The First image on the disk has to be removed from the set. 

Radiation dose and mAs are high in this dataset. 4.2cm has been repeated twice. 

Thickness 

(cm) 

Force (N) KvP mAs Target/Filter Organ 

dose 

(mGy) 

Entrance 

dose(mGy) 
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9 -------------- 34 210.5 Mo 8.14 55.20 

8.8 -------------- 33 267.2 Mo 9.60 64.30 

8.6 46 33 264.0 Mo 9.64 63.10 

8.4 51 33 261.9 Mo 9.63 62.40 

8.2 56 33 243.9 Mo 9.17 57.40 

8.00 61 33 232.7 Mo 8.87 54.40 

7.8 65 32 299.8 Mo 10.50 64.10 

7.6  69 32 287.3 Mo 10.20 61.20 

7.4 72 32 276.6 Mo 9.94 58.50 

7.2 74 32 251.4 Mo 9.23 52.60 

7.0 88 32 235.9 Mo 8.78 49.00 

6.8 91 32 225.1 Mo 8.54 46.50 

6.6 99 32 214.1 Mo 8.26 43.90 

6.4 109 31 267.4 Mo 9.48 49.90 

6.2 118 31 261.6 Mo 9.42 48.50 

6.0 127 31 242.9 Mo 8.87 44.70 

5.8 135 30 311.2 Mo 10.40 51.90 

5.6 147 30 290.0 Mo 9.91 48.10 

5.4 155 29 371.9 Mo 11.50 55.60 

5.2 163 29 344.5 Mo 10.90 51.10 



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 274 of 365 July 2015 

5.0 175 29 324.5 Mo 10.40 47.80 

4.8 151 28 355.4 Mo 10.30 47.00 

4.6 162 28 338.5 Mo 9.95 44.40 

4.4 154 27 399.8 Mo 10.50 46.80 

4.2 158 27 355.4 Mo 9.60 41.30 

4.2 153 27 345.1 Mo 9.32 40.10 

4.0 153 27 318.4 Mo 8.81 36.70 

3.8 171 26 392.5 Mo 9.79 40.00 

3.6 182 26 375.0 Mo 9.72 38.10 

Table F.7 Mammography data 

Breast phantom: 5% PVAL, 2-FTCs                                                                                                            

Lesion(s):  One lesion, 10% PVAL, 5cc CA, 6-FTCs                                                                                                                       

Paddle size: 18x24      

Thickness 

(cm) 

Force (N) kVp mAs Target/Filter Organ 

dose 

(mGy) 

Entrance 

dose(mGy) 

4.0 132 27 306.7 Mo 8.49 35.40 

4.4 102 27 339.8 Mo 8.94 39.70 

4.8 82 28 282.5 Mo 8.15 37.30 

5.2 65 29 236.0 Mo 7.44 35.00 

5.6 49 30 214.3 Rh 5.65 22.30 

6.0 -------------- 31 195.5 Rh 5.55 22.80 

6.4 -------------- 31 219.3 Rh 6.04 26.00 
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6.8 -------------- 32 195.7 Rh 5.78 25.80 

7.2 -------------- 32 227.9 Rh 6.50 30.50 

7.6 -------------- 32 247.2 Rh 6.85 33.60 

8.0 -------------- 32 259.4 Rh 7.02 35.60 

8.4 -------------- 33 228.6 Rh 6.59 34.90 

8.8 -------------- 33 242.2 Rh 6.78 37.50 

9.2 -------------- 34 195.2 Rh 5.84 33.40 

Table F.8 Mammography data 

Breast phantom: 5% PVAL, 2-FTCs                                                                                                            

Lesion(s):  Two lesions, 10% PVAL, 5cc CA, 6-FTCs                                                                                                                       

Paddle size: 18x24  

Thickness 

(cm) 

Force (N) kVp mAs Target/Filter Organ 

dose 

(mGy) 

Entrance 

dose(mGy) 

9.0 -------------- 34 276.0 Rh 8.36 46.90 

8.8 -------------- 33 318.7 Rh 8.92 49.40 

8.6 -------------- 33 309.6 Rh 8.80 47.60 

8.4 -------------- 33 296.0 Rh 8.54 45.20 

8.2 -------------- 33 279.3 Rh 8.17 42.40 

8.00 -------------- 33 266.5 Rh 7.90 40.10 

7.8 -------------- 32 324.6 Rh 8.85 44.40 

7.6  -------------- 32 313.3 Rh 8.68 42.50 
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7.4 47 32 281.1 Rh 7.91 37.90 

7.2 50 32 270.4 Rh 7.71 36.20 

7.0 53 32 255.4 Rh 7.38 34.00 

6.8 58 32 246.3 Rh 7.27 32.50 

6.6 61 32 233.4 Rh 7.02 30.60 

6.4 67 31 271.1 Rh 7.47 32.10 

6.2 69 31 254.8 Rh 7.13 30.00 

6.0 72 31 240.0 Rh 6.82 28.00 

5.8 84 30 275.6 Rh 7.12 28.90 

5.6 86 30 259.3 Rh 6.83 27.00 

5.4 97 29 289.9 Mo 8.99 43.30 

5.2 100 29 266.5 Mo 8.40 39.60 

5.0 105 29 248.6 Mo 7.95 36.60 

4.8 107 28 305.5 Mo 8.81 40.40 

4.6 112 28 289.2 Mo 8.51 38.00 

4.4 124 27 362.2 Mo 9.53 42.40 

4.2 134 27 334.4 Mo 9.04 38.90 

4.0 138 27 298.3 Mo 8.26 34.40 

3.8 146 26 383.4 Mo 9.57 39.10 

3.6 157 26 338.5 Mo 8.76 34.30 

Table F.9 Mammography data 
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Breast phantom: 5% PVAL, 2-FTCs                                                                                                            

Lesion(s): One lesion, 10% PVAL, 5cc CA, 6-FTCs                                                                                                                       

Paddle size: 18x24 

Thickness 

(cm) 

Force (N) kVp mAs Target/Filter Organ 

dose 

(mGy) 

Entrance 

dose(mGy) 

4.0 108 27 270.5 Mo 7.49 31.20 

4.4 86 27 310.1 Mo 8.16 36.30 

4.8 69 28 266.2 Mo 7.68 35.20 

5.2 53 29 216.1 Mo 6.81 32.10 

5.6 -------------- 30 197.6 Rh 5.21 20.60 

6.0 -------------- 31 180.6 Rh 5.13 21.10 

6.4 -------------- 31 205.1 Rh 5.65 24.30 

6.8 -------------- 32 185.1 Rh 5.46 24.40 

7.2 -------------- 32 207.2 Rh 5.95 27.60 

7.6 -------------- 32 234.2 Rh 6.49 31.80 

8.0 -------------- 33 199.6 Rh 5.92 30.10 

8.4 -------------- 33 206.2 Rh 5.95 31.50 

8.8 -------------- 33 213.0 Rh 5.96 33.00 

9.2 -------------- 34 178.0 Rh 5.32 30.50 

Table F.10 Mammography data 
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APPENDIX G: IMAGE QUALITY GRAPHS 

 
Figure G.1 Average visibility of the lesions for 6 phantoms  

 
Figure G.2 Average visibility of the top lesions for phantoms 1, 2 and 3  
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Figure G.3 Average visibility of the top lesions for phantoms 4, 5 and 6  

 
Figure G.4 Average visibility of the bottom lesions for phantoms 4, 5 and 6  
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Figure G.5 Average sharpness of the lesions for 6 phantoms  

 
Figure G.6 Average sharpness of the lesions for phantoms 1, 2 and 3  

0

1

2

3

4

5

6

0 2 4 6

Sh
ar

p
n

e
ss

 

Change in thickness (mm) 

6Phantoms-Sharpness 

6phantoms-Ave-dec-
Sharpness

6phantoms-Ave-inc-
Sharpness

0

1

2

3

4

5

6

0 2 4 6

Sh
ar

p
n

e
ss

 

Change in thickness (mm) 

Phantoms123-Sharpness 

Phantoms123-Ave-
dec-Sharpness

Phantoms123-Ave-inc-
Sharpness



Relationship between breast phantom thickness and lesion visibility in mammographic 

imaging 

Mary Shahrzad Ossati Page 281 of 365 July 2015 

 
Figure G.7 Average sharpness of the top lesions for phantoms 4, 5 and 6 

 
Figure G.8 Average sharpness of the bottom lesions for phantoms 4, 5 and 6 
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Figure G.9 Average contrast of the lesions for 6 phantoms 

 
Figure G.10 Average contrast of the lesions for phantoms 1, 2 and 3 
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Figure G.11 Average contrast of the top lesions for phantoms 4, 5 and 6 

 
Figure G.12 Average contrast of the bottom lesions for phantoms 4, 5 and 6 
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Figure G.13 Average size of the lesions for 6 phantoms 

 
Figure G.14 Average size of the lesions for phantoms 1, 2 and 3 
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Figure G.15 Average size of the top lesions for phantoms 4, 5 and 6 

 
Figure G.16 Average size of the bottom lesions for phantoms 4, 5 and 6 
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Figure G.17 Average noise for 6 phantoms 

 
Figure G.18 Average Image Quality (IQ) for 6 phantoms 
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Figure G.19 Average Image Quality (IQ) for phantoms 1, 2 and 3 

 
Figure G.20 Average Image Quality (IQ) of the top lesions for phantoms 4, 6 and 6 
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Figure G.21 Average Image Quality (IQ) of the bottom lesions for phantoms 4, 5 and 6 
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APPENDIX H: INTRACLASS CORRELATION COEFFICIENT 

Software MedCalc 15.6.1 

Number of raters (observers or readers) 3 

Number of subjects 24 for increased compression force (inc) and 

14 for the  decreased compression force (dec) 

Model of Intraclass Correlation Coefficient 

(ICC) 

The same raters for all subjects. 
Two-way model. 

Type of the test Consistency and absolute agreement 

Table I.1 Software details for intraclass correlation coefficient 

Phantoms- 

Visibility 

Consistency 95% confidence  

Interval 

Absolute  

agreement  

95% confidence  

Interval 

Phantom1-inc 0.9274 0.8640 to 0.9640 0.9282 0.8660 to 0.9643 

Phantom1-dec 0.9418 0.8573 to 0.9797 0.9438 0.8636 to 0.9804 

Phantom2-inc 0.8782 0.7719 to 0.9396 0.8780 0.7728 to 0.9394 

Phantom2-dec 0.5781 -0.03422 to 0.8531 0.5931 -0.03286 to 0.8605 

Phantom3-inc 0.9008 0.8142 to 0.9508 0.8865 0.7796 to 0.9447 

Phantom3-dec 0.9395 0.8516 to 0.9789 0.9428 0.8599 to 0.9801 

Phantom4-top-inc 0.9299 0.8687 to 0.9653 0.9313 0.8716 to 0.9659 

Phantom4-bottom-

inc 0.9598 0.9247 to 0.9801 0.9594 0.9244 to 0.9798 

Phantom4-top-dec 0.9157 0.7935 to 0.9707 0.9189 0.8025 to 0.9717 

Phantom4-bottom-

dec 0.9536 0.8861 to 0.9838 0.9478 0.8712 to 0.9819 

Phantom5-top-inc 0.9633 0.9313 to 0.9818 0.9593 0.9217 to 0.9801 

Phantom5-bottom-

inc 0.9637 0.9321 to 0.9820 0.9628 0.9306 to 0.9815 

Phantom5-top-dec 0.9040 0.7647 to 0.9666 0.9079 0.7751 to 0.9679 

Phantom5-bottom-

dec 0.9276 0.8225 to 0.9748 0.9291 0.8285 to 0.9752 

Phantom6-top-inc 0.9793 0.9609 to 0.9899 0.9789 0.9601 to 0.9896 

Phantom6-bottom-

inc 0.9672 0.9378 to 0.9840 0.9645 0.9320 to 0.9828 

Phantom6-top-dec 0.8996 0.7539 to 0.9650 0.9055 0.7669 to 0.9672 

Phantom6-bottom-

dec 0.9297 0.8276 to 0.9755 0.9321 0.8350 to 0.9763 

Table I.2 Intraclass correlation coefficient for the visibility 
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Phantoms-

Sharpness 

Consistency 95% confidence  

Interval 

Absolute 

agreement  

95% confidence  

Interval 

Phantom1-inc 0.9251 0.8598 to 0.9629 0.9183 0.8450 to 0.9598 

Phantom1-dec 0.9122 0.7848 to 0.9694 0.9172 0.7963 to 0.9712 

Phantom2-inc 0.8619 0.7412 to 0.9315 0.8531 0.7256 to 0.9270 

Phantom2-dec 0.4658 -0.3096 to 0.8140 0.4814 -0.3328 to 0.8231 

Phantom3-inc 0.9073 0.8264 to 0.9541 0.8860 0.7650 to 0.9460 

Phantom3-dec 0.9309 0.8307 to 0.9760 0.9246 0.8169 to 0.9736 

Phantom4-top-inc 0.9198 0.8498 to 0.9603 0.9215 0.8531 to 0.9610 

Phantom4-bottom-

inc 0.9581 0.9215 to 0.9792 0.9576 0.9211 to 0.9789 

Phantom4-top-dec 0.9163 0.7947 to 0.9708 0.9175 0.8007 to 0.9711 

Phantom4-bottom-

dec 0.9305 0.8295 to 0.9758 0.9281 0.8270 to 0.9748 

Phantom5-top-inc 0.9599 0.9249 to 0.9801 0.9535 0.9076 to 0.9776 

Phantom5-bottom-

inc 0.9594 0.9239 to 0.9799 0.9573 0.9200 to 0.9789 

Phantom5-top-dec 0.9414 0.8563 to 0.9796 0.9414 0.8587 to 0.9795 

Phantom5-bottom-

dec 0.9245 0.8149 to 0.9737 0.9279 0.8240 to 0.9749 

Phantom6-top-inc 0.9717 0.9463 to 0.9861 0.9709 0.9450 to 0.9857 

Phantom6-bottom-

inc 0.9721 0.9471 to 0.9864 0.9695 0.9412 to 0.9852 

Phantom6-top-dec 0.8979 0.7497 to 0.9644 0.8992 0.7563 to 0.9647 

Phantom6-bottom-

dec 0.9268 0.8205 to 0.9745 0.9299 0.8291 to 0.9756 

Table I.3 Intraclass correlation coefficient for the sharpness  
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Phantoms-Contrast Consistency 95% confidence  

Interval 

Absolute  

agreement  

95% confidence  

Interval 

Phantom1-inc 0.9108 0.8329 to 0.9558 0.8982 0.8021 to 0.9504 

Phantom1-dec 0.8765 0.6972 to 0.9570 0.8820 0.7105 to 0.9590 

Phantom2-inc 0.8751 0.7661 to 0.9381 0.8614 0.7367 to 0.9317 

Phantom2-dec 0.5383 -0.1318 to 0.8392 0.5493 -0.1304 to 0.8447 

Phantom3-inc 0.9121 0.8354 to 0.9564 0.8866 0.7552 to 0.9475 

Phantom3-dec 0.9146 0.7907 to 0.9703 0.9074 0.7760 to 0.9675 

Phantom4-top-inc 0.9087 0.8291 to 0.9548 0.9113 0.8337 to 0.9561 

Phantom4-bottom-

inc 0.9572 0.9199 to 0.9788 0.9580 0.9216 to 0.9792 

Phantom4-top-dec 0.8793 0.7041 to 0.9580 0.8870 0.7193 to 0.9609 

Phantom4-bottom-

dec 0.9488 0.8745 to 0.9822 0.9350 0.8266 to 0.9780 

Phantom5-top-inc 0.9694 0.9427 to 0.9848 0.9647 0.9300 to 0.9830 

Phantom5-bottom-

inc 0.9639 0.9324 to 0.9821 0.9630 0.9309 to 0.9816 

Phantom5-top-dec 0.9281 0.8236 to 0.9749 0.9238 0.8163 to 0.9733 

Phantom5-bottom-

dec 0.9262 0.8191 to 0.9743 0.9274 0.8245 to 0.9746 

Phantom6-top-inc 0.9718 0.9466 to 0.9862 0.9697 0.9421 to 0.9853 

Phantom6-bottom-

inc 0.9638 0.9314 to 0.9823 0.9618 0.9275 to 0.9814 

Phantom6-top-dec 0.8869 0.7228 to 0.9606 0.8901 0.7328 to 0.9616 

Phantom6-bottom-

dec 0.9299 0.8281 to 0.9756 0.9305 0.8323 to 0.9757 

Table I.4 Intraclass correlation coefficient for contrast 
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Phantoms-noise Consistency 95% confidence  

Interval 

Absolute  

agreement  

95% confidence  

Interval 

Phantom1-inc 0.4720 0.01097 to 0.7382 0.4650 0.01563 to 0.7321 

Phantom1-dec 0.8465 0.6237 to 0.9465 0.8477 0.6320 to 0.9467 

Phantom2-inc 0.8192 0.6613 to 0.9104 0.7865 0.5855 to 0.8959 

Phantom2-dec 0.4265 -0.4060 to 0.8003 0.4417 -0.4398 to 0.8099 

Phantom3-inc 0.8615 0.7405 to 0.9313 0.7812 0.4550 to 0.9056 

Phantom3-dec 0.7939 0.4946 to 0.9282 0.7915 0.4999 to 0.9268 

Phantom4-inc 0.7241 0.4832 to 0.8632 0.7185 0.4788 to 0.8595 

Phantom4-dec 0.8660 0.6716 to 0.9534 0.8652 0.6757 to 0.9527 

Phantom5- inc 0.8481 0.7156 to 0.9247 0.8475 0.7160 to 0.9241 

Phantom5- dec 0.9173 0.7973 to 0.9712 0.9219 0.8082 to 0.9729 

Phantom6- inc 0.9244 0.8568 to 0.9631 0.9222 0.8534 to 0.9619 

Phantom6- dec 0.8927 0.7369 to 0.9626 0.8943 0.7443 to 0.9630 

Table I.5 Intraclass correlation coefficient for noise  
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Phantoms-Size Consistency 95% confidence  

Interval 

Absolute  

agreement  

95% confidence  

Interval 

Phantom1-inc 0.4798 0.02564 to 0.7421 0.4813 0.02914 to 0.7428 

Phantom1-dec 0.5956 0.008587 to 0.8592 0.5806 0.02425 to 0.8506 

Phantom2-inc 0.1823 -0.5317 to 0.5946 0.1818 -0.5263 to 0.5935 

Phantom2-dec 0.3458 -0.6038 to 0.7722 0.3458 -0.5878 to 0.7714 

Phantom3-inc 0.7136 0.4635 to 0.8580 0.7199 0.4718 to 0.8617 

Phantom3-dec 0.6321 0.09820 to 0.8719 0.6299 0.1116 to 0.8701 

Phantom4-top-inc 0.8513 0.7215 to 0.9263 0.8542 0.7269 to 0.9277 

Phantom4-

bottom-inc 0.9247 0.8589 to 0.9626 0.9184 0.8456 to 0.9597 

Phantom4-top-

dec 0.8396 0.6068 to 0.9442 0.7888 0.4658 to 0.9269 

Phantom4-

bottom-dec 0.8219 0.5634 to 0.9380 0.7983 0.5191 to 0.9288 

Phantom5-top-inc 0.8404 0.7011 to 0.9209 0.8272 0.6764 to 0.9143 

Phantom5-

bottom-inc 0.8540 0.7266 to 0.9276 0.8544 0.7286 to 0.9277 

Phantom5-top-

dec 0.8433 0.6159 to 0.9454 0.8443 0.6239 to 0.9455 

Phantom5-

bottom-dec 0.8135 0.5428 to 0.9351 0.7977 0.5201 to 0.9285 

Phantom6-top-inc 0.8968 0.8045 to 0.9496 0.8907 0.7932 to 0.9465 

Phantom6-

bottom-inc 0.8184 0.6559 to 0.9113 0.8217 0.6620 to 0.9129 

Phantom6-top-

dec 0.5692 -0.05611 to 0.8500 0.5835 -0.05520 to 0.8571 

Phantom6-

bottom-dec 0.6745 0.2019 to 0.8866 0.6896 0.2146 to 0.8934 

Table I.6 Intraclass correlation coefficient for size 
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APPENDIX I: MAMMOGRAPHY UNIT ADDITIONAL INFORMATION 

X-ray tube 

X-rays are produced in an X-ray tube. Within the X-ray tube, the main structures 

involved in generating X-rays are cathodes and anodes. The cathode filament is the 

negative electrode in the X-ray tube which expels electrons to the target electrode or 

anode with a positive charge. Most of the energy of the electrons is converted into 

undesirable heat upon striking the anode.  Only a small fraction of the energy produces 

the X-rays which are generated via interactions of the accelerated electrons emitting from 

the cathode with the electrons of the target anode. X-rays are generated in two ways: 

Bremsstrahlung and characteristic (Bushberg, Seibert, Leidholdt, & Boone, 2012) .  

In a mammographic X-ray tube, molybdenum (Mo, Z = 42) and rhodium (Rh, Z = 

45) as anode materials are utilised. These materials are suitable to produce characteristic 

radiation for breast imaging (Bushberg, Seibert, Leidholdt, & Boone, 2012).  

X-ray production: Bremsstrahlung radiation 

Bremsstrahlung or braking radiation is the result of the interaction of high energy 

electrons with a negative charge and the nucleus of the atoms of the target material which 

have a positive charge. Due to the coulomb attraction between the opposite charges, an 

electron decelerates and deviates from its path. This deceleration causes the electron to 

lose its kinetic energy. Due to the laws of conservation of momentum, the loss of the 

kinetic energy of the electron is then converted into an X-ray. Figure I.1 illustrates, the X-

rays which have been produced from the interactions between the nucleus and the 

electrons emitting from the cathode (Bushberg, Seibert, Leidholdt, & Boone, 2012). 

The energy of the X-ray is dependent upon the influence of the nucleus on the 

incoming electrons (Cherry & Duxbury, 2009). As Figure I.1 displays, the deviated 
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electrons closer to the nucleus produce high energy X-rays compared to the ones which 

are farther and less influenced by the nucleus.   

 
Figure I.1 Bremsstrahlung radiation (Bushberg, Seibert, Leidholdt, & Boone, 2012) 

X-ray production: Characteristic radiation 

In characteristic radiation, an accelerating incident electron interacts with shell 

electrons (i.e. K, L, and M). If the energy of the incident electron is greater than the K-

shell binding energy, the K-shell electron is removed from its shell. This removal of the 

K-shell electron leaves a vacancy in that shell. This vacancy is then filled by an electron 

from one of the higher energy (lower binding energy) shells such as the L-shell (Figure 

I.2). At the same time, a characteristic X-ray photon is emitted from the atom with an 

energy level equal to the difference between the binding energies of the two shells (K and 

L) (Bushberg, Seibert, Leidholdt, & Boone, 2012). 
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Figure I.2 Characteristics radiation (Bushberg, Seibert, Leidholdt, & Boone, 2012)  

Focal spots in mammography 

In X-ray tubes typically there are two filaments with different lengths: small and 

large. Each filament is located in a place called focusing cup. During the imaging 

procedure, only one of these filaments gets voltage. Depending of the nature of the 

examination, one of these filaments can be manually or automatically selected for the 

imaging procedure. Figure I.3 illustrates these focal spot filaments (Bushberg, Seibert, 

Leidholdt, & Boone, 2012). 
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Figure I.3 Small and large focal spot filaments (Bushberg, Seibert, Leidholdt, & Boone, 2012) 

In mammography, high resolution mammograms are substantially important in 

order to detect the lesions and other breast features. Improving the sharpness and 

reducing the blurring of the image can be influenced by the size of the focal spots. In 

order to reduce the geometric blurring, the size of the focal spot and the distance between 

the breast and image detector need to be reduced, the distance between the breast and the 

focal spot should be kept maximized. It is recommended that the focal spot size should 

not be greater than 0.3 mm (Paredes, 2007).  

A typical mammography unit has two types of focal spots: large and small. A 0.3 

mm large focal spot is generally utilised for routine mammography while a 0.1 mm focal 

spot is used for magnification images (Carlton & Adler, 2012).   

Collimator 

A collimator is a device which limits the exposure of the X-ray beam to the breast 

by adjusting the size and shape of the X-ray field. It encloses the area of the radiation in 

order to prevent exposure of X-rays to other parts of the body. The collimator assembly is 

attached to the tube housing at the tube port. The rectangular X-ray field is specified by 

two pairs of the lead shutters (Figure I.4). Typically the collimator can be adjusted by a 
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light beam reflected from a mirror above the lead shutters (Bushberg, Seibert, Leidholdt, 

& Boone, 2012).  

 
Figure I.4 Collimator in mammography unit (Bushberg, Seibert, Leidholdt, & Boone, 2012) 

The misalignment of collimator compared to the detector can generate a vertical 

white bar artefact in the mammogram as is shown in Figure I.5 (Ayyala, Chorlton, 

Behrman, Kornguth, & Slanetz, 2008).  

 
Figure I.5 RCC (a) LCC (b) solid vertical white line (Ayyala, Chorlton, Behrman, Kornguth, & 

Slanetz, 2008) 

Field of View 

In FFDM, field of view (FOV) is a parameter which can be defined by the 

mammographer. This parameter controls the size of the anatomical area to be imaged 

(Markey, 2013). 
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The field of view needs to be large enough in order to cover the various breast 

sizes. The areas of interest can be missed if the FOV is not large enough (Smith, 2003). 

The following image (Figure I.6) shows the FOV and the pixel size using various 

detector types. 

 
Figure I.6 FOV and the pixel size using various detectors (Bushberg, Seibert, Leidholdt, & 

Boone, 2012)  

Grid  

One of the reasons for the deterioration of the contrast resolution is X-ray 

scattering from the breast tissue. X-ray scattering can degrade the mammograms and hide 

the subtle breast features by generating a noisy background. Changes in the background 

result in a decrease of the contrast, leading to a reduction of contrast to noise ratio (CNR). 

In order to address this problem, an instrument called anti scatter grid is employed in 

mammography (Fieselmann, Fischer, Hilal, Dennerlein, Mertelmeier, & Uhlenbrock, 

2013). 

An anti-scatter grid is typically located between the detector and the patient. The 

following image (Figure I.7) demonstrates the structure of a grid. As the image shows, a 

grid comprised of alternating layers of interspace and septa materials. The septa part of 

the grid is typically made up of lead.  The specific alignment of the interspace and septa 
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materials let the primary radiation beam pass through the grid. It also absorbs the 

scattered radiation (Bushberg, Seibert, Leidholdt, & Boone, 2012).  

 
Figure I.7 Anti-scatter grid (Bushberg, Seibert, Leidholdt, & Boone, 2012) 

Grid ratio is a parameter to characterize the anti-scatter grid. This parameter is 

measured by the ratio of the height of the interspace material to its width. The grid ratio is 

about 5 in mammography which is lower than general diagnostic radiology (Bushberg, 

Seibert, Leidholdt, & Boone, 2012). 

One of the major problems using anti scatter grids is the attenuation of the 

primary beams as well as the scattered ones. In order to compensate for the lost primary 

beam, more photons are required thus leading to a higher patient dose (Fieselmann, 

Fischer, Hilal, Dennerlein, Mertelmeier, & Uhlenbrock, 2013).  

Mammographic monitors 

The widespread application of FFDM in breast screening and diagnostic purposes 

requires optimal monitors for displaying the mammograms. Cathode ray tube (CRT) and 

liquid crystal display (LCD) monitors are used in mammography. CRT monitors have 

become less desirable because of the following reasons: low luminescence (300 cd/m
2
), 

requiring ambient light, short life expectancy (about 30,000 hours), eye fatigue due to the 

constant refreshed screen, degraded resolution in some areas of the screen, high heat 
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output, and heavy weight (about 40 lb [18 kg] each). LCD monitors are coming into favor 

because of the following advantages: Lightweight (<15 lb [7 kg]), longer life expectancy, 

uniform resolution due to the use of TFTs, no concern regarding the refresh rates, better 

resolution and better luminescence (700 cd/m2) (Zuley, et al., 2006). 

According to a study by Margarita L. Zuley et al. , The LCD monitors are better 

for detecting the mass margins and conspicuity, but CRT monitors are better for image 

noise (Zuley, et al., 2006).The resolution in an LCD monitor typically ranges from 1-5 

megapixel (MP), however higher resolution monitors (>9MP) have started being 

available (Indrajit & Verma, 2009). Since digital mammography requires the highest 

resolution in order to see the subtle lesions and calcifications, it is highly recommended 

to use minimum 5MP monitors (Hardy, 2012). The following image (Figure I.8) 

illustrates a 5 MP diagnostic display for FFDM. 

 
Figure I.8 5MP diagnostic mammography monitors employed in FFDM (MD Publishing Inc., 

2012) 
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Acronyms  

2AFC: Two-alternative forced choice 

ADC: Analogue to digital convertor 

AEC: Automatic Exposure Control 

AUC: The area under the ROC curve  

CA: Contrast Agent 

CAD: Computer-aided diagnosis 

CBCT: Cone beam computed tomography 

CCD: Charge-coupled device 

CMOS: Complementary metal oxide semiconductor 

CNR: Contrast to Noise Ratio 

CR: Computed radiography 

CsI:Tl: Thallium-activated caesium iodide 

CT: Computed Tomography 

cy/mm: cycles per millimetre (similar to line-pairs/mm) 

DCIS: Ductal Carcinoma In Situ  

DDR: Direct digital radiography 

DEL: Detector Element 

DBT: Digital breast tomosynthesis  

DICOM: Digital Imaging and Communications in Medicine  

DR: Digital radiography 

DQE: Detective quantum efficiency 

FDA: Food and Drug Administration  

FFDM: Full Field Digital Mammography 

https://www.google.co.uk/url?sa=t&rct=j&q=&esrc=s&source=web&cd=6&cad=rja&uact=8&ved=0CFAQFjAF&url=http%3A%2F%2Fwww.fda.gov%2FRadiation-EmittingProducts%2FMammographyQualityStandardsActandProgram%2FGuidance%2FPolicyGuidanceHelpSystem%2Fucm050087.htm&ei=LioDVMiHJoTnaKOjgaAO&usg=AFQjCNFd65bsKa39TzFIB-iRwCbr5Hiu6A&sig2=44EvNbauQsB8jts8smST5Q
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FTC: Freeze Thaw Cycle 

GPa: Giga Pascal 

HD: High Density 

HU: Hounsfield Unit 

IDC: Invasive Ductal Carcinoma 

IAEA: International Atomic Energy Agency 

ICC:  Intraclass Correlation Coefficient 

ILC: Invasive Lobular Carcinoma  

IP: Image Plate 

keV: Kiloelectron volt 

kPa: kilo Pascal 

LCIS: Lobular Carcinoma In Situ 

LD: Low Density 

MDCT: Multidetector Computed Tomography 

MGD: Mean Glandular Dose 

mGy: Milligray 

Mo: Molybdenum 

MPa: Mega Pascal 

MTF: Modulation transfer function 

NPS: Noise Power Spectrum 

Pa: Pascal 

PGMI: Perfect, Good, Moderate, Inadequate 

PMT: Photomultiplier Tube 

PSP: Photostimulable phosphor 

PVAL: Polyvinyl alcohol 
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Rh: Rhodium 

ROC: Receiver operating characteristic 

ROI: Region of Interest 

RPM: Revolutions Per Minute 

sd: Standard deviation  

SDNR: Signal Difference to Noise Ratio 

SF: Screen film 

SNR: Signal to Noise Ratio 

SSCT: Single Slice Computed Tomography 

TFT: Thin-film transistor 

TMM: Tissue-mimicking material  

WL: Window Length 

WS: Wiener spectra 

wt%: weight percent 

WW: Window Width 

YM: Young’s modulus 
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Glossary 

Air Kerma: The sum of kinetic energy of all charged particles liberated per unit 

mass when X-rays/gamma rays pass through unit mass of air. Kerma stands for 

Kinetic Energy Released per unit Mass. 

Anthropomorphic: Giving a non-human object human characteristics 

Attenuation coefficient: The attenuating ability of a medium. Attenuation 

coefficient or µ is a quantity which indicates how easily an object can be 

penetrated by an X-ray beam. 

DICOM: Digital Imaging and Communications in Medicine is the standard for 

communicating, viewing, and management of digital medical images.  

Echogenicity: The ability of bouncing an echo. In ultrasound imaging, the way 

the ultrasound wave is bounced to the transducer is called echogenicity. Each 

tissue has a particular echogenicity. The echogenicity of a diseased organ such as 

liver can be different than the normal liver.  

Exposure latitude:  Exposure latitude is the range of exposure factors that will 

produce an acceptable image. 

Fovea centralis: A shallow pit in the centre of the retina that is free of blood 

vessels and has the highest concentration of cells sensitive to colour and bright 

light cones. The fovea centralis is the area of most acute vision. 

Hydrophilic: Having an affinity for water or water-loving. The compounds 

which have polar sides in their structures that attract water 

Hyperelasticity: This is a model in mechanics which describes the stress-strain 

behaviour of materials such as rubber. 

http://www.biology-online.org/dictionary/Affinity
http://www.biology-online.org/dictionary/Water
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Image quality figure (IQF): Image quality figure is calculated from the 

minimum depth and diameter of the air-filled holes in a contrast detailed phantom 

that the observers can detect. A lower IQF represents better image quality. 

Juxtathoracic: The area of the body near the thorax  

Line Spread Function: A method to measure the spatial resolution of an imaging 

system. In this method, a strip of an object (a thin line) is imaged. Since the 

imaging system is not able to display the line perfectly without adding blurring 

into the image, the final image will include some degree of blurring. This degree 

of blurring is represented by line spread function. 

Scintillator: A scintillator is a material that produces light when it is exposed to 

the ionising radiation such as X-rays. Scintillator absorbs the energy of the 

radiation and re-emits the absorbed energy in the form of light. 

Screen film: In screen film radiography, the image receptor consists of the film 

and one or two intensifying screens which are encased in a cassette. The 

intensifying screens are made of fluorescent materials such as phosphor. The X-

ray energy is absorbed by the intensifying screens and part of it converted to light. 

The emitted light then exposes the film. 

Subdivision surfaces: A method to generate smooth curves/surfaces using a basic 

mesh such as polygonal through an iterative process.  

Telemammography: The secure transfer of mammograms from one location to 

another. 

Uniform Rational B-splines (NURBS): A mathematical model widely used 

in computer graphics systems for generating and representing curves/surfaces. 

http://en.wikipedia.org/wiki/Smooth_surface
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