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Abstract 

Aims: The optimisation of radiation in screening mammography aims to reduce 

women’s exposure to radiation. In three phases, this thesis explores radiation doses 

delivered to women undergoing screening mammography, methods used to estimate 

the mean glandular dose (MGD), and the use of mammographic breast density (MBD) 

in the calculation of MGD. Firstly, it examines Diagnostic Reference Levels (DRLs) 

for digital mammography in Australia as a trigger for optimisation for radiation doses 

delivered in screening mammography in Australia, with novel focus on whether 

compressed breast thickness and detector technologies should be used as a guide when 

determining patient derived DRLs. Secondly, it analyses the agreement between Organ 

Dose estimated by different digital mammography units and calculated MGD for 

clinical data. Thirdly, it explores a novel method of including MBD in MGD 

calculations, suggesting a new dose estimation called the actual glandular dose (AGD), 

and compares MGD to AGD. 

Methods: In phase one, anonymised mammograms (52,405) were retrieved from a 

central database, and DICOM headers were extracted using third party software. 

Women with breast implants; breast thicknesses outside 20-110 mm; and images with 

incomplete exposure or quality assurance (QA) data where excluded. Exposure and 

QA information were utilised to calculate the mean glandular dose (MGD) for 45,055 

mammograms from 61 units representing four manufacturers using methods by Dance 

et al. The median, 75th and 95th percentiles were calculated across MGDs obtained 

for all included data and according to compressed breast thickness (CBT) from 20 – 

110 mm with 10 mm increment ranges, average CBT for the population, and for three 

different detector technologies. ANOVA with Tukey’s post hoc was used to test the 

significance of the difference between MGDs for different CBT ranges. In phase two, 

Organ Dose values were extracted from the DICOM headers of the study population, 

and MGD was calculated using the methods published by Dance et al., Sobol and Wu, 

and Boone et al. Bland-Altman analysis and regression were used to study the 

agreement and correlation between Organ Dose and MGD calculated using the three 

methods. In phase three, LIBRA software was utilised to estimate MBD for 

mammograms of women screened using GE and Hologic systems. MBD values were 

then imported into Dance et al. method to calculate AGD for the 31,097 mammograms 
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(7728 women). Bland-Altman analysis and regression were used to study the 

agreement and correlation between MGD and AGD. 

Results: In phase one, the overall median image MGD, minimum, maximum were 

1.39 mGy, 0.19 mGy and 10.00 mGy respectively. The 75th and 95th percentiles across 

all units; median image MGD for 60  5 mm compressed breast thickness were 2.06 

mGy and 2.69 mGy respectively. Median, minimum, maximum, 75th and 95th MGD 

percentiles were presented for nine compressed breast thickness ranges. DRLs for 

NSW are suggested for the compressed breast thickness range of 60  5 mm for the 

whole study and three detector technologies CR, DR, and photon counting to be 2.06, 

2.22, 2.04, and 0.79 mGy respectively. In phase two, Bland-Altman analysis showed 

statistically significant bias between organ and calculated doses. The bias differed for 

different unit makes and models. Philips had the lowest bias overestimating Dance et 

al. method by 0.03 mGy. GE had the highest bias overestimating Sobol and Wu 

method by 0.20 mGy. Hologic Organ Dose underestimated Boone et al. method by 

0.07 mGy, and Fuji Organ Dose underestimated Dance et al. method by 0.09 mGy. In 

phase three, both MGD and AGD showed skewed distributions with medians of 1.53 

and 1.62 mGy respectively. Dance et al. method MGD underestimated dose at lower 

CBTs (below 80mm) compared to AGD by up to 10%. 

Conclusions: This thesis has recommended DRLs for mammography in Australia and 

shows that MGD is dependent upon compressed breast thickness and detector 

technology. The work also shows wide variation in Organ Dose and dose calculation 

methodologies across mammography vendors. Organ doses reported by vendors vary 

from that calculated using established methodologies. Data produced also show that 

the use of MGD calculated using standardised glandularities underestimates radiation 

risk. Finally, AGD was proposed; it considers differences in breast composition for 

individualised radiation-induced risk assessment. 
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Executive summary 

This thesis examines digital mammography dosimetry from several perspectives. The 

work is divided into four parts: the first part reviewed the literature on Diagnostic 

Reference Levels (DRLs) established around the world and the methods used to 

establish DRLs. The second part analysed data from BreastScreen NSW to propose 

DRLs for digital mammography for Australian screening services. The third part 

compared different dosimetry methods used for calculating Mean Glandular Dose 

(MGD) and tested the consistency of the Organ Dose recorded in the Digital Imaging 

and Communication in Medicine (DICOM) header. It also examined whether the 

Organ Dose in the DICOM header can be used to establish DRLs. The final study 

proposed a new method for calculating individualised glandular dose for better 

estimation of radiation-induced breast cancer risk from mammography. The proposed 

method involved the integration of Mammographic Breast Density (MBD) in the 

calculations of Actual Glandular Dose (AGD). 
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1 Chapter one 

Background to the thesis  
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Breast cancer is the most common cancer in women world-wide, representing 30% of 

all cancers in women [1]. The 2012 worldwide breast cancer incidence rate (age-

standardised per 100,000 women) was 43.1 ranging from 27 in Middle Africa and 

Eastern Asia to 92 in North America [2]. The 2017 Australian breast cancer expected 

incidence rate (age standardised per 100,000 women) was 124.2 [3], almost 44% 

higher than the 2012 incidence rate (86 per 100,000 women) [2]. Breast cancer is the 

fifth most common cause of cancer-related deaths in the developed world, accounting 

for 14.3% of the total deaths from cancer [2]. Breast cancer is the second most common 

cause of cancer death in women in developing countries accounting for 15.4% of the 

total deaths from cancer [2]. Nonetheless, breast cancer death rates continue to drop 

worldwide as the early detection of the disease has been shown to reduce mortality by 

25-40% [4-6].  

1.1 Breast Screening 

Screening is defined as “the presumptive identification of unrecognised disease or 

defect by the application of tests, examinations, or other procedures which can be 

applied rapidly. Screening tests sort out apparently well persons who probably have a 

disease from those who probably do not” [7]. In theory, early detection of cancer is 

commonly believed to be beneficial, however in practice there is a delicate balance to 

be maintained between benefits and risks. Therefore, ten screening principles were 

defined in 1968 [8], which until now are being utilised by the World Health 

Organisation (WHO) as a guide in the selection of diseases that are suitable for 

organised population-based screening. 

Organised population-based screening programs have proven to be the most effective 

approach for the early detection of breast cancer [5]. The success of the initial 

screening programs in Sweden in 1977 [9], which resulted in a 31% reduction in 

mortality from breast cancer [10], led to the introduction of screening programs in 

many other countries. Australian breast screening programs target women aged 50-74 

years for biennial screening mammograms to aid the detection of unsuspected breast 

cancer in asymptomatic women in order to reduce mortality and morbidity from the 

disease [3]. Knowledge of the existence of lesions, its characteristics, and extent can 

help with treatment planning in the early stages of the disease, thereby increasing 
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survival rates [3]. However, there are still controversies about the benefits and risks of 

screening mammography [11-15]. The following sections provide an overview of the 

benefits and risks of screening mammography and a rationale for inclusion of radiation 

dose in the risk assessment. 

1.2 Breast Screening: Benefits versus harms 

Although early detection of breast cancer through screening improves the treatment 

outcomes for patients with the disease [3], mammography screening programs have 

been the focus of ongoing debate [11-15]. The benefits vs. harms of screening 

mammography have been examined since screening was introduced on a national level 

in Sweden in 1977 [9]. The evidence for the benefits offered by screening 

mammography [16-23] was challenged in 2000, and it was suggested that the methods 

utilised in the assessment of the benefit and risk were scientifically flawed [24, 25]. At 

the time, the International Agency for Research on Cancer (IARC) reported a 35% 

reduction in mortality for screening mammography participants aged 50-69 years [26]. 

In 2015, the IARC revisited this evidence and an analysis of all published peer 

reviewed literature to date revealed that mammography screening is still effective in 

reducing breast cancer mortality by up to 40% with a substantial reduction for women 

aged 70-74 [5]. Three years prior to this, an independent review was commissioned in 

the UK to examine the benefits and harms of breast cancer screening [27]. The review 

panel looked at three major results from the reviewed Randomised Controlled Trials 

(RCTs):  

First, the relative mortality benefit, the panel found a 20% reduction in mortality from 

breast cancer for women offered screening compared to women not offered screening. 

They acknowledged three sources of uncertainties involved in this estimation, 1.  the 

95% confidence intervals of the relative reduction in mortality being 11-27%, 2. bias 

in the sources of information such as the cause of death, and 3. the applicability of the 

RCTs reviewed and how it relates to the new technologies in screening mammography. 

Nonetheless, the panel concluded that a 20% reduction in mortality was the most 

reasonable estimate of mortality benefit in the UK.  

Second, the absolute mortality benefit, being the number of lives saved among women 

invited to screening. The panel found a 20-fold difference in the absolute mortality 
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benefit, mainly caused by age factors. Nonetheless, concluded that the absolute 

mortality benefit being one saved life for every 250 women invited to screening.  

Third, overdiagnosis, in which its consequences were deemed important as 19% of 

women diagnosed during screening were subjected to cancer treatment unnecessarily, 

leading to psychological and quality of life effects. The panel weighed the benefits of 

cancer mortality reduction of 20%, against overdiagnosis (11%) and other harms 

affecting screened women and concluded that screening programs save lives and 

should continue as the benefits outweighed the harms [27]. 

Risks arising from mammography are two-fold: 1. radiologists’ errors such as 

overdiagnosis, false positive, and false negative outcomes; 2. radiation induced cancer 

risk arising from exposing the radio-sensitive breast to X-rays [15]. Educational and 

technological interventions are continuously being explored to mitigate radiologist-

related errors. However, although some consideration is given to the impact of 

radiation dose, it is frequently thought of as a comparatively insignificant risk. 

However, as this work will describe later, it is not insignificant, and it is critical to 

explore approaches to keep radiation doses to the breast as low as reasonably 

achievable (ALARA) whilst maintaining image quality standards. It is important 

though to acknowledge here that the estimates of radiation induced cancer risk are 

based on averages established from epidemiological studies, not on the basis of risk to 

the actual individual. Modern cellular biology adds a different picture to the traditional 

model of risk. 

The risk of radiation damage is related to organ radio-sensitivity. A comparison 

between ICRP 60 and ICRP 103 tissues weighting factors (Table 1.1) indicates that 

the traditional priority given to the gonads should be shared with the breasts. Evidence 

demonstrates that the breast tissue is one of the most radio-sensitive tissue in the body 

[28]. The difference in tissue weighting factor for the breast between ICRP 60 and 

ICRP 103 is due to the different definition of detriment used for the calculation of 

tissue weighting factors. ICRP 60 calculated the detriment based on the mortality risk 

[29] while ICRP 103 detriment was based on the incidence risk [30]. It is evident that 

breast cancer incidence have increased and continue to increase [31] while mortality 

continues to decline [30], hence the increased priority to breast protection from 

ionising radiations. 
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Table 1.1: Tissue weighting factors in ICRP 26, 60, and 103 [28]. 

Organ ICRP 26 ICRP 60 ICRP 103 

Gonads 0.25 0.20 0.08 

Bone marrow 0.12 0.12 0.12 

Lung 0.12 0.12 0.12 

Breast 0.15 0.05 0.12 

Thyroid 0.03 0.05 0.04 

Bone Surfaces 0.03 0.01 0.01 

Remainder 0.3

0 

0.45 0.51 
 

 

 

The principles of radiation protection are summarised in three key words: Justification, 

optimisation, and dose limits [32]. However, dose limits are often replaced with 

Diagnostic Reference Levels (DRLs) in the area of diagnostic imaging, this is because 

a dose limit may affect the quality of images. 

The ICRP identifies three levels of justification for the use of radiation in medical 

imaging. The first level, considers the use of radiation in medicine in general, in which 

it is accepted that the benefit outweighs the harm. The radiological procedure is the 

second level, where the procedure should provide necessary information about 

exposed individuals and improve diagnosis and treatment. In screening 

mammography, women with dense breasts are advised to undergo further screening 

using other modalities such as MRI, hence, the information facilitated by screening 

mammography has led to an improvement in diagnosis and treatment. Lastly, the 

application of the procedure should be justified on a patient level and have specific 

objectives to the exposure. Women who have higher risk of developing breast cancer 

are invited to screening mammography according to their age (50-74 years old), family 

history, in order to diagnose breast cancer at its early stages, hence meeting the 

objectives of screening mammography [33]. 

Optimisation does not necessarily involve the reduction of dose to the patient but 

relates to the optimisation of protection of patients from radiation harms. Optimisation 

entails the management of radiation dose to the patient to be balanced with the medical 
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purpose and produce a clinically optimal mammogram. Restrictions on the dose could 

prove harmful to the patient if the image quality does not serve the clinical needs. 

Optimisation processes in medical imaging are applied at the equipment design and 

procedural levels to ensure that the net benefit is maximised, and the dose is kept as 

low as reasonably achievable. In mammography, dose optimisation is achieved 

through many means including continuous advances in technology. For example, 

newer digital mammography systems use photon counting detectors that reduce patient 

dose and reject noise to improve image quality and thus cancer detection [34]. 

Furthermore, improvements in breast compression techniques reduce geometric blur 

in mammograms and allowing for less exposure time due to the reduction of breast 

thickness. Compression also produces more uniform exposure to the breast, hence 

eliminating over-exposure to the nipple area. DRL are discussed further in the next 

subsections, as it is the main theme in this thesis.  

1.3 Diagnostic Reference Levels 

The International Commission of Radiation Protection (ICRP) first mentioned the 

concept of DRLs in 1990, before expanding on it in 1996 [35]. The ICRP defines DRLs 

as: 

“A form of investigation level, applied to an easily measured quantity, 

usually the absorbed dose in air, or tissue-equivalent material at the 

surface of a simple phantom or a representative patient [35].” 

DRLs are a dose auditing tool that usually provides medical physicists with the median 

dose received by patients for each X-ray unit. As population characteristics and 

facilities differ, the ICRP has recommended that DRLs be established at local, 

regional, and/or national levels to offer guidance for dose optimisation at each level. 

This is to encourage mammography centres whose median doses exceed the 

recommended DRLs to consider potential optimisation avenues. Thus, DRLs are not 

maximum penal doses that must not be exceeded; rather they are intended to provide 

standards for dose optimisation across facilities. DRLs have three main elements and 

are discussed in the following subsections. 
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 Investigation level 

The investigation level utilised for DRLs in mammography is taken as a certain 

percentile of the median mean glandular doses (MGDs) for each mammography unit 

included in the survey. The percentile value depends on the variation in median MGD 

between the mammography units. If a wide MGD variation exists, a rigorous 

percentile such as the 75th is used to reduce the variation and establish DRLs. However, 

when there is less variation, the 90th is used [36]. This is usually within well-

established screening programs that are regularly monitored and assessed. Dose 

monitoring is performed in Australia by the Australian Radiation Protection and 

Nuclear Safety Agency (ARPANSA). This body recommends best practice on the use 

of ionizing radiation and is the primary authority on radiation protection and nuclear 

safety in Australia. ARPANSA collates data from individual medical imaging 

facilities to establish and update National DRLs (NDRLs). Australian medical imaging 

facilities utilise the NDRLs as a benchmark to compare their Facility Reference Levels 

(FRLs). ARPANSA has established NDRLs for some imaging modalities, however, 

NDRLs for mammography are yet to be set for Australia. Thus, there is a need to 

establish DRLs for mammography to facilitate dose monitoring and optimisation in 

Australia. 

 Easily measured quantity: 

DRLs in mammography are established using one of two dose (or risk) descriptors 

recommended by the ICRP [35]: Entrance Surface Air Kerma (ESAK) or Mean 

Glandular Dose (MGD). ESAK describes the amount of radiation entering through the 

surface of the breast. It is an indicator of the amount of exposure to the surface of the 

breast. MGD on the other hand, estimates the dose absorbed by the glandular tissue of 

the breast [37]. MGD cannot be measured directly rather, it is estimated using Monte-

Carlo simulations and standard assumptions that depend on breast characteristics and 

X-ray spectra [37]. Monte-Carlo techniques simulate the behaviour of X-rays 

penetrating a simple breast model to estimate the absorbed energy, and provide 

conversion factors that relate MGD to ESAK [37].  

Monte-Carlo based MGD estimation methods support a wide range of X-ray spectra, 

breast thicknesses and breast glandularities [37-44]. MGD is based on a simple breast 
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model with homogeneous composition. The simplicity of the model contributes to 

errors in MGD estimation [45]. The use of heterogeneous breast compositions versus 

more accurate quantifications of glandular tissue results in up to 48% errors in the 

conversion factors [45], and up to 30% overestimation of dose [45, 46]. The high 

degree of error highlights the need to explore alternative and better models for MGD 

measurement. 

The easily measured quantity described by the ICRP in 1996 was formulated to 

facilitate regular dose optimisation due to the lack of, or limited access to computing 

facilities at the time. Although technological advancement has shaped all aspects of 

modern life, MGD measurement has not evolved. In particular, the effect of glandular 

tissue in the breast on the screening process, as it is directly associated with the 

absorbed dose. Currently, only the model proposed by Dance et al. provides 

glandularity estimates that are related to age and compressed breast thickness (CBT). 

Even the use of age and CBT to define glandularity has limitations: first women of the 

same age and CBTs may have different glandularities; secondly, women of different 

ages may have similar CBTs or glandularities. Thus, if accurate measures of risk are 

to be established it is important that actual measures of glandularity be used for MGD 

measurement. Evidence shows that an “easily measured quantity” is a laudable 

concept, but the ease of measurement changes with time. Keeping the method constant 

is a flawed concept. In this work I emphasise the need to explore accurate methods 

made available through technological innovation. A description of MGD calculation 

methods and their limitations is detailed in chapter two. A newly developed MGD 

method that accounts for actual glandularity is also discussed in chapter five. 

 Standard patient 

There are no standard patients. When it comes to a representative breast, this has been 

defined differently around the world with breast thickness and composition as the main 

criteria [47]. Researchers have used either the average breast thickness of the 

population [48], a set of breast thickness based on the quality assurance protocol 

followed [49] or the thicknesses that allow for a comparison with other established 

DRLs [50]. This raises the question of how truly representative and consistent a 
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definition might be given the diversity of women in the screening mammography 

population.  

For the establishment of DRLs in other modalities such CT, Radiography, and 

Fluoroscopy, patients are grouped according to weight, and dose differences across 

weights have been reported. In paediatric radiography, patients are stratified by age or 

weight, whereas in mammography, DRLs are established for one standard CBT and 

glandularity [35]. This I argue, is a mistake.  

MGD increases with CBT [51], however MGD is directly proportional to CBT in that 

one CBT cannot possibly represent an entire population, and breasts having similar 

CBT demonstrating differences in glandularities, the major determinant of radiation-

induced risk [52]. The effect of CBT on DRLs is discussed further in chapter three. In 

addition, there is a direct relationship between the glandular component of the breast 

(breast density) and absorbed radiation dose, with breast density influenced by many 

confounding factors such as age, reproductive history, hormonal factors, and body 

mass index [53]. Furthermore, area-based and volumetric measures show that a 

significant proportion of the population demonstrates less than 50% glandularity [52, 

54]. These limitations suggest that the assumptions made in MGD calculation models 

that the average glandularity is 50% are inaccurate. Therefore, if accurate measures of 

risk are to be established a solution that accounts for differences in breast composition 

is required. 

1.4 Establishing mammography DRLs 

Dose surveys are used to establish DRLs locally, regionally or nationally, and the 

ICRP recommends the use of patients or phantoms to establish DRLs [35]. The latest 

ICRP recommendations suggest that a random collection of medium to large sized 

centre be included in the dose survey. Such recommendation is to facilitate the 

collection of a random minimum sample of 50 standard size patients per 

mammography unit [35]. Patient surveys (compared to phantom surveys) are a closer 

representation of the actual population of women and provide a more accurate 

reflection of the status of absorbed dose in screening mammography and the factors 

affecting it [35].  
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Phantom surveys on the other hand, are good indicators of mammography unit status 

and can be used for quick dose surveys. They have the advantage of less variability, 

with fewer measurements needed to calculate the absorbed dose [54]. To establish the 

MGD for a mammography unit a certain standard size phantom is used across all units. 

Once the median MGD has been established for each unit surveyed (whether it is 

phantom, or patient based), the 75th percentile of all units median MGDs is determined. 

This 75th percentile serves as the DRL value as recommended by the ICRP [35]. A less 

stringent value (95th percentile) maybe used when minimum variation is found 

between mammography units as stated earlier. Advances in dose-saving technology, 

such as photon counting detectors, and image processing algorithms, such as contrast 

enhancement algorithms, have influenced dose values [34, 55]. Therefore, DRLs 

values are not static, leading to recommendations by the ICRP for regular update every 

three to five years to ensure that dose reduction is consistent with advances in 

technology. 

 

1.5 Thesis aims: 

The following subsections detail the aims of this study shown as they appear in each 

chapter, together with a short rationale for each aim. 

 Chapter one and two 

To review the literature associated with DRLs in mammography.  

 Chapter three 

• To recommend DRLs for digital mammography in Australia 

DRLs have been established for mammography in many countries; however, no DRLs 

exist for optimisation of mammography in Australia. A phantom DRLs study was 

published in 2011 [56], however since phantom studies are not very representative of 

the population, the outcome of this phantom study was not adopted as national DRLs. 

No work has established DRLs for mammography using patient data in Australia yet. 
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Our published study, presented in chapter three, should provide a proposal for DRLs 

for mammography dose optimisation in Australia using a large sample of patients from 

BreastScreen NSW, which can be used as a representative sample of Australian 

women. 

• To explore whether DRLs should be stratified by compressed breast thickness. 

CBT has been used as the key element in selecting conversion factors required for the 

estimation of MGD within the three main calculation methods (Dance et al., Wu et al. 

and Boone) [36-43], as it has been shown that MGD is dependent upon CBT. While 

the standard size breast is acceptable for establishing DRLs, it does not reflect the 

status of the whole population, especially when thicker breasts require different X-ray 

spectra to produce a good quality image. Therefore, the use of one standard CBT for 

establishing DRLs may not provide optimum results for a given mammography unit. 

Chapter three explores the stratification of DRLs according to CBT. 

• To explore the effect of different detector technologies on the effectiveness of 

DRLs and whether DRLs should be stratified by detector technology. 

Dose levels are influenced by exposure parameters and detector technology. As the 

use of new detector technologies in mammography such as the photon-counting 

detectors in Phillips mammography units has proven to require the lowest MGD to 

produce an effective mammogram [57]. To generate DRLs, it is critically important to 

account for the effect of these technological factors on dose in order to establish DRLs 

that are representative of current detector technology. Further to this, I examined the 

impact of detector technology on DRLs and whether DRLs should be stratified by 

detector technology in chapter three.  

  Chapter four 

• To verify the consistency of Organ Dose provided by different mammography 

vendors. 

The use of DRLs as an optimisation tool becomes more effective when it is easily 

measured. Given variability in screened population and technologies utilised for 
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screening, the stratification of DRLs according to breast thickness and detector 

technologies may complicate this process. 

Organ Dose is a readily available value stored within the digital mammogram DICOM 

header. As such, the use of Organ Dose will substantially reduce the complexity of 

establishing DRLs. However, Organ Dose is estimated differently among different 

vendors, such variation, may reduce the applicability of DRLs in accordance with 

radiation risk estimations. Hence, there is a need to verify the consistency of Organ 

Dose calculation before it is applied to DRLs. In chapter four, I tested the consistency 

of the Organ Dose, and compared it to MGD calculated using three other calculation 

methods utilised by the vendors, namely: GE medical systems utilise Wu et al. method 

[42], Phillips (Sectra) and Fujifilm systems utilise Dance et al. method [36, 39, 40], 

while Hologic systems utilise a method by Boone et al. [37, 38, 58]. 

  Chapter five 

• To propose the use of Mammographic Breast Density (MBD) in the calculation 

of Actual Glandular Dose (AGD). 

The estimation of MGD has been built upon simple phantom models and such models 

assume a homogenous composition of 50% glandularity within the breast [36-43, 58]. 

Nonetheless, all calculation methods highlight the need for a better model for the 

breast. It has been established that the average breast glandularity within the female 

population is almost half the suggested glandularity of the simple 50:50 phantom 

model [51]. The integration of an individualised breast density measure within the 

dose estimation methods can be achieved as new technologies provide automated tools 

to assess MBD (the representation of glandularity on a mammogram) from 

mammograms in raw or post processed formats. In chapter five, I presented a new 

method integrating MBD in the calculation of MGD, providing an individualised dose 

descriptor I call "Actual Glandular Dose" (AGD) to facilitate accurate radiation-

induced risk assessment. 
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1.6 Thesis structure 

This thesis is with publications, structured around the published work.  

• Chapter one introduces the topic and briefly describes issues in the literature 

on DRLs that require consideration.  

• Chapter two provides a detailed review of mammography and dosimetry and 

systematic review of the literature on DRLs.  

• In chapter three, DRLs were established for BreastScreen NSW services, and 

a new method to stratifying DRLs according to CBT and detector technologies 

introduced.  

• In chapter four, the accuracy and consistency of Organ Dose was evaluated and 

compared to other MGD calculation methods to test whether Organ Dose can 

be used to establish DRLs.  

• Chapter five introduces a new method for integrating MBD in the calculation 

of AGD, comparing MGD with AGD. It also examines the effect of MBD on 

glandular dose estimation.  

• Finally, chapter six provides a holistic discussion integrating results from all 

original studies within the thesis. It also summarises the outcomes of the works 

and provides a conclusion on the dosimetry and optimisation methods used in 

mammography. 
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The following sections present background information on mammography relevant to 

the aims of the thesis. A brief history of breast cancer screening and the development 

of mammography is presented. Methods employed for mammographic dosimetry are 

discussed, with focus on the evolution of measurement and the rationales behind using 

different dose and risk estimates in mammography. The chapter also explores breast 

composition and the effect of glandularity on dosimetry as well as radiation-induced 

risk of cancer. Approaches to radiation risk management are introduced, and a detailed 

exposition of the literature on DRLs for mammography established around the world 

is presented. 

2.1 Development of mammography 

Since their discovery in 1895 X-rays have given scientists a robust tool for the 

examination of the human body. In 1913, Albert Salomon first explored the use of X-

ray to visualise breast tumours [1]. Thereafter, many scientists and researchers 

attempted breast radiography as a diagnostic method to breast pathologies [2-5]. In the 

1950s, Gershen-Cohen et al. were able to demonstrate palpable tumours on 

roentgenograms and described asymptomatic lesions, suggesting the possibility of the 

early breast cancer detection with X-rays [6]. Later, Raul Leborgne became the first to 

report a significant association between radiographically detectable 

microcalcifications and breast carcinoma. These discoveries set the stage for 

diagnostic and screening mammography [7]. However, despite these discoveries, it 

was only in the late 1950s that a specific method for the examination of the breast was 

refined, when Robert L. Egan demonstrated the use of high milli-amperage, low-

voltage coupled with an industrial film and a fine-grain intensifying screen to provide 

clearer images [8]. A reproducibility study that aimed to test mammography as a 

diagnostic aid using Egan’s method, showed a 79% true-positive rate for the detection 

of lesions. The study confirmed the usefulness of mammography as a diagnostic tool 

given that radiologists had the time to learn Egan’s technique and become familiar 

with it [9]. In the 1960s, many large-scale clinical trials that demonstrated the efficacy 

of mammography for breast examinations as a diagnostic tool were published [10-14]. 

Mammography gained momentum afterwards as a screening tool and the most 

effective method for the early detection of breast cancer [15, 16].  
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Significant advances were seen in mammography in the 1960s and 1970s, with the use 

of xeromammography units, however, the first dedicated breast imaging X-ray units 

were introduced in 1965 [17]. Film screen mammography methods were refined in the 

1970s, producing sharper images with fast processing times. However, the conical 

shape of the breast meant that the narrow end would be overexposed to produce 

clinically optimised image of the thick back of the breast. The introduction of uniform 

breast compression helped overcome many issues related to breast imaging using film 

screen mammography; breast compression moves the breast away from the chest wall 

allowing all the breast tissue to be imaged and produce more uniform thickness that 

allowed for more uniform exposure. Also, breast compression reduced blur due to 

reduced geometrical unsharpness, and less breast motion [18]. Thinner breast and 

reduced motion allowed for less exposure time, consequently, resulting in a significant 

reduction of radiation dose [19].  

Earlier mammographic systems produced radiographic images on films, which were 

time consuming and inefficient for storage and particularly archiving [20]. Film 

certainly had advantages particularly with excellent spatial resolution characteristics, 

however, data management was a huge constraint. In 1973, George Luckey a research 

scientist at Kodak filed a patent entitled ‘apparatus and method for producing images 

corresponding to patterns of high energy radiation’ [21]. The idea was to use phosphor 

or thermo-luminescent material to store radiation image information on the phosphoric 

plate, which can then be scanned by another source of radiation, emitting the initial 

image information as a third type of radiation. The latter can be converted to electrical 

energy and digitised to form an image [21]. Luckey’s patent was approved in 1975; 

consequently, many companies followed Luckey’s invention opening the way for 

many patents referencing his original work leading to the first commercial computed 

radiography (CR) system being released by Fuji (AC-1) in 1983. The turn of the 

century showed revolutionary technological advancements driven by the world’s 

insatiable demand for computerised systems and connectivity through the World Wide 

Web. This was reflected on mammography by the introduction the FCR 5000M CR 

system specifically for mammography and of Full Field Digital Mammography 

(FFDM) that was approved first by the Food and Drug Administration (FDA) in 2000. 

Digital systems (digital radiography [DR] and CR) use flat panel or photon counting 

detectors to capture X-rays and digitise the image so that it can be read directly on a 
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computer. The difference between DR and CR is the signal conversion method, being 

more direct for DR, or more indirect (for CR) [22]. 

Today the three technologies: Screen Film Mammography (SFM), CR and DR coexist 

around the world, however, many countries are in the processes of transitioning into 

DR systems. SFM is a limited technology; once films are processed, the image contrast 

cannot be enhanced or adjusted. Furthermore, films are expensive, labour intensive, 

use harmful chemicals for processing, can be easily lost or accidentally misfiled. They 

are not compatible with the Picture Archiving and Communication Systems (PACS) 

unless scanned by a digitiser [23]. DR systems on the other hand, are PACS compatible 

allowing for better management of images and dose reduction researchers have 

demonstrated up to 40% dose reduction for DR when compared to SFM [24-26]. 

Furthermore, the ACR Imaging Network Digital Mammography Imaging Screening 

Trial (ACRIN DMIST) found an average 22% dose reduction for DR systems 

compared to SFM, albeit, this was dependent on the digital detector design, as it was 

also found that Hologic Selenia systems had 18% higher dose than SFM systems. The 

higher dose was attributed to the AEC setting on the system (allowing more manual 

exposure settings) and the use of molybdenum anode/filter combination (Mo/Mo), 

which produced softer, lower energy, beam quality, resulting in a higher absorbed dose 

but better subjective contrast. Nonetheless, the ACRIN DMIST concluded that DR 

produces doses that are comparable or less than SFM systems on average [27]. 

Furthermore, the ACRIN DMIST trial concluded that the overall diagnostic accuracy 

of digital and film mammography was similar for breast screening, however, digital 

mammography producing more accurate results for women under the age of 50 years, 

women with radiographically dense breasts, and premenopausal or perimenopausal 

women. 

 

2.2 Screening mammography  

The first breast cancer screening trial was conducted between 1963-1966 by Strax and 

Shapiro [11]. This trial referred to as the Health Insurance Plan of New York 

randomised study (HIP) showed a reduction in breast cancer mortality rate by up to 

30% for women aged 50-64 years, however this evidence was inconclusive for women 
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aged 40-49 years [28, 29]. A second randomised controlled trial was conducted in 

1977 in two counties in Sweden to assess the impact of screening mammography on 

mortality rates among women aged 40 years or more [30]. The results of this trial 

agreed with the HIP results, showing a 30% reduction in mortality rate from breast 

cancer in women aged 50-74 years, with no benefit seen for women under 50 due to 

the higher density and resulting reduced sensitivity [31].  

As a result of the evidence provided by the screening trials, many countries started to 

establish national breast screening programs. The European Council (EC) 

recommended mammography screening pilot programs to its states in 1986 [32]. The 

UK, Sweden and the Netherlands had already decided to establish national screening 

programs, the pilot programs were established in Belgium, Denmark, France, Greece, 

Ireland, Luxemburg, Portugal, and Spain [33]. By 1995, the Australian breast 

screening program was introduced; all states tribes and territories in the United States 

of America were included in the National Breast and Cervical Cancer Early Detection 

Program (NBCCEDP) [34, 35]. However, less developed countries did not adopt 

national screening programs at that period. High cost, cultural beliefs, and traditional 

medicines among other factors were the reasons for delaying the development of 

national screening programs. 

The transition to digital mammography was not embraced directly due to the high 

initial setup costs and the new processes associated with it. Subsequently, comparisons 

between film-screen and digital mammography began, with the most well-known 

being the ACRIN DMIST [36]. The DMIST was a multi-institutional study run by 

ACRIN comparing analogue to digital mammography at 33 screening sites in the 

United Stated and Canada. The DMIST resulted in a similar overall diagnostic 

accuracy for screening for breast cancer, however, digital mammography proved more 

accurate for women under 50 years, premenopausal women, and women with 

heterogeneously dense or extremely dense breasts [37]. Furthermore, subgroup 

analysis revealed a less accurate diagnostic sensitivity in digital mammography for 

older women with fatty breasts [38]. Nonetheless, current advances in mammography 

have overcome this weakness. The transition to digital mammography revealed more 

benefits to screening programs such as integrated medical systems, better management 

of images, and lower radiation dose [23]. 
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Radiation dose from mammography contributes to a relatively small percentage of the 

lifetime accumulated dose from all radiation sources including medical imaging.  

However, the fact that breast tissue is considered to be amongst the most sensitive to 

radiations in the body [39] highlights the need to further explore the risk of 

carcinogenesis from repeated bilateral multi-view mammography on the breast and 

other body parts. Most models exploring risk vs. benefits of screening mammography 

fail to account for the risk from radiation exposure [40, 41]. However, a recent study 

estimating the effective lifetime radiation risk from screening mammography to the 

breast and other body parts have concluded that lifetime risk should be considered as 

a performance indicator for mammography screening programs [42]. To better 

establish the risk from radiation exposure in mammography, accurate estimation of 

dose absorbed by the breast is required. 

2.3 Dosimetry in mammography 

Radiation dosimetry is the quantitative assessment of the energy absorbed in a medium 

due to interactions with ionizing radiation. The early days of mammography revealed 

complexity in the determination of the energy absorbed by the breast and the 

associated risk. Early dosimetry instigations measured air exposure at the position of 

the entrance surface of the breast as a risk descriptor [43, 44]. In 1976, a US survey 

revealed wide variations in the entrance surface exposure values to a medium size 

breast [45]. Also, the relationship between entrance surface exposure and absorbed 

dose to the tissue at risk had to be established before accurate risk estimations can be 

made [46]. Hence, a more reliable value of the absorbed energy was needed to quantify 

the radiation risk in mammography.  

Other risk-related measures of dose were explored in the 1970s, and mid-breast dose 

was adopted as a descriptor of risk [46-48]. Breslow et al. estimated mid-breast dose 

to be 20% of the skin dose, which was estimated to be 20 mGy for a two-view 

mammogram [47]. However, mid-breast dose did not take into account the distribution 

of tissue within the breast. Another risk-related measure was the total energy absorbed 

in the breast [49], and this estimation assumed all tissue in the breast to have equal risk 

from radiation. It was not until 1976, that Karlsson suggested dose be estimated to the 

glandular tissue of the breast because it is most sensitive to radiation [50]. This 
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conclusion is reasonable and generally supported as the fibroglandular tissue of the 

breast contains high concentrations of epithelial cells lining the milk ducts of the 

mammary glands. Epithelial cells are susceptible to radiation because they pass 

through the mitotic phases more frequently and have a high risk of developing 

radiation induced cancer [51]. The glandular dose cannot be measured directly on 

patients or equivalent material; however, incident air kerma (IAK) is an exposure 

measure that can be gauged directly at the surface of the irradiated object. Hence, 

conversion factors have been measured [46, 52] or estimated using Monte-Carlo 

techniques [53-56] to relate glandular dose to IAK. Monte-Carlo techniques simulate 

radiation interactions with breast tissues to estimate conversion factors that relate IAK 

to the glandular dose, which are dependent upon breast thickness, breast density and 

X-ray beam quality [54].  

Many scientists have proposed methods of estimating radiation-induced risk to the 

breast. The following subsections discuss these methods in detail and their shortfalls. 

The rationale for exploring a more accurate estimation of dose absorbed by the breast 

in mammography is also provided. 

 Hammerstein et al., 1979 

Due to the uncertainties in the estimates relating exposure to depth dose, Hammerstein 

et al. proposed a simplified model for the breast to study the mid-breast dose and the 

total energy absorbed in the breast. The breast model consisted of three phantoms 

made from material (used as tissue substitute) to imitate the radiation interaction 

properties of water, adipose, and 50% water- 50% adipose. Each phantom consisted 

of six 10 mm thick D shape disks. Each disk consisted of homogeneous sections of 

tissue substitutes and cavities at different depths to insert the Thermo-luminescent 

dosimeters (TLDs) to study exposure as a function of depth. The authors concluded 

that none of the above-mentioned dose descriptors were appropriate to reflect 

carcinogenic risk from mammographic radiation. Mid-breast dose did not account for 

the distribution of tissue (glandular tissue) in the breast at high risk, and the total 

energy absorbed by the breast over-estimated the risk. All tissue types were included 

when only the glandular tissue is considered at high risk of developing radiation 

induced cancer. Consequently, Hammerstein et al. introduced the “average breast” 
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glandular dose, which describes the energy absorbed by the glandular tissue of an 

average breast (6 cm thick with a uniform 50% glandular and 50% adipose 

composition). The “average breast” glandular dose represented a possible comparison 

tool between different imaging systems, however, to be considered as a risk measure 

a detailed individualised analysis of glandular compositions should be integrated to 

the calculation method [46]. 

Hammerstein et al. presented a method to estimate the “average breast” glandular dose 

for four radiation qualities, three of which were W/Al with different filter thicknesses 

and the last was Mo/Mo with 0.03mm filter thickness. Work was needed to cover more 

radiation qualities that were used in film and film-screen mammography. David 

Dance’s work in 1980 presented results for a series of monoenergetic beams that can 

be integrated over any desired X-ray spectrum [53]. This is discussed in the next 

subsection. 

 Dance, 1980 

In 1980, Dance estimated the absorbed dose within the breast using a similar breast 

model to that of Hammerstein et al. [46]. However, Dance estimated the absorbed dose 

within the breast in xeromammography using Monte-Carlo technique, developed to 

simulate the interactions of radiations with breast tissues. Furthermore, Dance 

presented results of absorbed dose as a function of breast thickness (2, 4, 6 and 8 cm), 

and beam quality (HVL). Data were also presented for absorbed dose within the 

glandular tissue of the breast [53]. Dance also reported that the use of Aluminium 

filters to reduce the dose to the breast did not affect the clinical quality of the 

mammograms.  

Breast composition varies across women, and glandular dose is related to the amount 

of glandular tissue in the breast. Dance’s work is limited in that it estimated the 

“average breast” glandular dose to one breast composition. Thus, further work 

accounting for the differences in breast composition was required to provide more 

accurate dose estimates. Stanton et al. acknowledged the need for a simple model to 

estimate the dose to the breast, however they stated that the use of such model was to 

be for the purposes of comparing mammography techniques only and not to be used 

for risk analysis purposes. Stanton et al., presented factors for extrapolating dose from 
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the simple model to other breast compositions [52]. The Stanton et al. work is 

discussed next.  

 Stanton et al., 1984 

Stanton et al. developed a phantom based on the “average breast” glandular dose 

proposed by Hammerstein et al. [46]. This phantom was made of synthetic material to 

match the linear attenuation coefficient of a 50% glandular-50% adipose breast 

composition (BR12). The phantom was semi-circular in shape with a 150 mm 

diameter. Using experimental data and data from Hammerstein et al. [46], the authors 

developed working curves to estimate the average glandular and whole breast dose (Dg 

and D) per view in mammography. Dg and D values could be derived from the working 

curves using HVL and breast thickness for different mammography techniques using 

the following equations: 

 D  =  DN. Xa (1.1) 

 Dg  =  DgN. Xa (1.2) 

Where DgN and  DN are the average dose per view to the whole breast and the average 

glandular dose per view normalised to unit incident exposure in air, respectively. Xa is 

the incident exposure in air. 

The authors also studied the variation of average glandular dose for compositions other 

than the reference BR12 composition and computed conversion factors for different 

breast compositions. Finally, the authors suggested the average glandular dose as the 

preferred index of radiation risk in mammography [52]. Thereafter, in 1987 the 

International Commission of Radiological Protection (ICRP) recommended the use of 

the Average or Mean Glandular Dose (MGD) as the determinant of radiation risk in 

mammography [57].  

 Rosenstein et al., 1985 

In 1985, Rosenstein et al. [55] used Monte-Carlo techniques and working curves, 

developed by Stanton et al. [52], to develop a handbook of conversion factors. 

Rosenstein’s handbook facilitated the calculation of the glandular dose to the breast 
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for a variety of imaging scenarios (equations 1.1 and 1.2), depending on beam quality 

(HVL, 0.2-2.4 mm Al), breast thickness (3-8 cm), breast view (Craniocaudal or 

Mediolateral) breast compression (firm or moderate), target material (Molybdenum, 

Molybdenum-Tungsten alloy, and Tungsten), and glandular tissue content (5%, 25%, 

50%, 75%, and 100%).  

Although adopted by the National Council on Radiation Protection (NCRP) [58], 

Stanton working curves did not cover a wide range of breast thicknesses; it was 

missing data for 3, 7, and 8 cm CBTs. Furthermore, the Stanton et al. data was based 

on depth dose estimation and did not account for lateral variation of dose within the 

breast. The Rosenstein et al. glandular dose conversion factors however, were versatile 

and covered more imaging scenarios and breast sizes than Stanton et al. Nonetheless, 

they were lacking data on different breast thicknesses with firm compression [54]. This 

gap led to the development of conversion factors for the estimation of MGD by Wu et 

al. [56, 59, 60], Boone [61-63] and Dance et al. in 1990 [54, 64, 65]; these methods 

are explained in the next subsections. 

 Wu et al., 1991-1997 

Wu et al. used a different simulation model to that utilised by Dance et al. [54]. The 

phantom was similar to the FDA phantom (semi-elliptical, homogeneous composition 

enclosed with a 4 mm skin layer), one anode/filter combination (Mo/Mo), and 

tabulated depending on tube potential (kVp), HVL and breast thickness for 0%, 50% 

and 100% glandularity initially. Wu’s model used the normalised average glandular 

dose (DgN) the average glandular dose per unit entrance surface air kerma. This is 

different to that of Dance [54] as DgN incorporates all the variables used for the 

calculation of MGD while Dance et al. [54, 64] utilised more than one conversion 

factor in their calculations. Following the initial publication, Wu et al. published tables 

to include another two anode/filter combinations (Mo/Rh, Rh/Rh) [60]. In 1997 Sobol 

and Wu created mathematical equations to parameterise DgN tables and match DgN 

values within predefined uncertainties [59]. These equations can be used to calculate 

DgN values for arbitrary breast composition depending on tube potential, HVL, and 

breast thickness. Wu et al. and Sobol and Wu methods are limited to three anode/filter 

combinations and do not account for the type widely used in digital imaging, the 
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tungsten anode with Al or Ag filters. Wu et al. method is utilised in the ACR 

optimisation protocol for film-screen mammography [66], however, the new manual 

utilises Dance et al. method because it has been updated to include more breast 

thicknesses and all spectra used in digital mammography [67]. 

 Boone et al., 1997-2002 

In 1999, Boone extended earlier work on DgN calculations [54, 56, 60] to include 

higher energies (up to 120 keV), thicker breasts (up to 12 cm), and more anode/filter 

combinations (Mo/Mo, Mo/Rh, Rh/Rh, W/Rh, W/Pd, W/Ag). Boone’s work on higher 

energy beams was motivated by his interest in dual energy mammography, where 

higher than conventional X-ray beam energies are used, as well as the introduction of 

digital mammography at the time where it was expected to utilise higher energy 

spectra. Monte-Carlo codes simulated one million photons interactions through a 

cylindrical shaped phantom. The rationale behind the use of a cylindrical shape was to 

account for the backscattered radiation due to the presence of tissue outside the 

radiation field. This is different from the semi-circular D-shaped phantom utilised 

earlier [54, 56]. Nonetheless, same breast composition from Hammerstein et al. [46] 

work was used. A wide range of mono-energetic, poly-energetic and mammographic 

X-ray spectra was covered in his work; hence, average glandular dose can be 

calculated for modalities other than mammography [61]. In response to the 

introduction of digital mammography, Boone published computer-fit equations for the 

calculation of interaction-specific corrected conversion factors for a range of breast 

thicknesses, breast glandularities, tube potentials, HVL, and X-ray spectra [62]. 

Although Boone’s method accounted for all X-ray spectra and different CBTs, it did 

not include estimates of different glandularities. This led to the Dance et al. method 

being proposed. 

 Dance et al. 1990, 2000 &2009 

Dance et al. conversion factors were tabulated according to HVL for compressed 

breast thicknesses in the range of 2-8 cm with 50% glandularity for a variety of X-ray 

spectra from molybdenum (Mo) and tungsten (W) targets with Mo, rhodium (Rh), or 

palladium (Pd) filters. Dance et al. estimated MGD using the following equation: 
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MGD = K.p.g (1.3) 

Where: K is the entrance air kerma without backscatter; ‘g’ is the K to MGD 

conversion factor for the standard breast phantom (4.2 cm thick with 50% glandular 

composition). ‘p’ converts K for the phantom used in their experiments (4 cm thick 

with 50% glandular composition) to K for a standard breast phantom. The new p 

conversion factor enabled the use of inexpensive and convenient material such as 

PolyMethyl MethAcrylate (PMMA) to create phantoms and converts the results for 

standard material and sizes [54]. 

Dance et al. continued to update their method to include new technologies; in 2000 a 

new equation was published with tables that covered more breast thicknesses (2-11 

cm) and added a conversion factor to account for different glandularities and spectra.  

MGD = K.g.c.s (1.4) 

Where K is the incident air kerma measured on top of the breast without backscatter. 

g converts K to MGD. c corrects for differences in breast composition from the 50% 

glandularity original assumption. s corrects for the use of different X-ray spectra [64].  

Different X-ray spectra are achieved by changing the anode, filter or kVp 

combinations in a mammography system. Changes in these parameters significantly 

influence image quality and radiation dose. Different anode-filter combinations are 

available in different mammographic systems. Molybdenum (Mo) and rhodium (Rh) 

combination is used to produce optimal X-ray spectrum specific to the imaged breast, 

the choice depends on the size and density of the breast, thicker more dense breasts 

require harder beam quality (i.e. Rh/Rh) to penetrate the dense tissue, while fatty 

breasts require softer beam quality (i.e. Mo/Mo) to produce high quality images and 

low dose [68]. The advancements in digital mammography technologies, and the use 

of new anode/filter material sparked new research [65]. Further work was done on the 

s factor in equation 1.4 to account for new anode/filter combinations: tungsten/silver 

(W/Ag) and tungsten/aluminium (W/Al). The authors found that when W/Al was used, 

the estimation of equivalent breast thickness in PMMA depended on beam quality and 

breast thickness, causing up to 10% error. To account for this error, a new table was 

developed for s factors that depended on breast thicknesses and beam qualities (HVL) 

when W/Al anode/filter combination is used. 
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The inclusion of all variables affecting MGD and the continuous update on Dance et 

al. method resulted in it being adopted by the European protocol for quality assurance 

in breast cancer screening (EP) [69], the International Atomic Energy Agency (IAEA) 

[70-72], the Institute of Physics and Engineering in Medicine (IPEM) [73], and lately 

in American College of Radiology (ACR) [67]. Nonetheless, Dance method although 

calculates MGD taking into account MBD and parameters affecting exposure, it does 

not consider individual differences in MBD. Thus, Dance’s method is limited in the 

calculation of Actual Glandular Dose (AGD), which better represents individualised 

dose estimates. 

 Organ Dose 

The Digital Imaging and Communication in Medicine (DICOM) standard core 

application was to capture, store, and distribute medical images for almost all medical 

imaging modalities since its introduction in 1993. However, it was only in 2005 that 

radiation dose structured reports (RDSR) were developed within the DICOM 

standards to manage the already existing radiation dose information from imaging 

modalities. Mammography dose structured reports were developed in 2007, making it 

possible to add estimates of MGD within the DICOM header of a mammogram. 

Mammography vendors developed their own algorithms to estimate the MGD, 

adopting one of the three main methods of calculating MGD, Dance et al. [65], Sobol 

and Wu [59], or Boone [61-63]. The estimated MGD is displayed by the 

mammography system as a reference for radiographers as Organ dose. Although 

methods of MGD calculation vary between vendors, such reference could be beneficial 

for quick dose audits on the systems in question, given that Organ Dose accuracy is 

verified. Chapter four provides a comparison between Organ Dose and MGD 

estimated using three dose calculation methods to test the consistency and accuracy of 

the Organ dose. 

2.4 Bridging section 

Individualised dose estimates should provide more accurate risk descriptors for 

patients undergoing mammography examinations. Accurate estimation of risk benefit 
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analysis for screening mammography is an important factor to consider if we are to 

maintain the Basic Safety Standards (BSS) in medical imaging. Justification, 

optimisation and DRLs constitute the BSS for medical imaging, and for DRLs to be 

accurate, two factors should be considered.  

Firstly, an accurate estimation of MGD is required, hence the need for an 

implementation of MBD in the calculations of MGD, this is explained further in 

chapter five. 

Secondly, a worldwide standard method to establish DRLs should be agreed on. The 

next subsections detail the literature on DRLs in mammography and highlight the 

variation in the methods used to establish DRLs around the world.  

The literature review was published as “Diagnostic reference levels in digital 

mammography: a systematic review”. Since its publication, there have been several 

additions to the literature in the field. These are laid out below.  

 Additions to the literature on DRLs since publication 

A review of the literature shows that different methods have been used for establishing 

DRLs worldwide. Variables such as the use of patient versus phantom data, breast 

thickness, phantom thickness, phantom type, breast glandularity, reported age, 

calculation methods and percentiles used were inconsistent across published work 

(Figure 2.1). 
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Figure 2.1: The different methods utilised internationally to establish Diagnostic Reference 

Levels (DRLs) for digital mammography. 

 

Twenty-three studies were analysed, 8 of which utilised phantom data and 15 utilised 

patient data. The use of phantom or patient data for dose audits and DRLs can be 

debated in either side, a phantom study provides the advantage of eliminating patient 

variability for rapid examinations of equipment and quick update of DRLs. it also 

provides the basis of a standard patient [74]. Patient studies on the other hand, are a 

better representative of the women population screened in mammography and have 

the advantage of studying the variability in women breasts and the resultant effect on 

the dose delivered during a screening mammogram. Nonetheless, phantom based 

MGD estimates could carry up to 30% difference in either direction from patient based 

MGD [75]. Hence, the new ICRP publication on DRLs recommends the use of patient 

data to establish DRLs for mammography [76].  

Different phantoms were used in the studies included, the ACR phantom which is 45 

mm thick that simulates the X-ray attenuation to a 42 mm compressed breast with a 

50% glandularity (Figure 2.1). A 45 mm PMMA phantom that simulates a 53 mm 

compressed breast with a 50% glandularity, a 40 mm BR12 phantom that simulates a 

45 mm compressed breast with 50% glandularity, and a 45 mm RMI phantom that 
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simulates a 42 mm compressed breast with 50% glandularity. This variation in 

phantoms utilised eliminates the idea of standardisation and makes dose and DRLs 

comparisons difficult. In patient studies, average CBT of the study population was 

used to establish DRLs. Nonetheless, a few studies have used a certain range of breast 

thickness, and others used a few ranges of breast thickness for the purpose of 

comparison. Moreover, glandularity varied depending on the method of MGD 

calculation, sliding-scale, 50%, or an average estimation of the population glandularity 

were utilised for the calculations of MGD. 

Two calculation methods were utilised for the estimation of MGD. The Dance method, 

which provides a utility to include variations in anode/filter combinations, breast 

thickness and glandularity and the Wu method, which provides tabulated values of 

normalised glandular dose per unit ESAK; in Australia, the ACPSEM recommends 

the Dance method for the calculation of MGD [77], however, work is in progress to 

change to Dance method. Since our review of the literature, two new studies that have 

been published (Table 2.1). Both utilised the 75th percentile, however one used 

phantom data and the other used patient data. This only confirms the variability of 

methods used to establish DRLs. The next subsections present the published literature 

review titled: Diagnostic reference levels in digital mammography: a systematic 

review. 

Note: The published article contained an error in section 2.6.4 first paragraph, last line. 

The number of articles should be 23 instead of 22. A note has been sent to the editor.  
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Table 2.1: Further studies that established DRLs for digital mammography. 

Country 
Authors 

(year) 

Phantom 

/Patient 

Conversion 

factors 

Phantom 

type 

 (Thickness 

/E-BCT/ G 

%) or 

Patients 

mean breast 

thickness 

Average 

MGD mGy  

DRLs mGy 

75% 

Chile 
Leyton et al. 

(2015) [78] 
Phantom 

Dance et al. 

[64] 

PMMA 

 (20, 30, 40, 

50, 60, 70 

mm / 21, 32, 

45, 53, 60, 

75, 90 mm / 

Dance G A) 

0.85, 1.39, 

2.21, 2.77, 

3.33, 4.12, 

6.26 

0.90, 1.58, 

2.46, 3.36, 

4.17, 6.36 

Ethiopia  
Dellie et al. 

(2016) [79] 
Patient 

Dance et al. 

[64] 
4.51 mm 2.57 2.37 

ESAK : Entrance surface air kerma. 

IAK : Incident air kerma. 

E-BCT : Equivalent Breast compressed thickness 

PMMA: Polymethyl-methacrylate. 

CC : Cranio-caudal. 

MLO : Mediolateral oblique. 

G % : Glandularity. 
A : Dance scale of glandularity 
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MAMMOGRAPHY: A SYSTEMATIC REVIEW 
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Faculty of Health Sciences, The University of Sydney, M205, Cumberland Campus, 

75 East St, Lidcombe, Sydney, NSW 2141, Australia 

 ABSTRACT 

This study aims to review the literature on existing diagnostic reference levels (DRLs) 

in digital mammography and methodologies for establishing them. To this end, a 

systematic search through Medline, Cinahl, Web of Science, Scopus and Google 

scholar was conducted using search terms extracted from three terms: DRLs, digital 

mammography and breast screen. The search resulted in 1539 articles of which 22 

were included after a screening process. Relevant data from the included studies were 

summarised and analysed. Differences were found in the methods utilised to establish 

DRLs including test subjects’ types, protocols followed, conversion factors employed, 

breast compressed thicknesses and percentile values adopted. These differences 

complicate comparison of DRLs among countries; hence, an internationally accepted 

protocol would be valuable so that international comparisons can be made. 

 INTRODUCTION 

Breast cancer causes almost half a million deaths in the world per year (1), but early 

detection has been demonstrated to reduce mortality by up to 30 %(2). Mammography, 

radiographic imaging of the breast with X-rays, is the most important diagnostic tool 

for the early detection of breast cancer. There are two types of patients on whom 

mammograms are per- formed: symptomatic women in the clinic and asymptomatic 

women in breast screening programmes. 

The Australian breast screening programme was established in 1991, targeting women 

aged 50 – 69y for 2-yearly screening mammograms with the aim of reducing deaths 

from breast cancer (3). It has been estimated that since 1991 breast cancer mortality in 

Australia has been reduced by 21 – 28 % (3); however, as with any other X-ray 
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examination, screening programmes can add to the risk of inducing cancer in healthy 

women by exposure to ionising radiation. Therefore, the dose to the patient must be 

kept as low as reasonably achievable (4). The three pillars of radiation protection are 

justification, optimisation and dose limitation. 

The International Commission of Radiation Protection (ICRP) introduced diagnostic 

reference levels (DRLs) in their 1996 publication 73 as a parameter to be used for 

quality control, comparison of dose levels, optimisation and limiting variations in dose 

among diagnostic imaging centres. DRLs were defined as follows: 

“A form of investigation level, applied to an easily measured quantity, usually the 

absorbed dose in air, or tissue-equivalent material at the surface of a simple phantom 

or a representative patient” (4) 

A year later, the European Council defined DRLs as: 

“Dose levels in medical radiodiagnostic practices, for typical examinations for groups 

of standard- sized patients or standard phantoms for broadly defined types of 

equipment. These levels are expected not to be exceeded for standard procedures when 

good and normal practice regarding diagnostic and technical performance is applied” 

(5). 

The methods through which the DRLs are established become important when trying 

to establish international comparisons as radiation dose measurements are required (3). 

Historically, mammography was screen-film based (6–12), but now this technology is 

being phased out and replaced with digital mammography, which includes full-field 

digital mammography and computerised radiography systems; hence, only studies 

with digital mammography or a mix of digital mammography and screen-film 

mammography (SFM) are included. Measuring the radiation dose to the breast has 

been performed or represented using a variety of approaches including air kerma (13), 

entrance surface dose (14), mid-breast dose (15), total energy trans- mitted to the breast 

(16) and the average dose absorbed by the glandular tissue (17). The latter was found to 

be the most effective way of measuring absorbed dose to the breast because the 

mammary glands are most sensitive to ionising radiation and have the highest risk of 

developing radiation-induced carcinogenesis (17). Called mean glandular dose (MGD), 

this metric is now the recommended measure by many authorities such as the ICRP 

(18), the United States National Council on Radiation Protection and Measurements (19), 
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the British Institute of Physics and Engineering in Medicine (IPEM) (20), the European 

Council Protocol (EP) (21–23) and the International Atomic Energy Agency (IAEA) (24). 

Dose to the glandular tissue of the breast cannot be directly measured during an X-ray 

examination but can be assessed with certain standard assumptions that depend on 

breast characteristics and X-ray spectra. MGD represents the effective dose absorbed 

by the breast and is calculated from conversion factors that have been established using 

Monte-Carlo techniques (25 – 28). Such factors relate MGD to the entrance surface dose 

and allow for a wide and flexible range of X-ray spectra, breast thickness and breast 

glandularity (26, 29). The estimation of this quantity can be done using either a standard 

phantom or a patient. Although phantoms are good indicators of machine quality and 

can be used as an inter-centre and inter-suite comparison tool, direct patient 

measurements can reveal much more information on technique and the relation 

between breast composition and absorbed dose (9, 30 – 32). 

A number of countries around the world have established DRLs for mammography 

examination, but many others are yet to do so. The aim of this study is to review the 

literature on established DRLs and methodologies for establishing them in digital 

mammography. 

 METHODS 

Search strategy 

Using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

methodology (33, 34), a systematic literature search of Medline, Cinahl, Web of Science, 

Scopus and Google scholar was conducted to identify studies that have established 

DRLs for digital mammography. The search terms shown in table 2.2 were applied; a 

search filter was used to limit results to specific criteria of population (female, human), 

age (adult .19), publication language (English) and publication year (1990 – 2014). 

Selection criteria 

An initial screening of identified abstracts and titles was conducted by two reviewers 

(M.S. and M.M.). Only abstracts that discussed MGDs in mammography were 

included in the full text review. Articles were independently considered for inclusion 
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in the review if they discussed DRLs in digital mammography and included data from 

phantoms or patients. 

 RESULTS 

The combined search strategy identified 1539 citations: 494 were identified from 

MEDLINE, 626 from SCOPUS, 385 from Web of Science, 9 from Cinhal and 25 from 

Google Scholar and manual search. Of these, 270 were duplicates and 1058 citations 

were excluded after the initial screening based on titles and abstracts. Finally, 211 

articles were considered eligible for full text review. On full text review of the 

remaining articles, 188 were excluded because they did not establish DRLs for digital 

mammography or had no clinical data (Figure 2.2). The final number of articles to be 

included in the systematic review was 22. 
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Table 2.2: The search terms used to find the relevant literature, separated in to the 

intervention, cohort and other, where the search formula was: (Intervention 
combined with “OR”) AND (Cohort combined with “OR”) AND (other combined 

with “OR”) 

Intervention  Cohort  Other  

DRLs Mammography Breast screening 

Diagnostic reference levels Mammographic Examination Mass screening 

Dose reference levels Mammogram Population screening 

Mean glandular dose Digital mammography  

Average glandular dose   

Reference levels   

Dose survey   

Population dose   

Glandular dose   

Radiation dose   

 

 
 

 

Figure 2.2: Flow diagram of included and excluded studies with specifics for DRLs in digital 

mammography. 
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Review 

The included studies cover different regions in the world, with 13 from Europe (35 – 47), 

5 from Asia and the Middle East (48–52), 1 worldwide study (53) and 1 each from 

Australia (54), the USA (55) and Nigeria (56). The main characteristics of the studies are 

summarised in tables 2.3 and 2.4. Six of the 22 studies were based on phantom data, 

13 on patient and 3 on both. For comparison purposes, studies with both phantom and 

patient data were included in both tables. The review demonstrated that four main 

quality control protocols were followed for estimating MGD and finding DRLs, those 

published by the American College of Radiology (ACR) (57), the European Council 

Protocol (EP) (21–23), the IAEA (24) and the British IPEM, formerly the Institute of 

Physical Sciences in Medicine (IPSM) (60). 

Phantom studies: methods used 

Phantom-based studies have the benefits of standard baseline, standard exposure 

protocols and quick inter- and intra-X-ray suites comparison. Therefore, it is not 

unexpected that 6 of the 22 studies investigating DRLs were performed using 

phantoms only (Tables 2.3) and 3 performed on patients and phantoms. Of the three 

studies that were performed on patients and phantoms, one reported DRLs for 

phantoms only, one reported for patients only and one reported for both patients and 

phantoms (Tables 2.3 and 2.4).  

A total of eight studies reported DRLs for phantoms although the phantoms used were 

not of the same size and type; three used ACR polymethylmethacrylate (PMMA) 

phantoms (50,54,55), three used EP PMMA phantoms (35,45,47), one used a 45-mm RMI-

156 phantom (51) and another used a 40-mm BR12 phantom (38).  

The phantom types and the protocols used to collect measurements, the coefficients 

used for the conversion to MGD and the percentile used to report the DRL varied 

among the studies (Table 2.3). The ACR measurement protocol (57) and the Wu et al. 

MGD conversion factors (29,58) were followed by three of the seven PMMA studies 

(50,54,55), two followed European measurement protocol (21) and used the Dance et al. 

MGD conversion factors (45,47) and one followed the IAEA measurement protocol with 

the Dance et al. MGD conversion factors (35). Thus, DRL values found in these studies 
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cannot be com- pared directly without conversion calculations; this complicates inter-

study comparisons and detracts from the benefit of using a standard phantom. 

Phantom studies: DRLs 

The overall distribution of DRLs calculated from phantom studies are shown in figure 

2.3. These are categorised by phantom types. However, other factors need to be 

discussed before these DRLs can be com- pared. The three ACR PMMA phantom 

studies reported overall 75th percentiles of 1.3 mGy (54), 1.75 mGy (50) and 2.0 mGy 

(55). Although the same standard phantom and conversion factors were used to estimate 

the average MGDs, the results demonstrate a 0.7-mGy difference in the average MGDs 

between Australia (1.3 mGy) and the USA (2.0 mGy). The low DRL in the Australian 

study might be explained by the absence of film-screen mammography units in the 

study where the other two studies had a mix of digital and film-screen units. The RMI 

156 phantom following the ACR protocol reported a 75th percentile of 1.44 (38). The 

two EP PMMA phantom studies reported 75th percentile of 1.70 mGy (47) and 95th 

percentile of 2.08 mGy (45). 
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 Table 2.3: Summary data from included phantom studies. 

 

Country Authors (year) 
Data collection 

method 

Dose protocol/ 

Conversion factors 

Phantom type 

 (Thickness /E-BCT/ G %) 

Average MGD mGy 

 (unless otherwise stated)  

DRLs mGy 

75% 95% Recommended 

Australia Thiele et al. (2011) (54) 
Measured 

ESAK 
ACR(57)/Wu et al. (29,63) 

ACR PMMA 

 (45mm / 42mm / 50%) 

All:1.16 

DR:1.04 

CR:1.28 

All: 1.30 

DR: 1.10 

CR: 1.36 

 
DR:1.10A 

CR:1.40 A 

Taiwan Hwang et al. (2009) (50) 
Measured 

ESAK 
ACR (57)/Wu et al. (29) 

ACR PMMA 

(45mm / 42mm / 50% ) 

All: 1.48  

DR: 1.47  

SFM: 1.49 

1.75   

USAB Spelic et al. (2007) (55) 
Measured 

ESAK 
ACR (57)/Wu et al. (29) 

ACR PMMA 

(45mm / 42mm /50%) 

All: 1.78 

DR:1.63 
SFM:1.80 

All: 2.0 

DR:1.92 
SFM: 2.04 

All: 2.35 

DR: 2.29 
SFM: 2.39 

 

Slovenia Zdesar (2008) (47) 
Estimated 

ESAK 
EP (21)/ Dance et al. (66) 

PMMA  

(45mm / 53mm / 50%) 
1.5 1.7   

Belgium 
Smans et al. (2006) C 

(45) 

Estimated 

ESAK 
EP (21)/Dance et al. [64] 

PMMA 

(45mm / 53mm / 50%) 
*  

2.08 

 
 

Bulgaria 
Avramova 

 & Vassileva (2011) (35) 
Measured IAK 

IAEA (24) /Dance et al. 
(66) 

PMMA 

 (45mm / 50mm/ 50%) 
1.8 2.3   

Turkey Bor et al. (2008) (38) 
Measured 

ESAK 

IPSM (58) / Dance et al. 
D (66) 

BR12 

(40 mm / 45mm / 50%) 
1.46 2.0   

Malaysia Jamal et al. (2003) C (51) 
Measured 
ESAK 

ACR (57)/Wu et al. (29) 
RMI 156 E  
(45mm / 42mm / 50%) 

1.23 
1.44 
4.61 (ESAK) 

 2.0 A (93.3 %) 

ACR : American college of radiology. 

EP : European Protocol. 

IPSM : Institute of Physical Sciences in Medicine / now IPEM : Institute of Physical and Engineering in Medicine. 

IAEA : International Atomic Energy Agency. 
A : Recommended by the authors. 
B : Data estimated from Figure 4 and 10 in Spelic et al. paper. 
C : Study includes Phantom and Patient data. 
D : Dance et al. not specifically mentioned. 
E : RMI 156 is made from acrylic with wax inserts. 

ESAK : Entrance surface air kerma. 

IAK : Incident air kerma. 

E-BCT : Equivalent Breast compressed thickness. 

G % : Glandularity. 
PMMA: Polymethyl-methacrylate. 

DR : Digital radiography. 

CR : Computed radiography. 

SFM : Screen-film mammography. 

* : No average MGD value mentioned in the study. 
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Table 2.4: Summary data from included patient studies 

 

Country 
Author(s) 

(year) 

Number 

of 

patients 

Data collection 

method 

Dose protocol/ 

Conversion factors 

Mean  

BCT mm 

Average 

MGD mGy 

DRLs mGy 

75% 95% Recommended 

Japan 
Asada et al. 

(2014) (48) 
NA Measured ESAK EP (23)/Wu et al. (29) 42 1.58 1.91   

Iran 
Bahreyni et 

al. (2013) (49) 
100 

Measured 

ESAK(TLDs) 
EP (23)/Wu et al. (29) 

CC: 47 

MLO: 53 

SMLO: 50-60 

CC: 0.88  

MLO: 1.11  

 

SMLO: 1.33   

Nigeria 
Ogundare et 

al. (2009) (56) 
40 

Measured ESAK 

(TLDs) 
ACR (57)/Wu et al. (29) 

All: 41.1 

CC: 33.8 

MLO: 48.5 

All: 0.88 

CC: 0.33 

 MLO: 1.43 

 2.5A  

Japan 
Kawaguchi et 

al. (2014) (52) 
300 Measured ESAK EP (21, 73)/Dance et al. (66) 

SMLO: 30-40 

MLO: 37.6 

SMLO: 1.88 

MLO: 1.84 
SMLO: 2.0   

Ireland 
O’Leary 

(2013) (44) 
1,010 Estimated ESAK  EP (23) /Dance et al. (27) 

DR: 54.7 

SFM: 52.3 

DR: 1.33  

SFM: 2.64 

DR: 1.5 

SFM: 3.17 

DR: 2.26 

SFM: 5.59 
 

45-55 

All:1.68 

DR:1.13 

SFM:2.16 

All: 1.2 

DR: 1.2 

SFM: 2.55 

All: 1.5 

DR: 1.5 

SFM: 3.85 

 

55-65 

All: 2.04 

DR: 1.40 

SFM: 2.88 

All: 2.47 

DR: 1.50 

SFM: 3.41 

All: 4.33 

DR: 2.40 

SFM: 5.84 

 

Malta 
Borg et al. 

(2013) C (39) 
759 Estimated ESAK EP (21)/Dance et al. (66) 

All: 57.5 

CC: 53.8 
MLO: 63.4 

All: 1.07 

CC: 1.06 
MLO1.07 

All: 1.11 

CC: 1.11 
MLO: 1.11 

All: 1.68 

CC: 1.65 
MLO: 1.87 

1.87B 

Norway 
Hauge et al. 

(2013) (41) 
1,335 Estimated ESAK  EP (21)/Dance et al. (27, 66, 67) SMLO: 55-65 

SCC: 1.23 

SMLO: 1.35 

CC: 1.18 
MLO: 1.31 

SMLO: 1.44 SMLO: 1.98 2.0B 

World 
wide 

Geeraert et al. 
(2012) (53) 

147,497 
Estimated ESAK 
from DICOM data 

N/A /Dance et al. (66) Na 

Europe: 1.48 

N. America: 1.42 

Asia-Pacific: 1.42 

Europe: 1.6 

N. America: 1.6 

Asia-Pacific: 1.1 

Europe: 2.4 

N. America: 2.1 

Asia-Pacific: 2.3 

 

Ireland 
Baldelli et al. 
(2011) (36) 

2910 
Estimated ESAK 
from DICOM data 

EP (21)/Dance et al. (27, 66, 67) 
CC: 60.5 
MLO: 63.0 

CC: 1.27 
MLO: 1.34 

 1.75  

Ireland 
Baldelli et al. 

(2010) (37) 
3016 

Estimated ESAK 

from DICOM data 
EP (21)/Dance et al. (67) 

CC: 60 

MLO: 62.5  

CC: 1.27 

MLO: 1.35 
 1.75  

Belgium 
Michielsen 

(2008) (42) 
NA Estimated ESAK  EP (21)/Dance et al. (66) SMLO: 48-58 All: 1.69  2.37  
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Table 2.4, continued 

 

Belgium 
Smans et al. 

(2006) C (45) 
10,093 Estimated ESAK EP (23)/Dance et al. (66) SMLO: 48-58 All: 1.67  2.44  

Spain 
Moran et al. 

(2005) (43) 
5034 

Estimated ESAK 

from DICOM data 
EP (23)/Dance et al. (66) 

All: 52 

CC: 49 

MLO:54 

All: 1.88 

CC: 1.80 

MLO: 1.95 

All: 2.1 

CC: 2.0 

MLO:2.1 

  

UK 
Young et al. 

(2005) C (46) 
16505 Estimated ESAK 

IPEM (58)/ Dance et al. (27, 

66) 

SMLO: 50-60 

CC: 54.1 
MLO: 56.8 

SMLO: 2.03 

CC: 1.96 
MLO: 2.23 

  SMLO: 3.5 D 

Spain 
Chevalier et 
al. (2004) (40) 

5034 
Estimated ESAK 
from DICOM data 

EP (22)/Dance et al. (66) 

All: 52 

CC: 49 

MLO: 54 

All: 1.88 

CC: 1.80 

MLO: 1.95 

All: 2.1 

CC: 2.0 

MLO: 2.1 

  

ACR : American college of radiology. 
EP : European protocol. 

IPSM : Institute of physical sciences in medicine / now IPEM : Institute of physical and engineering in medicine. 

ESAK: Entrance surface air kerma. 

CC : Cranio-caudal. 

MLO : Mediolateral oblique. 
SMLO: Standard Mediolateral oblique (only standard breast thickness range included for DRLs calculations). 

TLDs : Thermoluminescent dosemeters. 

 

DR: Digital radiography. 

CR: Computed radiography. 

SFM : Screen-film mammography.  
A : Reported 92.5 percentile. 

B : Recommended by authors. 
C : Study includes Phantom and Patient data. 
D : Reported 96.5 percentile. 
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Figure 2.3: DRLs for phantom studies categorised by phantom types (*95th percentile). 

Although the two studies used the same phantom and same conversion factors to report 

MGD DRLs, a comparison cannot be made because the percentiles used were different 

(45, 47). A PMMA phantom study following the IAEA protocol reported an MGD 75th 

percentile of 2.30 mGy. The authors reported non-standardised techniques and lack of 

optimisation as possible causes for the higher dose (35). A BR12 phantom following 

the IPSM protocol reported a 75th percentile of 2.0 mGy (38).  

Patient studies: methods 

Patient studies have an advantage over phantom studies that they offer a more realistic 

and comprehensive assessment of the doses delivered to patients with different breast 

sizes and compositions. A total of 15 patient studies investigating DRLs were reviewed 

(Table 2.4) and once again, methods of data collection varied. Two studies used 

thermoluminescence dosemeters (TLDs) to measure ESAK values (49, 56) and the rest 

estimated ESAK values from exposure parameters such as tube output and tube 

loading (36, 37, 39–46, 48, 52, 53). Two different methods of calculating MGDs have been 

used: the Wu et al. MGD conversion factors were used to calculate MGDs in 3 of the 

15 patient studies (48, 49, 56) and 12 used the Dance et al. conversion factors (36, 37, 39–46, 

53). A wide range of mean breast compressed thicknesses (BCTs) was reported. These 

diverse methodologies complicate direct comparison among results; hence, studies are 

categorised according to reported average BCT and plotted in figure 2.4 and 2.5. 

Patient studies: DRLs 

A range of DRLs have been reported with 75th percentiles ranging from 1.11 (39) to 

2.47 mGy (44) and the 95th percentiles ranging from 1.5 (44) to 4.33 mGy (44), in the 
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average BCT range of 55–65 mm. The three Irish studies reported different 95th 

percentile values from each other, two breast screening mammography studies with 

only digital units reported a 1.75mGy (36,37) of DRL value and the third that included 

SFM units and symptomatic patients reported a 2.40mGy for digital units only (an 

overall digital and SFM value of 4.33 mGy), which is the highest among the three; this 

may be due to the inclusion of symptomatic patients (44). A Norwegian study, which 

included only digital units in a breast screening programme, reported a 95th percentile 

of 1.98 mGy (41) and a Maltese study reported a lower value of 1.87 mGy (39); both 

though are higher than the two breast screening Irish studies that used the same 

percentile value (36,37). International differences may be due to variation in population 

breast composition and the use of certain type of units that contribute to higher patient 

dose. Many authors have discussed the differences in breast dose when using different 

makes and models of mammography units on similar size and composition breasts 

(36,41). 

In the BCT range of 45–55 mm, international comparison can be made. Two Belgian 

studies reported similar 95th percentiles of 2.44 (45) and 2.37 mGy (42). For the same 

average BCT range, two Spanish studies reported a 75th percentile of 2.1 mGy (40, 43), 

which is almost double the 1.2 mGy reported by an Irish study (44) and 1.33 mGy 

reported by an Iranian study (49). Studies with equal BCT, measurement protocol, MGD 

conversion factors and percentile reported facilitate easier international comparison; 

however, they do show a worrying outcome of large variations in the dose received by 

women in different countries. The reasons for these potential differences are 

thoroughly discussed in the discussion section but include, technique, technology and 

population characteristics. 

In the BCT range of, 45 mm, two Japanese studies reported 75th percentiles of 1.91 

(48) and 2 mGy (52). The authors followed two different protocols and methods to 

calculate the dose, which could explain the 0.09 (5 %) difference in their results, as a 

9 – 21 % difference would be expected between Dance et al. and Wu et al. methods 

(63). 

An all-digital worldwide study that collected dose information from different 

geographical areas (and did not report BCT) showed the 95th percentiles for Europe, 

North America and Asia-Pacific of 2.4, 2.1 and 2.3 mGy, respectively (53) and 75th 

percentiles of 1.6, 1.6 and 1.1 mGy, respectively. 
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Figure 2.4:DRLs (75th percentile) for patient studies categorised by BCT. 

 

 

 

Figure 2.5:DRLs (95th percentile) for patient studies categorised by BCT 
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Table 2.5:Summary of quality control protocols followed by the included studies. 

Protocol Test subjects Digital /  

SFM 

Conversion factors Reference level of 

MGD (mGy) 

 to standard breast 

Phantom (Thickness 

/E-BCT/ G %) 

 

Patients number 

IAEA  

2011 (74) 

Blocks of PMMA 

 (20, 45, 70 mm/21, 

53, 90 mm /50%) 

N/A Digital Dance (2000) < 1, 2.5, 6.5 

respectively 

IAEA  

2009 (75) 

Standard breast: 

PMMA 

(45mm/53mm/29%) 

N/A SFM Dance (2000) < 2.5 

IAEA  

2007 (24) 

Standard breast: 

PMMA 

(45mm/50mm/50%) 

10-50 patients 

BCT 50-60 mm 

Both  Dance (2000) N/A 

EP  

20062 (21) 

Standard breast: 

PMMA 

(45mm/53mm/50%) 

Or blocks of PMMA 

(20-80 mm) 

Minimum 10 patient 

BCT 40-60 mm 

Both  Dance (2000) < 2.5 

IPEM  

2005 (76) 

Standard breast: 

PMMA 

(45mm/53mm/29%) 

Or blocks of PMMA 

(20-80 mm) 

Minimum 10 patient 

BCT 50-60 mm 

Both Dance (2000) < 3.5 

ACR 

 1999 (57) 

Standard breast: 

PMMA 

(40mm/42mm/50%) 

Blocks of PMMA 

(20-80 mm) 

N/A SFM Wu (1991) 

Dance (1990) 

Sobol (1997) 

≤ 3.0 

E-BCT : Equivalent Breast compressed thickness 

G %     : Breast glandularity  

SFM     : Screen-film mammography 

IAEA   : International Atomic Energy Agency  

EP        : European Council protocol 

 

IPEM  : Institute of Physics and Engineering in Medicine  

ACR    : American College of Radiology 

PMMA: Polymethyl-methacrylate 
1  Technical (Phantom) / Clinical (Patient) 
2   Different reference values available for different BCT 
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 DISCUSSION 

The studies reviewed followed two main groups of authors that reported conversion 

factors for the calculation of breast dose: Dance et al. (27, 59, 62, 64) and Wu et al. (29, 58), 

which are both used to compensate for the X-ray spectrum characteristics and breast 

composition (glandularity). Four phantom studies (50, 51, 54, 55) and 3 patient studies (48, 

49, 56) used Wu et al. conversion factors whereas 4 phantoms (35, 38, 45, 47) and 12 patient 

studies (36, 37, 39 – 46, 52, 53) used Dance et al. conversion factors. It has been reported that 

MGD calculated from exposure measurements using Wu et al. conversion factors was 

9–21% less compared with Dance et al. conversion factors (63). Dance et al. 

acknowledged that a variation of up to 16 % exists between the two methods; this is 

due to differences in the breast model, X-ray spectra and photon interaction cross 

sections (59) (this will not be discussed as it is beyond the scope of this paper). Wu et 

al. conversion factors are still valid for newer technologies and can report accurate 

results (65). Dance et al. conversion factors though have been updated to include new 

factors that compensate for different technologies, different types of target/ filter 

combinations and wider range of BCTs and breast glandularities (59, 62, 64). 

Four different quality control protocols that have different approaches to exposure 

measurements (Table 2.5) were followed. The two most common are the EP (21 – 23) 

and the ACR (57); both are well-established protocols. The EP was updated to include 

digital mammography (21), a supplement fourth edition of the European guidelines has 

been published (69), and according to the European Reference Organisation for Quality 

Assured Breast Screening and Diagnostic Services website, a further update is on the 

way (70). An update of the ACR protocol to cover digital mammography is also known 

to be in progress (71); information regarding calculation standards and conversion 

factors to be used has not been released yet. However, the authors would suggest the 

use of Dance et al. conversion factors as the latest published data are based on newer 

technologies. 

Two main percentiles were used to establish DRLs, the 75th and 95th percentiles. The 

75th percentile is more common and is used when there is a large range of MGDs. Its 

use encourages 25 % of the centres to reduce their dose. On the other hand, the 95th 

per- centile is used when there is a small range of MGDs and means that only 5 % of 

the centres require an intervention to reduce dose. Thus, the 95th percentile is more 
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suited to well-established screening environments whose variation in doses is likely to 

be small. Nonetheless, when establishing DRLs, any recommendations of lowering 

dose should be balanced with a measure of image quality as poor image quality 

degrades image interpretation accuracy (72 – 75) 

A diverse range of standard BCTs has been reported depending on the protocol 

followed. Phantom studies that followed the EP used thicker equivalent BCT 

phantoms (53 mm) and hence reported higher average MGDs than ACR protocol 

studies that used thinner equivalent BCT phantoms (42 mm). In patient studies, the 

range of standard BCT varied even for the same protocol. In general, a thicker BCT 

requires higher exposure and is expected to receive higher dose in a similar X-ray 

examination environment. The most two common ranges of BCT used among the 

reviewed studies are 45 – 55 and 55 – 65 mm, which falls within the range followed 

by the EP for patient studies (40 – 60 mm). The standard EP phantom also has an 

equivalent BCT of 53 mm, which falls into that range. 

Although establishing DRLs normally requires the use of standard BCT, any study 

that aims to establish DRLs for mammography could also include a range of BCTs, 

which would result in a more accurate measure of dose variations across the 

population. Plotting graphically BCT versus DRL would be a good quality control 

measure that radiographers could refer to in order to assure that useful data are 

available for the non-standard breast thickness. Although breast thickness is not the 

only factor to have an effect on MGD, it is the most consistently reported. Other factors 

that affect MGD are not consistently reported; for example, kVp is reported in 13 of 

the 22 papers included in this review, target filter combination in 13 of the 22, HVL 

in 5 of the 22, and mAs in 8 of the 22. Therefore, for the purpose of consistency, a 

detailed comparison of these factors was not feasible and is not included.  

The lack of consistency and a worldwide standard methodology to establish DRLs 

complicates comparison of dose among countries. International comparisons have 

shown differences that are often discussed by authors; for example, the difference in 

the digital screening services of Ireland (1.75 mGy) (36) and Norway (1.98 mGy) (41). 

Hauge et al. explained the lower DRL in the Irish study to be a result of including more 

of a certain mammography unit that was proven to contribute to lower dose values and 

hence lower DRLs within the Irish study (41). Both studies found that MGDs varied 

depending on the model of mammography units; Hauge et al. reported that eliminating 
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one type of mammography units resulted in the reduction of the 95th percentile from 

1.98 to 1.65 mGy bringing the results closer to Baldelli et al. 95th percentile (1.75 

mGy) (41). 

 CONCLUSION 

DRLs for mammography have been established across the world, and variable 

methods and techniques were used. The most common method used was patient 

studies following the EP combined with Dance et al. MGD conversion factors for BCT 

ranges of 45 – 55 and 55 – 65 mm. DRLs for these ranges varied with the 75th 

percentiles ranging from 1.11 to 2.47 mGy and the 95th percentiles from 1.5 to 3.5 

mGy. However, an internationally accepted protocol that includes dose measurement 

method, conversion factor, BCT for patients or phantoms and DRL per- centile needs 

to be established before important, useful and accurate international comparison can 

be made. 
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3 Chapter Three 

Diagnostic Reference Levels for digital 

mammography in New South Wales 

 

Section 3.2 of this chapter has been published as: 

Suleiman, M. E., McEntee, M. F., Cartwright, L., Diffey, J., & Brennan, P. C. 

(2016). Diagnostic reference levels for digital mammography in New South 

Wales. Journal of Medical Imaging and Radiation Oncology, n/a-n/a. 

doi:10.1111/1754-9485.12540 

[Published copy is available in Appendix 7.3] 

I had had substantial contribution to this work. I designed the study, collected and 

analysed the data, was the primary author, wrote and edited each draft of the 

manuscript. 
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3.1 Bridging section 

The literature [1] shows that many countries have established DRLs for 

mammography, however, this is not the case for Australian mammography services. 

There was a single study published in 2011 however, [2] this was based on phantom 

data collected from Queensland hospitals. The new ICRP publication [3] recommends 

that a patient survey is critically important for establishing DRLs and should not be 

replaced by phantom surveys, it is stated in table 2.1 in the ICRP document that: 

“Patient survey to set DRL and phantom measurements as standard dose comparator” 

[3]. Furthermore, the ICRP recommends that DRLs should be updated every three to 

five years, so even with this previous work, an update is now required [3]. 

Consequently, the first of the three aims of this chapter was to recommend DRLs for 

digital mammography in Australia using patient data. 

The definition of DRLs is based on the comparison between X-ray systems. In 

mammography, MGD is used to describe breast absorbed dose. It is well known that 

MGD depends on the compressed thickness of the irradiated breast, hence, when 

countries or screening services establish DRLs using different “standard patient” sizes, 

the comparability of DRLs becomes ineffective. Wide variations in the methods and 

compressed breast thicknesses used to establish DRLs have been shown in the 

literature as detailed in chapter 2 of this thesis. In other modalities, such as 

Radiography, Fluoroscopy, CT and Paediatric examinations, patients are categorised 

by weight or age range, therefore, the effectiveness of using one breast thickness to 

establish DRLs should be explored. The published journal article titled: Diagnostic 

reference levels for digital mammography in New South Wales [4], recommends 

Australian DRLs stratified by breast thickness ranges, such a method provides the 

necessary information to make national and international comparisons of DRLs more 

effective. The second aim of this chapter therefore, was to explore whether DRLs 

should be stratified by compressed breast thickness. 

Furthermore, my published article [4] showed a wide variation in MGD delivered 

using different detector technologies. The importance of these results is around 

highlighting the need to stratify DRLs per detector technology as new mammography 

units, namely photon counting technology (PCT), deliver much lower doses to the 

patients. PCT delivers less than half the doses of flat panel detectors for CR and DR 
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technologies. When these three technologies exist in one screening programme, PCT 

should always be in the lower percentile and will therefore never be targeted for 

optimisation. Hence the last aim of this chapter was to explore the effect of different 

detector technologies on the effectiveness of DRLs and whether DRLs should be 

stratified by detector technology. 

The journal article titled: “Diagnostic reference levels for digital mammography in 

New South Wales” has been published in the journal of Medical Imaging and 

Radiation Oncology in 2016 [4]. Results of this study were also presented at two 

conferences: The Engineering and Physical Sciences in Medicine 2016 in Sydney 

titled “Diagnostic reference levels in digital mammography: time for a new paradigm”, 

and in the European council of radiology in Vienna 2017 titled “Radiation doses 

received by women attending BreastScreen NSW in 2014”. 

 Detailed methodology 

Due to word limit and figures restrictions in the publishing processes, detailed 

information on the methods have not been presented in the papers published. Namely, 

the equations utilised in the calculations of MGD. A Microsoft Excel workbook was 

developed to automate the calculation process for the complete set of mammograms. 

Two medical physicists then verified the workbook to ensure the accuracy of 

calculations. Table 3.1 shows the DICOM header information extracted from each 

mammogram, table 3.2 shows an example of medical physics report for a 

mammography unit. Figure 3.1 presents the calculation processes and equations 

utilised in the Excel workbook. 

It is important to highlight the reason behind my choice of calculating MGD using 

Dance et al. method rather than extracting the Organ Dose from DICOM headers. 

Although the Organ Dose tag for digital mammography X-ray images (0040,0316) is 

equivalent to MGD, the data sample included was acquired from different 

mammography units, some of which were CR units. The CR units had no Organ Dose 

values in the DICOM headers. Hence, I decided to calculate MGD from first principles 

for all manufacturers in order to make use of the complete data set and to ensure 

consistency. 
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Table 3.1: Information extracted from the DICOM 

headers of digital mammograms, used in 

the calculation of MGD [4]. 

Information DICOM tag 

Patient age 0019,1052 

Body Part thickness 0018,11A0 

Implant present 0028,1300 

Patient orientation 0020,0020 

Image laterality 0020,0062 

Tube voltage (kVp) 0018,0060 

Exposure (mAs) 0018,1152 

Anode target material 0018,1191 

Filter material 0018,7050 

Exposure control mode 0018,7060 

Detector ID 0018,700A 

Manufacturer's Model Name 0008,1090 

Manufacturer 0008,0070  
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Table 3.2: Example of the medical physics report for a mammography unit. 

 
Site Site 1 

2 cm PMMA 

Testing Date 01/01/00 

SID (source to image distance mm) 660 

Image to support distance (mm) 20 

kV 25 

T/F Mo/Mo 

HVL (mm Al) 0.339 

Set mAs 22.5 

Measured Dose (mGy) 1.735 

Detector Position above support (mm) 7 

ACR Phantom 

kV 27 

T/F Mo/Rh 

HVL (mm Al) 0.432 

Set mAs 45 

Measured Dose (mGy) 3.574 

Detector Position above support (mm) 7 

6 cm PMMA 

kV 31 

T/F Rh/Rh 

HVL (mm Al) 0.475 

Set mAs 50 

Measured Dose (mGy) 5.475 

Detector Position above support (mm) 7 

6 cm PMMA in 

mag mode 

kV 32 

T/F Rh/Rh 

HVL (mm Al) 0.488 

Set mAs 71 

Measured Dose (mGy) 21.62 

Detector Position above support (mm) 280.3333333 

Additional HVL 

measurements 

kV 
 

T/F 
 

HVL (mm Al) 
 

Set mAs 
 

Measured Dose (mGy) 
 

Detector Position above support (mm) 
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 MGD calculation 

MGD is calculated using Dance et al. method [5-7], which utilises the following 

equation: 

MGD = gcs * K      ---1 

Where:  

K is Incident air kerma at the surface of the breast without backscatter,  

g is the conversion factor that accounts for a 50:50 breast model and is 

tabulated depending on HVL and CBT (Table 3.3), its value is calculated 

through interpolation.  

c is a conversion factor to account for glandularities different from the 50:50 

model and is tabulated depending on age, HVL and CBT (Tables 3.4 and 3.5), 

its value is also calculated through interpolation.  

s is the conversion factor accounting for different X-ray spectra and is tabulated 

depending on Anode /filter combination (Table 3.6). 

Two calculation procedures were followed for the MGD estimation, QA data and the 

conversion factors. Figure 3.1 shows the steps and equations followed, which are 

explained next. 

 

Table 3.3: g-factors (mGy/mGy) for breast thicknesses of 2-11 cm and 

the HVL range 0.30-0.60 mm Al [5-7]. 

CBT HVL (mm Al)  

0.3 0.35 0.4 0.45 0.5 0.55 0.6 

20 0.3900 0.4330 0.4730 0.5090 0.5430 0.5730 0.5870 

30 0.2740 0.3090 0.3420 0.3740 0.4060 0.4370 0.4660 

40 0.2070 0.2350 0.2610 0.2890 0.3180 0.3460 0.3740 

45 0.1830 0.2080 0.2320 0.2580 0.2850 0.3110 0.3390 

50 0.1640 0.1870 0.2090 0.2320 0.2580 0.2870 0.3100 

60 0.1350 0.1540 0.1720 0.1920 0.2140 0.2360 0.2610 

70 0.1140 0.1300 0.1450 0.1630 0.1770 0.2020 0.2240 

80 0.0980 0.1120 0.1260 0.1400 0.1540 0.1750 0.1950 

90 0.0859 0.0981 0.1106 0.1233 0.1357 0.1543 0.1723 

100 0.0763 0.0873 0.0986 0.1096 0.1207 0.1375 0.1540 

110 0.0687 0.0786 0.0887 0.0988 0.1088 0.1240 0.1385 
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Table 3.4: c-factors for average breasts for women in age group 40 to 

49 [5-7]. 

CBT HVL (mm Al)  

0.30 0.35 0.40 0.45 0.50 0.55 0.60 

20 0.885 0.891 0.900 0.905 0.910 0.914 0.919 

30 0.894 0.898 0.903 0.906 0.911 0.915 0.918 

40 0.940 0.943 0.945 0.947 0.948 0.952 0.955 

50 1.005 1.005 1.005 1.004 1.004 1.004 1.004 

60 1.080 1.078 1.074 1.074 1.071 1.068 1.066 

70 1.152 1.147 1.141 1.138 1.135 1.130 1.127 

80 1.220 1.213 1.206 1.205 1.199 1.190 1.183 

90 1.270 1.264 1.254 1.248 1.244 1.235 1.225 

100 1.295 1.287 1.279 1.275 1.272 1.262 1.251 

110 1.294 1.290 1.283 1.281 1.273 1.264 1.256 

 

Table 3.5: c-factors for average breasts for women in age group 50 to 64 

[5-7]. 

CBT HVL (mm Al)              

0.3 0.35 0.4 0.45 0.5 0.55 0.6 

20 0.885 0.891 0.900 0.905 0.910 0.914 0.919 

30 0.925 0.929 0.931 0.933 0.937 0.940 0.941 

40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

50 1.086 1.082 1.081 1.078 1.075 1.071 1.069 

60 1.164 1.160 1.151 1.150 1.144 1.139 1.134 

70 1.232 1.225 1.214 1.208 1.204 1.196 1.188 

80 1.275 1.265 1.257 1.254 1.247 1.237 1.227 

90 1.299 1.292 1.282 1.275 1.270 1.260 1.249 

100 1.307 1.298 1.290 1.286 1.283 1.272 1.261 

110 1.306 1.301 1.294 1.291 1.283 1.274 1.266 

 

 

 

 

 

 

 

 



 

 
70 

Table 3.6: s-factors for 

clinically used 

spectra [5-7]. 

 

 

 

 

 

 

 

A/F S factor 

Mo/Mo 1.000 

Mo/Rh 1.017 

Rh/Rh 1.061 

Rh/Al 1.044 

W/Rh 1.042 

W/Ag 1.042 

W/Al 1.05 
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Figure 3.1: Dance calculation method: input information that needs to be available for the calculation of MGD, the steps taken to calculate MGD for a 

mammogram and the equations utilised for that process [8]. 
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QA report data 

The first step is to use the data from the QA report within equations 2, 3 and 4 to 

calculate the constants that will be used later to estimate HVL and K used for the image 

acquisition. For each anode/filter combination, the QA reports provide the following 

information: 

DoseQA: the dose to the phantom 

mAsQA: milliampere value 

kVpQA: kilovolt peak value 

HVLQA: half value layer measured at the detector 

HVLQA= a x kVpQA + b  --- 2 

Where: ‘a’ and ‘b’ are the constants we need to calculate using the QA data, the 

calculation is a simple linear equation solved for the variables using a minimum two 

sets of data.  

 For i =1 to n-1 (n: number of test points) 

 a = Average (HVLQA
i- HVLQA

i+1)/(kVpQA
i-kVpQA

i+1) 

 b = Average (HVLi
QA - a*kVp i+1

QA)  

PQA = (doseQA/mAsQA at detector) x (SIDQA-DPQA-ISDQA)^2)     --- 3 

Where: PQA is the output per mAs calculated at 1 m from the detector 

SIDQA is the source to image distance 

 DPQA is the detector position above support 

 ISDQA is the Image to support distance 

PQA = A x (kVpQA)^n   --- 4 

Where: ‘A’ and ‘n’ are the constants we need to calculate using the QA data, the 

calculation is a simple exponential equation solved for the variables using a minimum 

two sets of data. 

n = Average [Log(Pi/Pi+1)/Log(kVpQA
i/kVpQA

i+1)] 

A = Average [Pi/kVi^n] 
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Solving equations 1, 2 and three we will have the values for the constants a, b, A, and 

n, these will be used in the next step to calculate HVL and K 

 

DICOM header data 

DICOM header information (kVpD, mAsD, AgeD, CBTD, and Anode/filterD 

combination) were extracted to a CSV format file using a third-party software [9]. 

Equations 5 and 6 are used to calculate HVL and K respectively. 

To estimate HVL for each image we use equation 5  

HVLD= a x kVpD + b    --- 5 

Where: HVLD is the HVL used for the image acquisition (which we will calculate). 

kVpD is the kVp value used for the image acquisition. The constants a and b were 

calculated in earlier step. 

K = mAsD x (SIDD-SDID-CBTD) x A x (kVpD)^n    --- 6 

Where:  SIDD is the source to image distance during the image acquisition. 

   DPD is the detector position above support during the image acquisition. 

   ISDD is the Image to support distance during the image acquisition. 

Conversion factors 

g and c factors are calculated using linear interpolation, two sets of values for HVL 

and CBT were needed for equations 7-9, one lower and one higher than HVLD and 

CBTD. 

gc11.5 = gc11 - (gc11-gc12) / (CBT2-CBT1) * (CBT-CBT1) --- 7 

gc21.5 = gc21 - (g21-gc22) / (CBT2-CBT1) * (CBT-CBT1) ---8 

gc= gc11.5 + (gc21.5 - gc11.5) / (HVL2-HVL1) * (HVL-HVL1) ---9 

Where:  

HVL1 and CBT1, are value, in tables 3.4, 3.5 and 3.6, that are lower than HVLD and 

CBTD for the mammogram.  
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HVL2 and CBT2, are the value in, tables 3.4, 3.5 and 3.6, that are higher than HVLD 

and CBTD for the mammogram. 

gc11 is (g x c) extracted from tables 3.4, 3.5 and 3.6 using HVL1 and CBT1 and ageD. 

gc12 is (g x c) extracted from tables 3.4, 3.5 and 3.6 using HVL1 and CBT2 and ageD. 

gc21 is (g x c) extracted from tables 3.4, 3.5 and 3.6 using HVL2 and CBT1 and ageD. 

gc22 is (g x c) extracted from tables 3.4, 3.5 and 3.6 using HVL2 and CBT2 and ageD. 

 gc11.5 is (g x c) interpolated using equation 7 and gc11 and gc21. 

g22.5 is (g x c) interpolated using equation 8 and gc12 and gc22. 

s factor is extracted from table 3.6 using the anode / filterD combination used for the 

image acquisition. Figure 3.2 shows an example of the calculations used.
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Figure 3.2: Example for the calculation Mean Glandular Dose (MGD) using Dance et al formula. 
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Further estimations 

Some QA reports had missing tests for certain anode / filter combinations, in the sense 

that in such centre, an anode / filter combination was tested for one phantom thickness 

only. In these cases, the method of Robson et al. [10] was used to estimate HVL and 

K, which method uses a phantom test values when kVp = 28 kV. Nonetheless, for 

other kVp values it seems to give a good estimation of HVL and K, Robson et al. 

method follows the following formulas:  

HVL = a(kVp)2 +b (kVp) + c  --- 10 

log10 (K) = n x log10(kVp)+log10 x A ---11 

The constants a, b, and n are provided in table 3.7, however, the constants c and A are 

calculated using K and kVp values from the QA reports data for the associated anode 

/ filter combinations. 

Table 3.7: Calculated values of the constants n, a, and b for a range of 

anode / filter combinations [10]. 

Target/Filter 
Filter 

thickness 
n a b 

Mo/30 m Mo 36.1 m  3.06 -0.000326 0.0273 

Mo/25 m Rh 29.9 m  3.24 -0.000624 0.0445 

Rh/25 m Rh 29.9 m  3.03 -0.000514 0.0425 

W/50 m Rh 58.9 m  1.96 -0.000539 0.0403 

Rh/1.0 mm Al 1.20 m 4.39 -0.00113 0.0909 

Mo/1.0 mm Al 1.20 mm 4.23 -0.000775 0.0593 

W/Ag [11] 35.00 mm  3.1521 -0.0009 0.0733 

 Results 

The published paper did not include some of the figures and data resulting from our 

calculations, hence these are presented here. Figures 3.3 to 3.11 shows the variations 

in median MGD between centres when MGD is stratified according to CBTs. Figures 

3.3 to 3.11 also shows the variations in median MGD for different detector 

technologies; different colours mark different detector technologies. Such variations 

triggered the use of stratified DRLs according to CBT and detector technology as 

explained in the published paper. 



 

 
77 

 

Figure 3.3: Median MGD, 75thand 95th percentiles for centre included in the study, for CBT 
range 20-29 mm, color coded for different mammography unit make (with detector 

technologies). Red: GE, Purple: Hologic, Orange: Phillips, Green: Fujifilm. 

 

 

Figure 3.4: Median MGD, 75thand 95th percentiles for centre included in the study, for CBT 

range 30-39 mm, color coded for different mammography unit make (with detector 

technologies). Red: GE, Purple: Hologic, Orange: Phillips, Green: Fujifilm. 
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Figure 3.5: Median MGD, 75thand 95th percentiles for centre included in the study, for CBT 

range 40-49 mm, color coded for different mammography unit make (with detector 

technologies). Red: GE, Purple: Hologic, Orange: Phillips, Green: Fujifilm. 

 

 

Figure 3.6: Median MGD, 75thand 95th percentiles for centre included in the study, for CBT 
range 50-59 mm, color coded for different mammography unit make (with detector 

technologies). Red: GE, Purple: Hologic, Orange: Phillips, Green: Fujifilm. 
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Figure 3.7: Median MGD, 75thand 95th percentiles for centre included in the study, for CBT 

range 60-69 mm, color coded for different mammography unit make (with detector 

technologies). Red: GE, Purple: Hologic, Orange: Phillips, Green: Fujifilm. 

 

 

Figure 3.8: Median MGD, 75thand 95th percentiles for centre included in the study, for CBT 
range 70-79 mm, color coded for different mammography unit make (with detector 

technologies). Red: GE, Purple: Hologic, Orange: Phillips, Green: Fujifilm. 
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Figure 3.9: Median MGD, 75thand 95th percentiles for centre included in the study, for CBT 

range 80-89 mm, color coded for different mammography unit make (with detector 

technologies). Red: GE, Purple: Hologic, Orange: Phillips, Green: Fujifilm. 

 

 

Figure 3.10: Median MGD, 75thand 95th percentiles for centre included in the study, for CBT 
range 90-99 mm, color coded for different mammography unit make (with detector 

technologies). Red: GE, Purple: Hologic, Orange: Phillips, Green: Fujifilm. 
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Figure 3.11: Median MGD, 75thand 95th percentiles for centre included in the study, for CBT 

range 100-109 mm, color coded for different mammography unit make (with 
detector technologies). Red: GE, Purple: Hologic, Orange: Phillips, Green: 

Fujifilm. 

 

Parts of the results of this chapter were presented in the Engineering and Physical 

Sciences in Medicine (EPSM) conference in Sydney in 2016, the presentation was 

titled: “Diagnostic reference levels for digital mammography, time or a new 

paradigm”. Some results were also presented in the European Council of Radiology 

(ECR) conference in Vienna, Austria in 2017, which was titled: “Radiation doses 

received by women attending BreastScreen NSW in 2014”. The full results of this 

work were published the Journal of Medical Imaging and Radiation Oncology 

(JMIRO) in 2016 and is titled “Diagnostic reference levels for digital mammography 

in New South Wales” [4]. This article is presented in the next subsection. 

Note: The published article contained an error in Table3.10, column 9 header, it reads 

“Mean image MGD/View” this should be “Median image MGD/View”. A note has 

been sent to the editor.  
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 Abstract 

Introduction: This work aims to explore radiation doses delivered in screening 

mammography in Australia, with a focus on whether compressed breast thickness 

should be used as a guide when determining patient derived diagnostic reference 

levels (DRLs). 

Methods: Anonymized mammograms (52,405) were retrieved from a central 

database, and DICOM headers were extracted using third party software. Women 

with breast implants; breast thicknesses outside 20-110 mm; and images with 

incomplete exposure or quality assurance (QA) data were excluded. Exposure and 

QA information were utilized to calculate the mean glandular dose (MGD) for 

45,054 mammograms from 61 units representing four manufacturers using 

previously well-established methods. The 75th and 95th percentiles were calculated 

across median image MGDs obtained for all included data and according to specific 

compressed breast thickness ranges. 

Results: The overall median image MGD, minimum, maximum were: 1.39 mGy, 

0.19 mGy and 10.00 mGy respectively, the 75th and 95th percentiles across all units’ 

median image MGD for 60±5 mm compressed breast thickness were 2.06 mGy and 

2.69 mGy respectively. Median MGDs, minimum, maximum, 75th and 95th 

percentiles were presented for nine compressed breast thickness ranges, DRLs for 

NSW are suggested for the compressed breast thickness range of 60±5 mm for the 

whole study and three detector technologies CR, DR, and photon counting to be 2.06, 

mGy, 2.22 mGy, 2.04 mGy, and 0.79 mGy respectively. 

Conclusion: MGD is dependent upon compressed breast thickness and it is 

recommended that DRL values should be specific to compressed breast thickness and 

image detector technology. 

Keywords: Breast, Dosimetry, Mean Glandular dose, Optimization, Screening. 
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 Introduction 

Mammography is an important tool for the early detection of breast cancer as early 

detection has been demonstrated to reduce mortality by up to 30% (1). Aiming to reduce 

breast cancer deaths, the Australian breast-screening programme has targeted 50-69 

year old Australian women since 1991 for biennial screening mammograms, recently 

increasing this upper age limit to 74 (2). Exposing healthy women to ionizing radiation 

however is associated with a risk of inducing breast cancer, therefore the dose to the 

breast must be kept as low as reasonably achievable (3). Diagnostic Reference Levels 

(DRLs) provide a measure of quality control and optimization of protection to help 

limit variations in dose delivered among and within imaging centres and these levels 

are expected not to be exceeded for a standard diagnostic procedure when good and 

normal practice is applied (3). A DRL was defined in the International Commission of 

Radiation Protection (ICRP) publication 73 in 1996 as: 

“A form of investigation level, applied to an easily measured quantity, usually the 

absorbed dose in air, or tissue-equivalent material at the surface of a simple phantom 

or a representative patient.” (3)  

DRL establishment requires the use of readily available or easily calculated dose 

metrics. Measurements of radiation dose to the breast have been performed using 

different approaches including total energy transmitted to the breast (4), mid-breast 

dose (5), air kerma (6), entrance surface dose (7) and mean dose absorbed by the glandular 

tissue (MGD) (8). Due to the radio-sensitivity of the glandular tissue of the breast, MGD 

is now considered to be the most relevant quantity (8), is widely used and is 

recommended by the ICRP (9), the United States National Council on Radiation 

Protection and Measurements (10), the British Institute of Physics and Engineering in 

Medicine (IPEM) (11), the European Council Protocol (EP) (12-14) and the International 

Atomic Energy Agency (IAEA) (15). Most studies implementing DRLs have therefore 

focussed on MGD values. 

To establish a DRL, appropriate groupings of standard sized patients should be used. 

For adult DRLs in radiography, Fluoroscopy and CT a weight range for a group of 

patients of 70  10 kg is used. In paediatric examinations, patients are categorized by 

weight or age range. In mammography, researchers have used a “standard” 

compressed breast thickness that varies from 35 cm – 65 cm depending on the DRL(16). 
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Choosing a single thickness to represent an entire population, although a simple 

approach, is arguably inappropriate as the population is not homogenous and the breast 

can vary in thickness from 1cm to 10cm. Furthermore, it is well known that dose differs 

for different breast thicknesses. A more complex, but representative approach might 

be to establish DRLs for groups of standard-sized breasts.  

While DRLs have been established for mammography in many countries around the 

world (17-22); the Australian breast screening programmes are into their third decade; to 

date no patient based DRLs are available, nonetheless, phantom based DRLs were 

established in 2011 for Queensland hospitals. (23) However, Phantom based DRLs may 

not reflect the clinical environment; hence, this study aims to propose patient based 

DRLs for screening mammography in New South Wales, and to explore whether 

compressed breast thickness should be taken into account when determining DRLs. 

 Methods 

This study was performed retrospectively using a patient data sample from 50 

BreastScreen NSW centres and mobile units, ethical approval was granted by the 

Cancer Institute Human Research Ethics Committee (No.2014/08/552). In total, data 

were obtained from 63 mammography units. Radiation dose and supplementary data 

were assembled from 12,034 patient cases (52,405 mammograms).  

Data relating to the patient and required for dose calculations were extracted from the 

Digital Imaging and Communication in Medicine (DICOM) headers (Table 3.8) and 

exported to a CSV format file using third party software (YAKAMI DICOM Tools 

ver. 1.4.1.0, Kyoto University, Japan). 
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Table 3.8: Information extracted from the DICOM 

headers of digital images. 

Information DICOM tag 

Patient age 0019,1052 

Body Part thickness 0018,11A0 

Implant present 0028,1300 

Patient orientation 0020,0020 

Image laterality 0020,0062 

Tube voltage (kVp) 0018,0060 

Exposure (mAs) 0018,1152 

Anode target material 0018,1191 

Filter material 0018,7050 

Exposure control mode 0018,7060 

Detector ID 0018,700A 

Manufacturer's Model Name 0008,1090 

Manufacturer 0008,0070  

 

Dose calculation also required data from the annual medical physics quality assurance 

(QA) reports for each center; these data included tube output and HVL for all kVps 

and anode/filter combinations available for each mammography unit. 

Based on the information gathered, exclusion criteria were applied thus removing from 

the study mammograms involving breast implants (1337 images), and incomplete or 

unavailable QA data (1662 images), as well as images with compressed breast 

thickness not within 20-110mm (82 images). Data were then imported into an excel 

sheet with macros developed in-house that calculates MGD for each acquired image 

using the methods described by Dance et al. (24-26). 

 

For each image, MGDs were calculated using the following equation: 

MGD = Kgcs 

Where K is the incident air kerma (IAK) at the upper surface of the breast without 

backscatter, calculated from mAs, kVp and the tube output corrected using the inverse 

square law. The g factor is the IAK to MGD conversion factor for breasts with 50% 

glandularity and an anode/filter combination of Mo/Mo. The c factor corrects for any 
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difference in breast glandularity from 50% for different thickness breasts and is 

available for two ranges of age, 40-49 and 50-64, women aged over 64 were included 

in the 50-64 range table, we have moderately assumed here that the breast density of 

women over the age of 64 will behave in a similar way that the density of women aged 

50-64; this is an estimation that will be investigated in future studies. The s factor 

corrects for any difference in the types of anode/filter combination used other than 

Mo/Mo (24-26). 

Note: Both g and c factors are tabulated as functions of breast thickness and half-value 

layer (HVL) of the x-ray beam. The HVL for each system was obtained from 

concurrent QA data. 

 

Table 3.9: Manufacturer, model, technology, Anode/ filter combinations, and number of 

Mammography units included in the dose audit from BreastScreen centres in 

NSW/Australia. 

Manufacturer Model Technology Anode/Filter Unit number 

General Electric 

(GE) 

Senographe Essential ADS_54.11 DR 
Mo/Mo, Mo/Rh, 

Rh/Rh 
1-14 

Senographe Essential ADS_54.10 DR Mo/Mo, Rh/Rh 15 

Senographe Essential ADS_53.40 DR 
Mo/Mo, Mo/Rh, 

Rh/Rh 
16 

Senographe DS ADS_54.11 DR 
Mo/Mo, Mo/Rh, 

Rh/Rh 
17,18 

Senographe DS ADS_53.40 DR Mo/Mo, Rh/Rh 19 

Senographe 2000D ADS_17.4.5 DR 
Mo/Mo, Mo/Rh, 

Rh/Rh 
20 

Hologic Selenia Dimensions DR W/Ag, W/Rh 21-41 

Philips (Sectra) L30 DR W/AL 42-52 

Fuji Film 

 

Amulet DR W/Rh 53 

 CR Mo/Mo, Mo/Rh 54-61 

DR: Digital radiography 

CR: Computed radiography 

Mo: Molybdenum 

Rh: Rhodium 

W: Tungsten 

Ag: Silver 
Al: Aluminum 

 

For each woman and mammographic unit, the MGD median was found per image and 

examination, the median examination MGD was found by summing image MGDs for 

each examination and dividing the result by two; this is to average for one breast. 

To determine DRLs, the 75th and 95th percentiles were calculated across the median 

image MGDs per mammography unit. Then values for each mammography unit were 

categorized according to their compressed breast thickness to ranges of 10 mm 

thicknesses and median image MGDs per mammography unit were calculated for each 

thickness range, an ANOVA with a Tukey post-hoc test was used to analyse the 
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significance of the differences between the median image MGDs for each thickness 

range. The 75th and 95th percentiles were determined for each thickness range. 

 Results 

Summary of data 

The final data set included 11,029 women with a mean age of 60 years and a total of 

45,054 images (DR: 40,033 images and CR: 5,021 images). Forty-eight BreastScreen 

centres (Sixty-one digital mammography units) were involved, (Two centres were 

disqualified due to missing QA data) consisting of 53 DR and 8 CR units as shown in 

table 3.9, it is worth highlighting here that Rhodium (Rh) anodes were unavailable or 

disabled in the CR units included for this study during the period in question. Image 

sets included in the analysis comprised of the standard 4 view examinations (MLO and 

CC for left and right breasts) and extra projections, the latter representing less than 6% 

of all examinations.  

The histogram of compressed breast thicknesses for the study showed a normal 

distribution with a mean of 58 mm (Figure 3.12), while image MGDs showed a skewed 

distribution that ranged from 0.19 mGy to 10.00 mGy with a mean and a median of 

1.51 mGy and 1.39 mGy respectively (Figure 3.13). An overall summary of the 

background data for each unit is shown in table 3.10. 

Radiation doses and percentile values 

Median image MGD across all patients for each MLO and CC image were 1.43 mGy 

and 1.36 mGy, respectively, with individual doses per image ranging from 0.32 mGy 

to 10.00 mGy for the MLO and 0.19 mGy to 7.45 mGy for the CC. Also, the lowest 

and highest median image MGD per mammography unit, respectively, were 0.67 mGy 

and 2.43 mGy for MLO, 0.66 mGy and 2.24 mGy for CC. 

Median MGD per examination for all women was 2.84 mGy with the smallest and 

highest dose being delivered being 0.68 mGy and 21.9 mGy, respectively. 

Furthermore, the lowest and highest median examination MGD per mammography 

unit were 1.40 mGy and 4.42 mGy in units 51 and 54 respectively. 
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Median MGD per image, view (MLO, CC) and examination as well as mean patient 

age, compressed breast thickness, kVp, mAs for each mammography unit are 

displayed in table 3.10. The 75th and 95th percentiles across all units’ median image 

MGD for 60 ± 5 mm compressed breast thicknesses were 2.06 mGy and 2.69 mGy 

respectively (Figure 3.14). Percentile values and proposed DRLs are also presented for 

each of the nine compressed breast thickness ranges and for the three different detector 

technologies (Table 3.11), Tukey’s post-hoc test showed statistically significant 

differences between median image MGDs for each 10 mm compressed breast 

thickness range examined (p < 0.05).  

 Discussion and conclusion 

DRLs have been shown to be an effective method for dose optimization of protection 

in medical exposure of patients for diagnostics and interventional procedures. DRLs 

work by minimizing the wide variations in dose demonstrated across centres for the 

same examination for groups of standard sized patients (27). Centres delivering the 

highest doses are identified using the percentile method. A 75th percentile which is 

often used for general X-ray examinations, identifies the 25% of centres that are giving 

higher doses and encourages them to optimize exposures, thus making DRLs a 

dynamic and changing value. Often in mammography, however, a 95th percentile is 

used due to rigorous quality assurance procedures and tight dose variations (28). 

However, in the current work the long tail exhibited in figure 3.13 would suggest that 

at this time a 75th percentile maybe more prudent across the state from which our 

measurements are obtained.  
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Figure 3.12: Distribution of compressed breast thickness for 45,054 mammography images. 

 

 

Figure 3.13: Distribution of image mean glandular dose (MGD) for 45,054 mammography 

images. 
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Figure 3.14: A histogram plot of the median image MGD for a compressed breast thickness 
of 60 _ 5 mm is indicated for each mammography unit, the 75th and 95th percentile 

values are indicated by the horizontal lines. 
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Table 3.10: Number of images/examinations per mammography unit, exposure parameters means, median Entrance surface air kerma 

and median mean glandular dose per view, image and case, for 45054 mammograms across 61 mammography units. 

Unit 

 

No. of  

images 

No. of  

Cases 

Mean 

Age (StDev) 

Mean 

Thickness 

(StDev) 

Mean 

kVp (StDev) 

Mean 

mAs (StDev) 

Median 

ESAK 

(IQR) 

Mean image MGD/View Median 

Image 

MGD 

(IQR) 

Median 

Examination 

MGD 

(IQR) 

CC MLO 

R L All R L All 

1 812 200 61.81 (7.88) 53.79 (12.10) 28.66 (1.27) 55.68 (13.54) 5.69 (2.53) 1.31 1.35 1.33 1.57 1.59 1.58 1.46 (0.45) 2.98 (1.30) 

2 721 175 56.36 (7.67) 60.12 (12.62) 28.96 (0.83) 67.56 (16.74) 6.03 (2.32) 1.37 1.38 1.37 1.41 1.44 1.43 1.40 (0.34) 2.85 (1.33) 

3 744 192 58.87 (7.17) 62.63 (10.89) 29.09 (0.71) 65.33 (14.64) 6.97 (2.56) 1.44 1.48 1.46 1.54 1.55 1.54 1.51 (0.39) 2.98 (1.69) 

4 775 200 60.11 (7.72) 60.67 (10.26) 29.01 (0.64) 59.26 (14.56) 6.09 (2.18) 1.37 1.39 1.38 1.40 1.40 1.40 1.39 (0.35) 2.77 (1.42) 

5 960 219 59.44 (7.82) 59.09 (12.67) 28.64 (0.96) 57.07 (12.87) 5.87 (2.39) 1.29 1.27 1.29 1.33 1.36 1.34 1.32 (0.35) 2.75 (1.81) 

6 680 172 60.20 (8.04) 63.07 (11.11) 29.00 (0.66) 59.43 (15.91) 6.22 (2.23) 1.29 1.31 1.30 1.45 1.41 1.44 1.36 (0.35) 2.74 (1.61) 

7 770 203 60.06 (7.50) 61.52 (11.86) 28.96 (0.78) 57.65 (12.48) 5.41 (2.09) 1.17 1.19 1.18 1.22 1.24 1.23 1.21 (0.32) 2.43 (1.25) 

8 926 233 59.60 (6.53) 65.65 (11.10) 29.21 (0.69) 63.10 (15.16) 6.56 (2.18) 1.37 1.34 1.36 1.46 1.43 1.45 1.39 (0.37) 2.83 (1.41) 

9 844 208 58.20 (6.85) 60.59 (15.52) 29.31 (1.10) 61.68 (22.66) 6.30 (2.63) 1.30 1.34 1.32 1.49 1.57 1.53 1.43 (0.35) 2.91 (1.19) 

10 828 184 59.81 (6.70) 65.83 (10.93) 29.15 (0.56) 69.83 (19.05) 7.21 (2.62) 1.44 1.46 1.45 1.56 1.59 1.57 1.50 (0.38) 3.25 (2.73) 

11 826 187 58.90 (6.79) 60.45 (11.74) 28.85 (0.82) 65.20 (13.77) 6.37 (2.49) 1.43 1.43 1.43 1.48 1.48 1.48 1.46 (0.32) 3.05 (1.77) 

12 881 202 59.65 (8.13) 61.68 (13.43) 28.88 (0.91) 65.20 (13.57) 7.05 (2.99) 1.48 1.52 1.50 1.56 1.57 1.57 1.54 (0.37) 3.21 (1.94) 

13 651 174 60.07 (7.69) 58.43 (12.05) 29.58 (0.73) 73.91 (19.50) 7.17 (2.44) 1.64 1.66 1.65 1.80 1.76 1.77 1.71 (0.35) 3.44 (1.60) 

14 848 194 58.51 (7.34) 61.73 (13.21) 28.96 (0.88) 60.22 (13.57) 6.11 (2.36) 1.33 1.35 1.34 1.37 1.41 1.39 1.37 (0.33) 2.80 (1.56) 

15 746 192 59.84 (8.26) 63.90 (11.67) 29.17 (0.84) 61.15 (14.06) 6.28 (2.39) 1.37 1.35 1.36 1.46 1.45 1.45 1.39 (0.38) 2.81 (1.75) 

16 1057 242 59.55 (8.07) 58.61 (13.73) 28.76 (0.94) 55.75 (11.64) 5.70 (2.57) 1.32 1.32 1.32 1.31 1.37 1.34 1.33 (0.33) 2.78 (1.60) 

17 915 195 62.15 (7.38) 57.89 (13.50) 28.86 (0.98) 46.44 (12.51) 4.84 (2.15) 1.08 1.07 1.08 1.12 1.14 1.14 1.10 (0.35) 2.35 (1.66) 

18 574 137 59.65 (6.58) 59.13 (11.14) 29.11 (0.71) 50.77 (11.90) 5.17 (1.79) 1.24 1.20 1.21 1.27 1.28 1.27 1.25 (0.28) 2.56 (1.82) 

19 721 166 61.02 (7.30) 61.80 (11.39) 29.02 (0.74) 58.86 (13.09) 6.02 (2.24) 1.29 1.30 1.30 1.36 1.34 1.34 1.33 (0.31) 2.74 (1.89) 

20 589 116 62.67 (6.83) 56.83 (12.57) 28.87 (1.45) 67.75 (18.39) 6.76 (2.58) 1.51 1.47 1.50 1.62 1.62 1.62 1.56 (0.46) 3.59 (2.92) 

21 787 188 60.07 (7.96) 59.37 (12.83) 29.96 (1.65) 139.43 (38.92) 7.09 (4.10) 1.90 1.83 1.85 2.16 2.13 2.14 2.00 (0.88) 4.13 (3.29) 

22 734 178 58.26 (9.12) 65.00 (12.20) 28.54 (1.16) 199.27 (71.79) 7.63 (4.73) 1.72 1.71 1.72 2.22 2.08 2.14 1.94 (0.92) 3.95 (3.75) 

23 587 167 63.81 (8.32) 54.73 (9.96) 29.68 (1.68) 137.04 (36.57) 6.04 (3.67) 1.70 1.71 1.70 1.83 1.85 1.84 1.75 (0.88) 3.12 (3.24) 

24 636 181 59.45 (9.07) 54.83 (9.61) 29.71 (1.62) 133.45 (38.44) 6.04 (3.70) 1.73 1.77 1.76 1.83 1.92 1.84 1.80 (0.90) 3.22 (3.56) 

25 812 192 60.27 (8.28) 59.25 (13.36) 29.91 (1.71) 171.09 (53.05) 6.81 (3.59) 1.97 1.97 1.97 1.98 1.89 1.94 1.95 (0.83) 3.98 (3.68) 

26 845 202 59.61 (7.24) 54.46 (14.49) 29.36 (1.95) 175.42 (85.60) 5.41 (5.30) 1.80 1.77 1.78 1.63 1.70 1.68 1.72 (1.28) 3.57 (5.40) 

27 575 163 60.52 (8.23) 54.03 (9.59) 29.57 (1.64) 131.55 (37.04) 5.74 (3.50) 1.82 1.72 1.76 1.71 1.80 1.73 1.75 (0.88) 3.17 (2.90) 

28 815 189 58.60 (7.18) 55.00 (13.05) 29.42 (1.75) 159.72 (52.66) 6.29 (4.38) 1.81 1.76 1.80 1.91 1.92 1.91 1.86 (1.09) 3.98 (4.58) 

29 909 206 58.60 (7.18) 60.22 (13.75) 30.02 (1.75) 156.72 (49.99) 7.03 (4.09) 1.86 1.93 1.89 2.13 2.02 2.08 1.98 (0.90) 4.27 (3.97) 

30 578 170 60.43 (8.76) 55.39 (10.04) 29.85 (1.73) 115.45 (34.23) 5.95 (3.45) 1.65 1.68 1.66 1.79 1.85 1.84 1.71 (0.82) 3.05 (3.11) 

31 344 99 60.48 (9.28) 55.75 (9.73) 29.92 (1.61) 126.10 (40.56) 6.03 (3.42) 1.72 1.75 1.73 1.83 1.79 1.82 1.76 (0.85) 3.12 (3.56) 

32 530 157 61.57 (9.28) 56.87 (8.83) 30.06 (1.55) 123.59 (35.75) 6.18 (3.36) 1.72 1.73 1.72 1.86 1.84 1.84 1.76 (0.82) 3.00 (3.76) 
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Table 3.10 Continued  

Unit 

 

No. of  

images 

No. of  

Cases 

Mean 

Age (StDev) 

Mean 
Thickness 

(StDev) 

Mean 

kVp (StDev) 

Mean 

mAs (StDev) 

Median 
ESAK 

(IQR) 

Mean image MGD/View Median 

Image 

MGD 

(IQR) 

Median 

Examination 

MGD 

(IQR) 

CC MLO 

R L All R L All 

33 536 156 60.26 (10.43) 55.57 (10.37) 29.87 (1.73) 121.67 (35.45) 5.75 (3.73) 1.67 1.71 1.70 1.68 1.68 1.68 1.69 (0.91) 2.88 (3.37) 

34 509 143 59.56 (8.05) 56.02 (9.28) 29.91 (1.60) 129.63 (41.12) 5.85 (3.90) 1.72 1.75 1.74 1.72 1.66 1.69 1.72 (0.94) 3.10 (3.77) 

35 577 162 61.65 (7.96) 53.37 (10.84) 29.49 (1.78) 116.21 (34.92) 6.25 (4.37) 1.81 1.84 1.84 1.85 1.72 1.77 1.81 (0.97) 3.26 (3.25) 

36 844 203 59.89 (7.67) 51.65 (11.94) 29.07 (1.71) 138.38 (42.00) 5.20 (3.57) 1.70 1.72 1.71 1.69 1.46 1.63 1.67 (0.87) 3.37 (3.47) 

37 846 205 60.63 (8.09) 55.13 (13.92) 29.46 (1.86) 137.89 (45.41) 5.82 (4.25) 1.68 1.70 1.69 1.67 1.74 1.71 1.70 (0.99) 3.56 (3.97) 

38 830 185 58.77 (6.63) 57.20 (14.10) 29.68 (1.85) 151.77 (52.47) 6.22 (4.18) 1.76 1.79 1.77 1.85 1.90 1.87 1.83 (0.96) 4.09 (4.57) 

39 310 98 63.05 (7.39) 56.18 (9.12) 29.95 (1.60) 108.82 (28.41) 5.49 (3.32) 1.54 1.58 1.55 1.59 1.54 1.55 1.55 (0.81) 2.44 (2.80) 

40 634 195 61.08 (9.18) 56.94 (9.53) 30.10 (1.66) 128.68 (40.11) 7.13 (5.35) 2.00 1.97 1.98 1.98 2.06 2.01 2.00 (1.29) 3.14 (4.03) 

41 826 201 60.54 (8.10) 56.77 (13.50) 29.70 (1.81) 137.95 (39.37) 6.55 (4.07) 1.81 1.78 1.80 2.01 2.05 2.03 1.91 (0.93) 3.93 (3.42) 

42 876 188 59.23 (7.52) 59.02 (13.11) 33.31 (2.04) 14.52 (3.41) 3.18 (1.85) 0.69 0.71 0.70 0.81 0.84 0.82 0.77 (0.34) 1.72 (1.61) 

43 1320 299 58.78 (7.23) 62.89 (14.36) 34.03 (2.18) 14.47 (3.27) 3.22 (1.89) 0.73 0.72 0.73 0.81 0.81 0.81 0.77 (0.33) 1.65 (1.37) 

44 346 79 58.10 (6.91) 59.65 (13.36) 34.02 (2.17) 14.37 (2.96) 2.86 (1.51) 0.69 0.67 0.68 0.76 0.78 0.78 0.73 (0.27) 1.53 (1.31) 

45 949 203 60.49 (7.98) 58.97 (12.67) 33.68 (2.33) 14.61 (2.96) 2.93 (1.66) 0.71 0.69 0.69 0.75 0.75 0.75 0.72 (0.29) 1.55 (1.47) 

46 559 132 59.89 (7.65) 59.29 (13.34) 33.07 (1.73) 14.41 (3.52) 2.96 (1.87) 0.70 0.69 0.70 0.70 0.73 0.72 0.71 (0.32) 1.45 (1.16) 

47 774 180 62.02 (6.21) 62.97 (13.48) 33.20 (1.73) 14.42 (3.23) 3.26 (1.72) 0.66 0.65 0.66 0.79 0.81 0.80 0.74 (0.27) 1.50 (1.21) 

48 825 198 60.46 (9.50) 63.16 (12.53) 34.89 (2.33) 15.38 (3.36) 3.43 (1.89) 0.82 0.79 0.81 0.96 0.94 0.95 0.87 (0.39) 1.83 (1.38) 

49 952 240 60.34 (9.47) 62.40 (13.34) 34.85 (2.41) 15.36 (3.08) 3.99 (3.78) 0.92 0.94 0.93 1.02 1.03 1.03 0.97 (0.84) 2.07 (2.85) 

50 921 197 59.38 (7.42) 60.89 (13.26) 33.57 (1.95) 15.18 (3.42) 3.61 (1.95) 0.84 0.84 0.84 0.88 0.86 0.88 0.86 (0.34) 1.82 (2.01) 

51 556 136 61.69 (7.08) 55.45 (13.88) 33.42 (2.23) 13.88 (2.92) 2.69 (1.45) 0.68 0.69 0.69 0.71 0.70 0.71 0.70 (0.25) 1.40 (0.96) 

52 786 186 58.94 (7.75) 55.32 (13.99) 33.07 (2.15) 14.76 (3.48) 2.61 (1.84) 0.70 0.70 0.70 0.65 0.69 0.67 0.69 (0.32) 1.41 (1.38) 

53 1237 280 58.42 (8.09) 55.64 (13.47) 29.20 (1.46) 77.24 (29.96) 2.84 (1.94) 0.83 0.82 0.82 0.96 0.99 0.96 0.89 (0.45) 1.92 (2.21) 

54 723 192 61.54 (6.58) 48.92 (10.39) 27.28 (0.82) 110.62 (45.98) 9.70 (5.27) 2.15 2.07 2.09 2.42 2.46 2.43 2.26 (1.01) 4.41 (5.62) 

55 638 162 63.74 (7.68) 56.63 (11.96) 27.09 (0.29) 86.00 (55.34) 5.82 (5.30) 1.16 1.22 1.18 1.43 1.40 1.40 1.26 (0.88) 2.53 (3.26) 

56 527 145 61.93 (8.69) 55.66 (12.06) 27.32 (0.66) 88.34 (47.40) 8.06 (6.15) 1.62 1.66 1.64 1.84 1.85 1.85 1.72 (0.94) 3.20 (4.18) 

57 863 204 61.72 (7.68) 51.45 (12.31) 28.24 (0.65) 80.92 (43.81) 9.43 (6.56) 1.81 1.84 1.82 1.96 2.13 2.05 1.91 (0.98) 3.95 (4.13) 

58 590 145 62.01 (6.79) 48.38 (11.92) 27.94 (0.76) 88.96 (43.58) 9.08 (7.46) 1.85 1.80 1.84 1.96 2.00 1.98 1.90 (1.17) 3.85 (4.86) 

59 731 192 56.70 (7.58) 45.63 (11.63) 27.41 (0.83) 80.11 (36.53) 7.56 (4.07) 1.77 1.80 1.79 1.77 1.70 1.74 1.77 (0.74) 3.37 (3.18) 

60 169 44 61.51 (6.83) 46.75 (10.79) 27.91 (0.65) 79.60 (39.38) 9.95 (7.22) 2.08 2.28 2.24 1.91 1.98 1.97 2.09 (1.23) 4.21 (5.30) 

61 780 197 60.05 (6.92) 46.82 (11.93) 28.22 (1.01) 79.14 (37.04) 8.88 (5.71) 1.96 1.89 1.94 1.98 2.06 2.02 1.97 (0.90) 3.51 (4.38) 

Overall 45054 11030 60.03 (7.88) 58.01 (13.19) 30.00 (2.49) 80.97 (58.77) 5.62 (3.75) 1.36 1.37 1.36 1.43 1.43 1.43 1.39 (0.78) 2.84 (3.29) 

StDev: Standard deviation. 

Thickness: compressed breast thickness. 

kVp: X-ray tube potential. 

mAs: X-ray tube current time product. 

 

 IQR: Interquartile range  

MGD: Mean glandular dose. 

ESAK: Entrance surface air kerma  

CC: Craniocaudal view. 

MLO: Mediolateral Oblique view. 

R: Right breast 

L: Left breast 

 



 

 
94 

Table 3.11: 75th and 95th percentiles for different compressed breast thickness ranges 

and three different detector technologies, representing 45,054 mammograms from 61 

BreastScreen units (Proposed DRLs for 60±5 mm breast thickness are in bold). 

Breast 

thickness 

range () 

All Units CR  DR Photon counting 

75th % 

(mGy) 

95th % 

(mGy) 

75th % 

(mGy) 

95th % 

(mGy) 

75th % 

(mGy) 

95th % 

(mGy) 

75th % 

(mGy) 

95th % 

(mGy) 

20-29 0.97 1.19 1.17 1.26 0.97 1.11 0.58 0.63 

30-39 1.13 1.50 1.50 1.52 1.12 1.22 0.60 0.65 

40-49 1.31 1.86 1.92 2.08 1.30 1.41 0.58 0.65 

50-59 1.67 2.38 2.48 2.58 1.65 1.80 0.65 0.69 

60-69 2.37 3.00 3.08 3.21 2.35 2.57 0.88 0.99 

70-79 2.23 4.38 4.41 4.46 2.08 2.67 1.08 1.56 

80-89 2.48 6.24 6.39 6.74 2.34 3.07 1.12 1.52 

90-99 2.89 7.75 7.84 7.85 2.63 3.48 0.99 1.39 

100-110 3.24 5.97 6.26 6.26 3.31 5.38 0.91 0.92 

DRLs 

60±5 
2.06  2.22  2.04  0.79  

CR, Computed Radiography;  DR, Digital Radiography 

 

Examination of the data in table 3.10 demonstrates minimal differences in dose 

between left and right breasts and between the CC and MLO projections compared 

with the inter-centre differences, hence and in alignment with previous authors, the 

median image MGD will be used throughout this discussion (17, 29, 30). Examination of 

the median image MGD, demonstrated that the lowest values belong to the Philips L30 

(Sectra) units (units 51 and 52), with all of the Philips units reporting median MGDs 

below the 20th percentile. The low dose associated with these units is in line with other 

studies in the literature (19, 31), and is likely linked to the effective utilization of tightly 

collimated scanning slot beam of x-rays and a detector technology that employs photon 

counting with energy discrimination, so scattered photons are rejected from the image. 

This means that a grid is not required and consequently, doses are lower. The highest 

median image MGD and case MGD were delivered in CR units (Fujifilm Corporation) 

in a mobile setting with five of the eight CR units reporting an overall median image 

MGD that was over the 75th percentile for all compressed breast thickness ranges. It is 

interesting to note that all Hologic units reported median image MGDs higher than the 

50th percentile while 11 out of the 20 GE units reported median image MGDs less than 

or equal to the 50th percentile. These data emphasise the impact of technology on 

reported dose variations. It should be stressed however that drawing conclusions 
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regarding technology, based on dose values alone without a full consideration of 

diagnostic efficacy must be treated with caution. 

While it is important to acknowledge the variations shown in figure 3.14 and to focus 

on existing units/centres that are responsible for the higher doses, it is important to put 

these inter-unit or inter-centre dose variations into context. The variations in dose 

values represented in the long-tailed distribution in figure 3.13 are similar to the 

distribution reported in an earlier large UK study (32). In addition, the level of difference 

between the highest and the lowest dose units/centres reported here are not dissimilar 

from that expressed in other countries with other work demonstrating marginally less 

(20, 28, 33), comparable (18, 19) or higher variations (34). It should be acknowledged that the 

higher doses in this study as discussed above, mainly relate to CR units, which at the 

time of writing have generally now been replaced and the next round of DRL surveys 

should reflect this. Overall, when taking into consideration the reported compressed 

breast thicknesses by other international studies, it was found that our reported dose 

medians and percentiles were less than most of patient studies reviewed by Suleiman 

et al in 2014 (16).  

The median MGD and 75th percentile for compressed breast thicknesses of 60±5 mm 

were 1.62 and 2.06 mGy respectively (Mean compressed breast thickness for the study 

is 58 mm), while, for comparison reasons, the median MGD and 75th percentile for 

compressed breast thicknesses of 50 ± 5 mm were 1.35 and 1.50 mGy respectively. 

These values are lower than the 1.88 and 2.1 mGy reported in a Spanish study in 2005, 

which used similar methods to estimate the dose, albeit with a lower overall mean 

compressed breast thickness of 52 mm (35). The higher doses reported in the Spanish 

work are most likely due to possibly different technology and the study’s focus on 

diagnostic mammography (symptomatic women). With regard to this last point, 

O’Leary et al. suggested that the higher mean dose received by symptomatic women 

could be explained by the inclusion of younger women with denser breasts and the less 

strict mammographic educational requirements for radiographers compared with those 

involved in the breast screening services (28). More recent studies in Ireland and Malta 

reporting a closer overall mean compressed breast thicknesses (57.5 and 54.7 mm 

respectively) to our findings indicated lower mean MGDs (1.07 and 1.33 mGy 

respectively) and 75th percentiles (1.11 and 1.5 mGy respectively) than those reported 

here. (28, 36) While differences in technology and subtle differences in compressed 
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breast thickness may contribute to the higher doses reported here, the results suggest 

some potential for optimization of the units or practices included in this study. 

It is important to revisit the interpretation of DRL definitions, particularly since these 

have been available and employed for 20 years. In particular, the term “representative 

patient” has often been translated in mammography to mean average compressed 

breast thickness of the study sample. However, some authors have calculated DRLs 

for groups of standard compressed breast thickness in order to facilitate national and 

international comparisons (28). Differences in compressed breast thicknesses are clearly 

responsible for at least some of the statistically significant MGD variations displayed 

in our work. If we use a standard sized group of patients with compressed breast 

thickness 60 ±5 mm to represent the overall population, the 75th percentile at this value 

is more than double and almost half that of the lowest and highest compressed breast 

thickness categories respectively. These results alongside the compressed breast 

thickness dependent dose variations demonstrated elsewhere highlight the importance 

of clearly identifying standard sized groups of compressed breast thicknesses when 

specifying DRLs (16). Although to date this is not often seen, such stratification would 

extend the translation of a “representative patient” from average compressed breast 

thickness to ranges of compressed breast thicknesses that are more representative of 

the population of women. In addition, such a compressed breast thickness specific 

approach if used universally would facilitate useful and accurate national and 

international comparisons. 

Finally, it is important to acknowledge that this paper is limited to radiation dose 

values. It should be stressed that similar to almost all previous DRL work, comparing 

dose data does not factor in image quality variations, therefore the potential for highest 

dose locations offering best diagnostic efficacy cannot be out-ruled. Equally however, 

currently there is no evidence here or elsewhere that those centres or units with the 

lowest dose are offering less accurate diagnoses than elsewhere. This is an area of 

research that requires much more attention. 

In conclusion, patient-based DRL values for different compressed breast thickness 

ranges and different image detector technology have been proposed for the first time 

in Australia, providing valuable insights into the radiation dose status of screening 

mammography in NSW. DRL values in mammography should be specific to breast 
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thickness and image detector technology, as large variations between compressed 

breast thickness ranges and different image detector technologies were shown.  
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4 Chapter Four 

Mean Glandular Dose in digital 

mammography, a dose calculation 

method comparison. 
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Suleiman, M. E., Brennan, P. C., & McEntee, M. F. (2017). Mean glandular dose 

in digital mammography: a dose calculation method comparison. Journal of 

Medical Imaging, 4(1), 013502-013502. doi:10.1117/1.JMI.4.1.013502 

[Published copy is available in Appendix 7.5] 

I had had substantial contribution to this work. I designed the study, collected and 

analysed the data, was the primary author, wrote and edited each draft of the 

manuscript. 
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4.1 Bridging section 

The definition of a DRL as established by the ICRP has been explained in chapter one. 

It requires “an easily measured quantity”, that describes the absorbed dose to the 

patient [1]. For mammography, MGD is the absorbed dose descriptor, this quantity is 

a sophisticated measure that has evolved over time. The ICRP however, recommends 

the use of MGD for the calculation of DRLs. Nonetheless, as chapter three 

demonstrated, MGD has some weaknesses, mainly the complicated calculations for a 

large data set; such complexity could become an obstacle for authorized bodies 

entrusted with establishing local and national DRLs. Nonetheless, MGD is not only 

used for the optimisation process and establishing DRLs, results from dose audits are 

also utilised for the estimation of risk of radiation exposure to the patient, hence, it is 

important to maintain a balance between complexity and accuracy. 

The high degree of digitisation in mammography has the potential to ease the 

fulfilment of the ICRP goal of keeping dose to the breast optimized and thereby 

reducing radiation risk to the patients. “Organ Dose”, a readily available estimation of 

MGD within the DICOM header of digital mammograms, provides a simpler measure 

of dose to the breast than MGD. It is an automated estimation of MGD that requires 

less human involvement than the manual calculations of MGD. Therefore, it could 

facilitate making MGD estimation easier. This automated measurement of MGD has 

the potential to reduce the work load involved in establishing DRLs and provide a 

more efficient dose measure to be used for the optimisation of mammography 

investigations. Nonetheless, such automation should be consistent across all 

mammography vendors to produce consistent, comparable data. 

This chapter explores consistency of the Organ Dose across the four mammography 

vendors utilised within BreastScreen NSW centers, namely, GE medical systems, 

Phillips (Sectra), Fujifilm systems and Hologic systems. The findings of this work 

have been published as “Mean glandular dose in digital mammography: a dose 

calculation method comparison” [2]. That publication compared Organ Dose and 

MGD calculated using three Monte-Carlo techniques: Dance et al. [3-5], Sobol and 

Wu [6], and Boone et al. [7-9]. The aforementioned calculation methods are utilised 

by the four mammography unit vendors; GE medical systems utilise Wu et al. method, 
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Phillips (Sectra) and Fujifilm systems utilise Dance et al. method, while Hologic 

systems utilise a method by Boone et al. 

The results of this work show a statistically significant bias between the Organ Dose 

and our calculated MGD for all systems, with different bias levels for each vendor. 

Phillips systems had the lowest bias, meaning they overestimated MGD by an average 

of 0.03 (p < 0.001) mGy while GE resulted in the highest bias underestimating MGD 

by 0.20 mGy (p < 0.001), with inconsistency also being seen across different GE 

models (Table 4.1).  

Through the process of investigating Organ Doses, it was found in the study that GE 

systems use an estimation of glandularity that feeds into the calculations of Organ 

Dose. At the time, GE’s glandularity estimation method was unclear. However, 

communication with a GE representative revealed that the systems utilise a 

computation method described by Desponds et al. at RSNA 1994 [10]. The peak 

density is computed as a function of CBT using Desponds et al. method within the 

automatic exposure control (AEC) process [11]. Furthermore, The Senographe 

Essential uses a flexible paddle with higher uncertainty on compressed breast 

thickness. The use of the flexible paddle overrides the AEC system applying a standard 

50% density value to the Organ Dose estimation, this is regardless of the actual density. 

Inconsistency in the use of density for the estimation of Organ Dose could explain the 

differences found between GE’s Organ Dose and the calculated MGD (Table 4.1) as a 

50% glandularity was used to calculate MGD for the mammograms produced by GE 

units in my work. As for the inconsistency between different models, GE’s 

representative explained that Organ Dose estimation methods do not vary across GE 

models utilised within BreastScreen NSW, making the variation in results unclear. 
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Table 4.1: Bland-Altman bias and 95% limits of agreement (LOA) to study the agreement between Organ Dose (displayed by the digital mammography unit) 

and dose calculated using three Monte-Carlo methods (Dance et al, Wu et al, and Boone et al) for different mammography unit models from 27,869 

digital mammography images (Table from Suleiman et al. [2]). 

Make Model Systems Images 

Organ Vs. Dance Organ Vs. Wu Organ Vs. Boone 

Bias 

(mGy) 

LOAs 

(mGy) 
p value 

Bias 

(mGy) 

LOAs 

(mGy) 
p value 

Bias 

(mGy) 

LOAs 

(mGy) 
p value 

Philips (Sectra) L30 11 6210 0.03 -0.15, 0.21 <0.001 N/A N/A <0.001 -0.09 -0.33, 0.15 <0.001 

GE MEDICAL 

SYSTEMS 

Senographe 

Essential 

ADS_54.11 

14 8282 -0.03 -0.29, 0.35 <0.001 0.21 -0.13, 0.54 <0.001 -0.20 -0.68, 0.28 <0.001 

Senographe 

Essential 

ADS_54.10 

1 488 0.03 -0.27, 0.22 <0.001 0.26 0.00, 0.53 <0.001 -0.14 -0.54, 0.26 <0.001 

Senographe 

Essential 

ADS_53.40 

1 727 -0.08 -0.13, 0.29 <0.001 0.13 -0.13, 0.38 <0.001 -0.22 -0.54, 0.10 <0.001 

Senograph DS 

ADS_54.11 
2 982 -0.07 -0.17, 0.30 <0.001 0.12 -0.17, 0.42 <0.001 -0.14 -0.50, 0.23 <0.001 

Senograph DS 

ADS_53.40 
1 454 0.13 -0.16, 0.43 <0.001 0.36 0.01, 0.71 <0.001 -0.04 -0.44, 0.37 <0.001 

Senograph 2000D 

ADS_17.4.5 
1 316 -0.10 -0.37, 0.17 <0.001 0.17 

-0.47, 

0.126 
<0.001 -0.04 -0.43, 0.35 <0.001 

GE Systems 20 11249 -0.03 -0.34, 0.28 <0.001 0.20 -0.14, 0.54 <0.001 -0.18 -0.64, 0.28 <0.001 

GE Systems with 

glandularity 
20 11249 -0.03 -0.34, 0.28 <0.001 0.03 -0.14, 0.21 <0.001 -0.18 -0.64, 0.28 <0.001 

HOLOGIC Selenia Dimensions 21 9504 -0.24 -0.74, 0.27 <0.001 N/A N/A <0.001 -0.07 -0.67, 0.53 <0.001 

Fujifilm Amulet 1 906 -0.09 -0.35, 0.18 <0.001 N/A N/A <0.001 0.01 -0.28, 0.30 <0.001 

Overall  53 27869 -0.09 -0.52, 0.34 <0.001 N/A N/A <0.001 -0.12 -0.60, 0.37 <0.001 
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 Extended methods 

The published article did not detail the methods used for MGD estimations, hence a 

detailed methodology of the work is presented below. Dance et al. method was 

explained comprehensively in chapter three, thus the following explains the methods 

of Sobol and Wu [6], and Boone et al. [7-9]. 

Sobol and Wu method was based on the work of Wu et al. [12, 13], which was 

explained in chapter two. The authors aimed to computerize the manual calculations 

of MGD by providing a set of functions that estimate the normalized average glandular 

dose (DgN) taking into consideration the input parameters of CBT, glandularity, kVp 

and HVL. The functions were provided for three anode/filter combinations (Mo/Mo, 

Mo/Rh and Rh/Rh) and 100%, 50% and 0% glandular compositions, allowing for 

arbitrary composition. Figure 4.1 shows one of the functions. 

 

 

Figure 4.1:An example of Sobol and Wu functions to parameterize the normalised average 

glandular dose (DgN). Half Value Layer (HVL), peak kilovoltage value (kVp), breast 
thickness (d) and glandularity (G) are the values utilised for image acquisition. y1, 

y2, or y3 are the calculated MGDs for 0%, 50%, and 100% glandularities. a, b, c, 
u, v and w are parameters calculated by the authors to be used in the equations set 

to estimate MGD. [6]. 
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Boone et al. method provides algorithms implemented in a Microsoft Excel work book 

that generates DgN values. Figure 4.2 provides an example of the fit equations used to 

write these algorithms. 

 

Figure 4.2: example of the fit equations from the work of Boone et al., used for the estimation 

of normalised average glandular dose (DGN). E is the X-ray energy measured in keV 

which is known as kVp used for the image acquisition. a, b and c are parameters 

estimated by the authors to be used for the calculation of DgN[8]. 

 

The preliminary results of this chapter were presented in the International society for 

optics and photonics (SPIE) conference in San Diego, USA in 2016, which led to a 

conference proceeding paper entitled “DICOM Organ Dose does not accurately 

represent calculated dose in mammography” [14]. The complete results were 

published in the Journal of Medical Imaging and are entitled “Mean glandular dose in 

digital mammography: a dose calculation method comparison” [2]. This article is 

presented in the next subsection. 
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4.3 Mean glandular dose in digital mammography: A dose calculation method 

comparison 
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Abstract. Our objective was to analyze the agreement between Organ Dose 

estimated by different digital mammography units and calculated dose for clinical 

data. Digital Imaging and Communication in Medicine header information was 

extracted from 52,405 anonymized mammograms. Data were filtered to include 

images with no breast implants, breast thicknesses 20 to 110 mm, and complete 

exposure and quality assurance data. Mean glandular dose was calculated using 

methods by Dance et al., Wu et al., and Boone et al. Bland–Altman analysis and 

regression were used to study the agreement and correlation between organ and 

calculated doses. Bland– Altman showed statistically significant bias between 

organ and calculated doses. The bias differed for different unit makes and models; 

Philips had the lowest bias, overestimating Dance method by 0.03 mGy, while 

general electric had the highest bias, overestimating Wu method by 0.20 mGy, the 

Hologic Organ Dose underestimated Boone method by 0.07 mGy, and the Fujifilm 

Organ Dose underestimated Dance method by 0.09 mGy. Organ Dose was found 

to disagree with our calculated dose, yet Organ Dose is potentially beneficial for 

rapid dose audits. Conclusions drawn based on the Organ Dose alone come with a 

risk of over or underestimating the calculated dose to the patient and this error should 

be considered in any reported results. © 2017 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 

10.1117/1.JMI.4.1.013502] 
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 Introduction 

Screening mammography invites healthy women for an x-ray examination of the 

breast, with the aim of early detection of breast cancer. The benefits of screening 

mammography have been scientifically examined and it has been shown, on the basis 

of randomized controlled trials, that screening mammography reduces breast cancer 

mortality by up to 25%. [1-4] This evidence was revisited in 2015 to find out if it is 

still valid today, the International Agency for Research on Cancer conducted a review 

of all published peer-reviewed literature through which they concluded that 

mammography screening is still effective in reducing breast cancer mortality [5]. 

Mammography efficacy in detecting breast cancer in early stages comes with a small 

but nonnegligible risk of radiation-induced cancer to the fibroglandular tissues of the 

breast [6], and possibly other exposed organs [7]. Monitoring the breast-absorbed dose 

is thus vital to ensure unnecessarily high doses do not occur; therefore, many quality 

assurance (QA) protocols have included breast dose assessments to govern the 

diagnostic adequacy of the imaging techniques in mammography [8-11]. 

Mean glandular dose (MGD) is the main descriptor of absorbed dose to the breast. 

MGD is calculated using conversion factors established by Monte-Carlo simulations. 

Dance et al [12-14], Sobol and Wu [15], Wu et al [16] and Boone et al [17-19] have 

established conversion factors that are widely used to estimate MGD. The three models 

differ slightly in the simulation method but all reported conversion factors dependent 

on breast thickness, glandularity, x-ray spectra, and beam quality. The conditions 

underlying Monte-Carlo simulation employed by different authors can impact the 

estimated dose by up to 19% [20].  

The estimation of MGD is dependent on the values of half value layer (HVL) and 

output, while these values are also dependent on the measurement methods and can 

change substantially depending on the dosimeters and how they are used [21]. 

Furthermore, MGD is estimated using Monte-Carlo simulations which that utilize a 

computer model of the breast to simulate photon absorption in the glandular tissue of 

the breast, hence making MGD a dose to a breast model rather than a dose to the breast. 

This makes the estimation of MGD prone to errors regardless of the method used, 

hence, it is important to highlight that MGD is and will always be an estimation as it 

is not possible to measure the dose absorbed by the glandular tissue directly as well as 
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the differences in density distribution of the glandular tissue that also depend on the 

thickness of the breast and age of women. 

Modern technology and the introduction of digital mammography provide valuable 

utility to easily collect data required to facilitate dose audits. The readily available 

estimation of MGD displayed by the digital systems provides a digital indication of 

the breast dose named organ dose, as well as information on radiographic technique 

and the performance of the imaging system. However, this estimated Organ Dose 

needs to be validated against other calculation methods before it can be used for dose 

audits or as an alternative approach to establish diagnostic reference levels (DRLs). 

Borg et al studied two mammography units [General Electric (GE) essential and 

Hologic Selenia] to establish the correlation between Organ Dose and the dose 

calculated for different thickness phantoms using the three Monte-Carlo estimations 

mentioned earlier, the authors concluded that Organ Dose compares well with the 

Monte-Carlo estimations within small to medium phantom thicknesses and differs 

slightly with thicker phantoms [22]. 

This study aims to analyze the agreement and correlation between Organ Dose 

displayed by four types of digital mammography units and calculated dose values for 

clinical data with a wide range of breast thicknesses using methods published by Dance 

et al [12-14], Wu et al [15, 16] and Boone et al [17-19]. 

 

 Materials and methods 

Data collection 

Ethical approval was granted by the Human Research Ethics Committee (HREC) of 

the Cancer Institute of NSW (No.2014/08/552). The dose assessment included 61 

mammography units from 50 BreastScreen centers and mobile vans throughout the 

state of NSW Australia. 52,405 (12,034 women) anonymized mammograms were 

downloaded from the Picture Archiving and Communication System located at the 

Cancer institute of NSW. 

The following information was extracted from the Digital Imaging and 

Communication in Medicine (DICOM) headers using a third-party software 
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(YAKAMI DICOM Tools ver. 1.4.1.0, Kyoto University, Japan), namely: age, study 

date, compressed breast thickness (CBT), presence of implants, view, laterality, tube 

voltage (kVp), tube current exposure time product (mAs), target material, filter 

material, exposure control mode, organ dose, detector ID, and mammographic unit 

model. Further quality assurance (QA) data required for the calculation of mean 

glandular dose (MGD) were collected from the annual QA medical physics reports of 

participating centers through the Cancer Institute of NSW, these reports consisted of 

dose measurements on 20 mm, 42 mm American College of Radiology (ACR) 

mammography accreditation phantom, and 60 mm phantom thicknesses for different 

anode/filter combinations. It should be noted here that as QA reports vary in detail 

given, some estimation is necessitated to calculate the output and HVL. The normal 

QA practice for mammography units is made on three different phantoms, hence, 

different sets of data (HVL, output, and mAs) were provided for different anode/filter 

combinations. Extrapolation was used to estimate the HVL for mammograms taken by 

anode/filter combinations that had one set of QA data using the method published by 

Robson et al. and expanded by Borg et al. [22, 23]. Also, different dosimeters utilized 

to measure the output may have slight differences some of which are stated in the 

calibration certificates provided from the manufacturers and could carry up to 5% error 

in calibration [24, 25]. 

Data preparation 

Only mammograms for women with no breast implants, aged 40 to 64 and a 

compressed breast thickness (CBT) 20 to 110 mm were included. Any exposure 

information with manual exposure settings, no Organ Dose in DICOM header, or 

missing QA data were excluded due to the lack of exposure information to calculate 

MGD. The final data set included 27,869 mammograms from 40 BreastScreen centers 

and mobile vans (53 digital mammography units). 

Mean Glandular Dose estimation 

Mammography system vendors utilize different methods for the estimation of Organ 

Dose displayed by the imaging systems. Philips (Sectra) and Fujifilm utilize Dance 

method, while Hologic utilize Boone method and GE utilize Wu method [26] (it is 

important to stress here that the calculation methods are not clear) (Table 4.2). Hence, 
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for each mammogram, MGD was calculated using an in-house developed excel 

workbook utilizing the three methods published by Dance et al [12-14], Sobol and Wu 

[15] and Boone et al [17-19].  

Table 4.2: Calculation methods and glandularities known to be used by each system included 

in this study for the estimation of displayed Organ Dose (vendor Method). 

Manufacturer Displayed organ dose 

Calculation method Glandularity 

Philips 

(Sectra)  

Dance Unknown 

GE Medical 

systems 

Wu Proprietary measure 

Hologic  Boone Unknown 

Fujifilm Dance Unknown 

Dance’s method 

Dance et al method utilizes the following equation to calculate MGD: 

MGD = Kgcs 

where: K is the incident air kerma (IAK) at the upper surface of the breast. g converts 

IAK to MGD for a breast with 50% glandularity. This method incorporates an 

estimation of glandularity provided as the c factor which corrects for differences in 

glandularity other than the 50% and is given for two age groups 40 to 49 and 50 to 64 

years. g and c are dependent on HVL and CBT. s is spectra dependent, it corrects for 

different types of spectra where s = 1 for Mo/Mo anode/filter combination and changes 

for other combinations. 

Wu’s method 

Wu’s method utilizes the following formula: 

MGD = K x DgN 

Where K is the IAK at the upper surface of the breast and DgN is the normalized 

glandular dose per unit IAK. This method was applied using the paper published by 

Sobol and Wu [15] which provides parameter equations to calculate DgN for different 

anode/ filter combinations and different glandularities. The parameter equations were 

implemented into our excel workbook using 50% glandularity. Wu’s method is limited 
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to three spectra namely Mo/Mo, Mo/Rh and Rh/Rh hence it could only be applied on 

the GE units. 

Boone et al method 

Boone’s method [17-19] utilizes Wu’s equation to calculate the MGD with data tables 

having an extended utility to include more anode/filter combinations (W/Rh and 

W/Ag) and thicker breasts. Boone data tables are provided for 0%, 50% and 100% 

glandularities and those tables were used to calculate the MGD with the assumption of 

50% glandularity. 

Table 4.3: Average mean glandular dose (MGD) for system displayed dose, three dose 

calculation methods and their standard deviation (SD) for 27,869 digital 

mammography images from four different mammography unit makes. 

Make Model Images 
Average MGD (mGy), SD 

System Dance Wu Boone 

Philips 

(Sectra)  
L30  6210 0.86, 0.25 0.83, 0.26 N/A 0.95, 0.27 

GE 

Medical 

systems 

All 11249 1.42, 0.31 1.45, 0.34 1.22, 0.26 1.60, 0.41 

Hologic  
Selenia 

Dimensions 
9504 1.73, 0.66 1.97, 0.74 N/A 1.80, 0.68 

Fujifilm Amulet 906 0.93, 0.32 1.01, 0.42 N/A 0.91, 0.41 

Data analysis 

Bland-Altman analysis was used to study the agreement between Organ Dose and each 

of the three other calculation methods. Multiple regression analysis was performed to 

study the correlation between Organ Dose and each calculation method (SPSS v22, 

Excel 2011). 

 Results 

Table 4.3 shows the average MGD values and standard deviation (SD) for the Organ 

Dose and the three calculation methods. The Bland-Altman analysis revealed 

statistically significant bias between Organ Dose and the three calculation methods 

with bias values, 95% limits of agreements (LOA), and p values shown in table 4.4. 

Linear regression models for each mammography unit make are shown in figures. 

4.3(a), 4.4(a), 4.5 and 4.6. 



 

 
114 

 

 

Table 4.4: Bland-Altman bias and 95% limits of agreement (LOA) to study the agreement between Organ Dose (displayed by the digital mammography unit) 

and dose calculated using three Monte-Carlo methods (Dance et al, Wu et al, and Boone et al) for different mammography unit models from 27,869 

digital mammography images. 

Make Model Systems Images 

Organ Vs. Dance Organ Vs. Wu Organ Vs. Boone 

Bias 

(mGy) 

LOAs 

(mGy) 
p value 

Bias 

(mGy) 

LOAs 

(mGy) 
p value 

Bias 

(mGy) 

LOAs 

(mGy) 
p value 

Philips (Sectra) L30 11 6210 0.03 -0.15, 0.21 <0.001 N/A N/A <0.001 -0.09 -0.33, 0.15 <0.001 

GE MEDICAL 

SYSTEMS 

Senographe 

Essential 

ADS_54.11 

14 8282 -0.03 -0.29, 0.35 <0.001 0.21 -0.13, 0.54 <0.001 -0.20 -0.68, 0.28 <0.001 

Senographe 

Essential 

ADS_54.10 

1 488 0.03 -0.27, 0.22 <0.001 0.26 0.00, 0.53 <0.001 -0.14 -0.54, 0.26 <0.001 

Senographe 

Essential 

ADS_53.40 

1 727 -0.08 -0.13, 0.29 <0.001 0.13 -0.13, 0.38 <0.001 -0.22 -0.54, 0.10 <0.001 

Senograph DS 

ADS_54.11 
2 982 -0.07 -0.17, 0.30 <0.001 0.12 -0.17, 0.42 <0.001 -0.14 -0.50, 0.23 <0.001 

Senograph DS 

ADS_53.40 
1 454 0.13 -0.16, 0.43 <0.001 0.36 0.01, 0.71 <0.001 -0.04 -0.44, 0.37 <0.001 

Senograph 2000D 

ADS_17.4.5 
1 316 -0.10 -0.37, 0.17 <0.001 0.17 

-0.47, 

0.126 
<0.001 -0.04 -0.43, 0.35 <0.001 

GE Systems 20 11249 -0.03 -0.34, 0.28 <0.001 0.20 -0.14, 0.54 <0.001 -0.18 -0.64, 0.28 <0.001 

GE Systems with 

glandularity 
20 11249 -0.03 -0.34, 0.28 <0.001 0.03 -0.14, 0.21 <0.001 -0.18 -0.64, 0.28 <0.001 

HOLOGIC Selenia Dimensions 21 9504 -0.24 -0.74, 0.27 <0.001 N/A N/A <0.001 -0.07 -0.67, 0.53 <0.001 

Fujifilm Amulet 1 906 -0.09 -0.35, 0.18 <0.001 N/A N/A <0.001 0.01 -0.28, 0.30 <0.001 

Overall  53 27869 -0.09 -0.52, 0.34 <0.001 N/A N/A <0.001 -0.12 -0.60, 0.37 <0.001 
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Figure 4.3:Linear regression scatter plots showing the line of best-fit between MGD 

calculated using Dance method and Organ Dose dis- played by Philips (Sectra) 

units for 6210 digital mammograms: (a) full data and (b) data after removing a 
problematic unit. (Philips systems utilize Dance method for the estimation of organ 

dose). 
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Figure 4.4: Linear regression scatter plots showing the line of best-fit between (a) MGD 

calculated using Wu method assuming 50% glandularity and Organ Dose 
displayed by GE units and (b) MGD calculated using Wu method and using the 

DICOM glandularity (0040,0310 comments on radiation dose) and Organ Dose 
displayed by GE units for 11,249 digital mammograms. (GE systems utilize Wu 

method for the estimation of organ dose). 
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Figure 4.5:Linear regression scatter plot that shows the line of best-fit between MGD 

calculated using Boone method and Organ Dose dis- played by Hologic units for 
9504 digital mammograms. (Hologic systems utilize Boone method for the 

estimation of organ dose). 

 

Figure 4.6:Linear regression scatter plot that shows the line of best-fit between MGD 
calculated using Dance method and Organ Dose dis- played by Fujifilm units for 

906 digital mammograms. (Fujifilm systems utilize Dance method for the 

estimation of organ dose). 
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 Discussion 

The variation in methods used to estimate MGD makes international comparisons. The 

same issue exists for the Organ Dose displayed by the imaging system, where different 

vendors are using different methods to estimate the organ dose, although it is important 

to emphasize here that the calculation methods employed by different vendors are not 

clear. Organ Dose displayed by the system could be used as a robust method to 

evaluate the dose for a wide range of breast thicknesses and systems, as well as 

facilitating larger sample sizes. However, the use of Organ Dose needs to be validated 

against other dose calculation methods before it can be implemented. This study 

examined the agreement and correlation between MGDs calculated using three Monte-

Carlo methods and the Organ Dose displayed by the mammography systems.  

Philips systems showed a statistically significant bias indicating the displayed Organ 

Dose is overestimating Dance MGD by an average of 0.03 mGy, while Boone MGD 

under estimated the Organ Dose by a higher bias (Table 4.4). This is expected as the 

Philips (Sectra) systems employ Dance conversion factors for the Organ Dose 

estimation. On the other hand, the scatter plot for the Philips systems revealed a group 

of dose points that have a higher difference between the organ and Dance MGD 

[Figure 4.3(a)]. These belonged to one system and are due to an error in the QA data 

collection for that system or an error in the system calibration. A scatter plot with those 

dose points removed shows a higher correlation increasing from R2 = 0.87 to R2 = 

0.96. [Figure 4.3(b)]. Removing that system from the analysis increased the bias from 

0.03 to 0.047 mGy. Therefore, as the bias is small in comparison to the clinical dose 

of 2.0 mGy, and there is a narrow upper and lower 95% LOA (Table 4.4), we can 

conclude that the calculated dose and Organ Dose are in agreement.  

GE systems varied in performance depending on the model and version; in total 

though, they showed an average bias overestimated the Organ Dose by a 0.20 mGy, a 

few units had higher or lower bias, one of which overestimated the calculated dose by 

an average of 0.36 mGy. Figure 4.4(a) shows the correlation between calculated dose 

(Wu method) and the Organ Dose with R2 =0.85. Due to the higher bias further 

investigation was carried out and it was discovered that GE systems utilize a 

proprietary measure of glandularity and they enter this into the DICOM header at tag 
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0040,0310 “Comments on radiation dose”. It was also found that the glandularity 

estimation was set to 50% in some centres and many mammograms had 0% or 100% 

estimations, regardless of the breast thickness. Neither the glandularity estimation 

method nor its accuracy is described in the literature. Nonetheless, once the 

calculations were adjusted to account for the proprietary glandularity estimation the 

bias was substantially reduced (Table 4.4) and showed a much better correlation with 

an R2 = 0.92 [Figure 4.4(B)]. Although the GE Organ Dose had a higher level of 

agreement with the Wu method after the inclusion of the proprietary glandularity 

estimation, these 0% glandularity estimations in many of the GE systems mean that 

these organ doses cannot reflect the calculated MGD correctly as they do not account 

for any glandularity.  

Hologic system’s Organ Dose reported a small bias (Table 4.4) underestimating the 

Boone calculated MGD, nonetheless, it shows a difference of up to 0.67 mGy, which 

represents the complete absorbed dose for small breast thicknesses. The correlation 

between calculated dose (Boone method) and Organ Dose show an R2 = 0.8, which 

although good, is the lowest correlation out of the four vendors. We can conclude that 

in our study the Hologic system Organ Dose did not accurately reflect our calculated 

dose.  

Fujifilm constitutes less than 4% of the total sample. Only one Fujifilm amulet unit 

was included in this survey hence, no intrasystem comparison was possible. Other 

Fujifilm units were computed radiography (CR) systems and did not recorded organ 

dose. The Fujifilm amulet unit showed average results underestimating Dance MGD 

with a small positive bias of 0.09 mGy. Linear regression showed an excellent 

correlation with R2 = 0.94 (Figure 4.6). 

Organ Dose from the four systems showed a statistically significant bias when 

compared to the calculated dose. It has been reported that the statistical significance 

of the bias in the Bland-Altman method should not be the only value considered; 

however, the clinical significance of that value and the LOA should be considered as 

well. In this study, the bias reported for Philips (Sectra) Hologic, and Fujifilm are 

considered clinically insignificant, being much smaller than the clinical dose, 

nonetheless, when considering how wide the LOA are, it can be concluded that a 

disagreement between organ and calculated doses was found. Furthermore, it should 

be stressed that vendors using different methods of estimating the Organ Dose make 
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reporting the dose across systems unreliable, as the dose reported by the three methods 

differ by up to 19%. Nonetheless, with vendors using various algorithms, some of 

which are not particularly well defined, there is a need for further work to establish a 

benchmark and allow comparison of doses between systems. 

MGD calculation methods are all estimates; they are prone to systematic errors 

throughout measurement and calculation. Earlier methods of measuring the entrance 

dose using TLDs, although difficult, time consuming and having smaller sample sizes, 

offered more accurate measurements. The bias reported here for some systems was 

0.36 mGy which is 18% of the acceptable dose level of 2.00 mGy reported by the 

European commission for a 45 mm breast thickness [11]. This is still within the error 

value that is reported for the dose calculation methods. However, choosing to use 

Organ Dose may risk underestimating the dose by up to an overall average of 0.09 

mGy with a range from -0.52 to 0.34 mGy, this range of bias could result in a clinically 

important discrepancy between calculated and Organ Dose of up to 0.52 mGy. 

Considering that the European protocol DRL for a 45 mm breast thickness is 2.0 mGy 

[11], this could have important implications for reporting doses locally and nationally. 

Further work might examine actual air kerma using TLDs on select phantoms such as 

the ACR phantom and phantoms with different thicknesses. 

 Conclusion 

Organ Dose was found to disagree with calculated dose, with a bias ranging from -

0.24 to 0.36 mGy. However, Organ Dose is potentially beneficial for rapid dose audits 

in centres using mammography units of the same make. Conclusions drawn based on 

the Organ Dose alone, whether to establish DRLs or for dose audits, come with a risk 

of over or underestimating the calculated dose to the patient by up to 18% for a 

standard breast and this error should be considered in any reported results. 
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5 Chapter Five 

Integrating mammographic breast 

density in glandular dose calculation 

 

Section 5.2 of this chapter has been published as: 

Suleiman, M. E., Brennan, P. C., Ekpo, E., Kench, P., & McEntee, M. F. (2018). 

Integrating mammographic breast density in glandular dose calculation. British 

Journal of Radiology, 20180032. doi:10.1259/bjr.20180032 

[Published copy is available in Appendix 7.6] 
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5.1 Bridging section 

Radiation exposure to the population has doubled since the 1980s [1], and it has been 

established that radiologic examinations can cause biological changes in humans [1]. 

In mammography, the fibroglandular tissue of the breast is considered most 

radiosensitive, and low radiation doses could have different effects on cell damage, 

repair, and apoptosis depending on the gene mutations that an individual may have [2, 

3]. Gene mutations involving damage to the repair pathway may reduce an individual’s 

ability to successfully repair any damage, including that caused by radiation [2]. 

Repair of radiation-induced cellular damage has a complex pathway. Briefly, it 

involves several crucial genes including Histone variant H2AX, Phosophoprotein p53, 

serine/threonine protein kinase (ATM), and BReast CAncer susceptibility genes 

(BRCA1 and BRCA2). These are known as tumour suppression genes and produce 

proteins that help in the repair of the damaged DNA organic molecules. Mutation in 

any of these genes will prevent or disrupt the production of repair proteins thereby 

preventing DNA damage to be successfully repaired. Failure to repair may result in 

cell death or progenitor cells with mutated DNA [3]; this mutated cell develops 

different social behavioural pathways to its neighbouring cells, and operates out of the 

system, allowing it to divide and escape suicide, consuming resources and growing 

outside of the planned structure of the body, it is a new growth, a neoplasm. This is 

carcinogenesis. Furthermore, blood within the breast is exposed to radiation during 

mammography. Although the amount of blood within the breast during mammography 

is small due to compression which expresses it out of the breast, blood samples drawn 

from women attending mammography have shown signs of DNA damage [4]. Other 

body tissues are also affected by radiation during mammography. Ali et al. studied the 

effective radiation risk during mammography on other major body parts and found that 

some organs received radiation dose ranging from 0.006 to 26.6 Gy [5]. Hence, the 

risk of developing cancer from mammography screening is noticeable, and the need to 

accurately quantify this risk is evident [6].  

Radiation risk to the breast is quantified using the Mean Glandular Dose (MGD). Thus, 

to appropriately estimate cancer risk from mammography, a measure of the 

fibroglandular tissue of the breast should be included in the calculations of MGD. 

However, MGD calculation methods mentioned in chapter two are all based on a 
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simple breast model and estimates of breast composition. They assume a homogeneous 

breast composition with 50% glandularity; except for Dance et al. who refined the 

estimation of MGD by adjusting for different glandularities depending on age and 

CBT. Furthermore, Dance et al. investigated the effect of a heterogeneous breast 

composition on MGD, using a high-resolution voxel phantom. Dance et al. found up 

to 48% error in their conversion factors [7], and up to 30% overestimation of MGD 

when the heterogeneity in glandular tissue distribution within the breast was accounted 

for (compared to a homogeneous breast with Dance et al. model estimated 

glandularities) [8]. Also, the assumption of a homogeneous distribution of glandular 

tissue within the breast overestimates the glandular tissue near the entrance surface of 

the breast where radiation deposition is exponentially higher [8]. Hence, the risk of 

mammography is overestimated when using a simple breast model to estimate MGD.  

Previously mentioned MGD calculation methods acknowledge the need for a more 

accurate estimate of glandularity to be included within the calculations of MGD [9-

12]. Accurate measures of glandularity will lead to better individualised MGD and risk 

estimations. Further to the limitations detailed above, this chapter proposed the Actual 

Glandular Dose (AGD), a new method that integrates MBD in the calculations of 

MGD. A brief explanation of breast biology and composition, and the methods used 

to estimate breast composition is presented in the next subsections. This explanation 

aims to provide a rationale to supports the integration of breast composition within the 

calculations of AGD. 

 Glandularity of the breast  

The female breast overlies the anterior aspect of pectoral muscle; it is generally 

composed of glandular and adipose tissues. The glandular tissue continuously 

develops starting at puberty until maturity [13] after which it is replaced gradually by 

adipose tissue [14]. The glandular tissue is made up of concealed lobes, which have 

varying numbers of lobules and ducts and are surrounded by adipose tissue (Figure 

5.1). The ducts are made up of epithelial cells and surrounded by myoepithelial cells. 

The higher density of fibroglandular tissue is associated with high levels of epithelial 

cells, stroma and collagen. Epithelial cells are precursors of stromal cells and collagen. 

Altered interaction between breast epithelium, stroma and collagen makes the breast 
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more tensile and activate mechanisms through the lipoproteins lumican and decorin 

that increase breast density and cancer. Therefore, if the dense area absorbs more 

radiation and contain all the cells that support carcinogenesis, as epithelial cells are 

considered highly radiosensitive and 90% of cancers develop from epithelial cells [15], 

an accurate measure of fibroglandular tissue presence in the breast should be included 

in dose and risk assessment from mammography. 

 

Figure 5.1: Breast composition  

(Original author: Patrick J. Lynch. Reworked by Morgoth666 to add numbered legend arrows. 

(https://commons.wikimedia.org/wiki/File:Breast_anatomy_normal_scheme.png), „Breast anatomy normal scheme“, 

https://creativecommons.org/licenses/by/3.0/legalcode) 

Breast composition is a major determinant of breast cancer risk as high density of 

fibroglandular tissue is associated with increased risk of cancer and dose in 

mammography. Hence, breast composition investigations rely on the use of the 

parenchymal patterns as it appears on a mammogram. Mammographic breast density 

studies consider breast composition as a simple model with two elements; radiopaque 

and radiolucent areas. Fibroglandular tissues are radiopaque, hence appearing as white 

areas on a mammogram. Fatty tissues on the other hand, are more radiolucent, 

https://commons.wikimedia.org/wiki/File
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allowing X-rays to pass through more freely. The proportion of radiopaque breast 

tissue in a mammogram is referred to as the percentage mammographic density, which 

we refer to here as mammographic breast density (MBD). MBD is important for 

several reasons:  

1. Radiation is absorbed more by dense than by fatty tissue;  

2. The dense tissue reduces the visibility of other breast tissue, often referred to 

as masking effect; although recent studies on radiologists’ performance 

showed that a high MBD digital mammogram may change the radiologists’ 

attention behaviour and enhance cancer detection [16, 17].  

3. A woman’s risk of breast cancer is linked to her breast density [18]. However, 

previous studies on MBD have only focused on risk of cancer and masking.  

 

 Mammographic breast density (MBD) measurements  

MBD has been studied extensively since it was associated with breast cancer risk [19, 

20]. Women with the highest MBDs have shown a four-fold to six-fold increased risk 

of cancer compared to those with the lowest MBDs [21]. MBD has been measured 

qualitatively or quantitatively (Figure 5.2). Qualitative approaches depend on 

subjective visual assessment and observer opinion, while quantitative approaches rely 

on objective measurements of MBD. These approaches have been developed to 

quantify MBD for predicting risk of cancer and masking and are detailed below. 
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Figure 5.2: Commonly used approaches for mammographic breast density (MBD) assessment. 

BI-RADS®: Breast Imaging Reporting and Data System; LIBRA: Laboratory for 
Breast Radiodensity Assessment; DEXA: Dual-energy X-ray Absorptiometry. 

(Reproduced with permission [22]) 

 Qualitative measurements 

Wolfe’s method: This method was proposed in 1976 by John Wolfe, and include four 

categories of MBD [19]: 

• N1-lowest risk: Parenchyma composed primarily of fat with at most small 

amounts of “dysplasia.” No ducts visible. 

• P1, low risk: Parenchyma chiefly fat with prominent ducts in anterior portion 

up to one-fourth of volume of breast. Also, may be a thin band of ducts 

extending into a quadrant. 

• P2, high risk: Severe involvement with prominent duct pattern occupying more 

than one-fourth of volume of breast. 

• DY, highest risk: Severe involvement with “dysplasia.” Often obscures an 

underlying prominent duct pattern. 

Boyd’s method: In 1980, Boyd classified MBD into six categories according to the 

proportion of the breast that appears dense on a mammogram [23-25], mammograms 
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were categorised as: 0%, 0-10%, 10-25%, 25-50%, 50-75% and >75%. Tabar’s 

classifying method categorised the mammographic patterns of the breast into five 

patterns according to risk [26]. 

I. Evenly distributed tissue densities with slightly prominent fibrous tissue 

presence. 

II. Almost entirely fatty with 1mm distributed fibrous tissue. 

III. Fibrous tissue presence in retro areolar area. 

IV. Extensive fibrous tissue with nodular masses larger than normal lobules. 

V. Structure-less homogeneous apparel with predominant fibrous tissue. 

BI-RADS®: In 2000, the ACR introduced the Breast Imaging-Reporting and Data 

System (BI-RADS) to standardise mammographic densities reporting. The latest 

edition of BI-RADS (5th edition) classifies breast density into four categories 

according to the amount and distribution of the dense area [27]: 

A. The breasts are almost entirely fatty. 

B. There are scattered areas of fibroglandular density. 

C. The breasts are heterogeneously dense, which may obscure small masses. 

D. The breasts are extremely dense, which lowers the sensitivity of 

mammography. 

The use of qualitative approaches to measure MBD carries limitation that relate to the 

radiologist experience and subjectivity. Intra- and inter-reader disagreement and the 

inconsistency of MBD measurements across readers can be overcome by training the 

readers to reduce such disagreements [28-30]. Another limitation is the categorisation 

scale and distinguishing small differences in MBD. A simple answer to this limitation 

is to increase the number of categories, however, this may increase reader’s 

disagreements. The use of qualitative methods to estimate MBD and the lack of 

reproducibility needed for the consistency in reading mammograms may limit MBD’s 

effectiveness as a tool to predict cancer risk in women. Hence, quantitative methods 

were developed to estimate MBD. 

 Quantitative measurements 

Computer assisted planimetry is an area-based technique that was developed in 1987 

[31] to eliminate errors from the readers subjectivity and create reproducible results in 
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MBD measurements. Dense areas on the mammogram were marked manually by 

placing overlay acetate on the mammogram and using a wax pencil to mark dense 

areas.  

Interactive thresholding was developed to replace hand drawing of the dense areas, 

this semi-automated method utilised manual segmentation of digitised mammograms 

using pixel brightness threshold value to distinguish dense from fatty tissue [32]. 

Cumulus (University of Toronto, Canada) and Madena (University of Southern 

California, US), are semi-automated methods that utilise interactive thresholding. 

Cumulus, published in 1994 [33], has been considered as the gold standard in breast 

density measurements [34]. The reader using Cumulus sets two thresholds: firstly, the 

reader identifies the breast tissue from the background; secondly, the reader sets the 

threshold of dense and non-dense tissue. The computer software then calculates the 

area of the breast, the area of dense and non-dense tissue, then calculates the 

percentage of dense tissue in the breast. Similarly, Madena software, coded in 1998 

[35], utilises manual thresholding. The reader would tint (in yellow) dense regions of 

the breast, excluding the pectoral muscle, and the software then calculates the 

percentage of the yellow areas from the breast area. Limitations to the semi-automated 

methods in MBD measurements such as human intervention, high workload of 

thresholding and segmentation, and the influence of the reading environment have led 

to increasing interest in automated methods.  

The advances in computing and technology have facilitated the automation of 

segmentation and thresholding. Several automated programs have been developed to 

measure MBD from mammograms; MedDensity, Image J, Autodensity and 

Laboratory for Individualised Breast Radiodensity Assessment (LIBRA) are examples 

of automated software that utilise thresholding to measure MBD.  

MedDensity utilises automatic segmentation of the beast, differentiating dense from 

fatty tissue based on maximum entropy and spatial information. Pixel values are then 

used to estimate dense tissue and the breast area, the breast density is then calculated 

as the ratio of dense area to the area of the breast [36].  

Image J [37], an established Java-based image analysis software was utilised by Li et 

al. in 2012 [38] to automate breast density measurements. Li et al. separated the breast 

region from the background by superimposing a mask using greyscale filters then 



 

 
131 

implementing automated thresholding to separate dense tissue from other areas of the 

breast.  

AutoDensity, automatically identifies the breast area using segmentation, and 

classifies white areas in the breast as dense similar to Cumulus. AutoDensity, however, 

does not use a standard threshold across images; rather it finds an optimal distinct 

threshold level for each image in a data set independently from other images [39]. 

LIBRA [40, 41], is freely available software developed at the University of 

Pennsylvania Section for Biomedical Image Analysis (SBIA) in 2011.  

LIBRA utilises a thresholding technique to identify the breast region and the pectoral 

muscle on a mammogram. An “adaptive multi-class fuzzy c-means” algorithm then 

partitions the mammographic breast tissue into clusters of similar intensity that are 

then aggregated to a dense tissue area. The software then assesses breast area, dense 

tissue area, and calculates MBD by dividing the dense area by the total breast area [40, 

41]. 

The previously mentioned quantitative methods utilise two-dimensional 

mammograms to estimate MBD, which does not account for the volumetric presence 

of dense tissue, such as large volumes of dense tissue stacked up and projected down 

to an area representation on the mammogram. Furthermore, differences in positioning 

and exposure parameters resulting in quantum and anatomical noise may affect the 

appearance of MBD hence producing inconsistent result, which have led to a rational 

need for volumetric measurements of MBD. 

Volumetric measurements of MBD, such as Volpara and Quantra, utilise X-ray 

attenuation information and CBT to calculate volumetric MBD [42]. Volumetric 

techniques have shown reliable [43] and reproducible [44] results. However, 

commercial volumetric MBD measurement methods carry limitations related to the 

cost for initial setup. The software is networked and tailored to the mammography unit 

make, this software needs to be supported by the mammography unit vendors before 

it can be implemented. Another limitation is the use of raw data to estimate MBD, 

which restricts its use to prospective data only. Such limitations will render current 

volumetric MBD estimations unreachable to centres with constrained budget and no 

demand for the measurement.  
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The limitations of automated volumetric methods emphasise the need for cost-

effective and convenient methods that can measure MBD from both raw and processed 

images and have the ability to patch-process large volumes of images. LIBRA is a 

freely available, cost-effective, automated, and reliable and reproducible tool for MBD 

assessment. It also allows retrospective analyses of large volumes of raw and 

processed images and is capable of calibration. These abilities and advantages of 

LIBRA make it suitable for both clinical and experimental studies, including 

mammography dosimetry explored in this thesis. This chapter 5 used the MBD 

estimates of LIBRA from retrospective data to propose a new method for 

individualised MGD calculation. This work titled: “Integrating mammographic breast 

density in glandular dose calculation” [45], and published in the British journal of 

radiology, adapted Dance et al. method to calculate AGD. This was done by replacing 

Dance et al. estimations of MBD with the individual MBDs estimated using LIBRA 

software package. The results show that MGD underestimates the dose absorbed by 

the breast by up to 10%, having a bigger effect on small breasts and almost no effect 

on larger breasts. Some figures were not included in the journal article, which are 

presented here. Figure 5.3 shows a skewed distribution of MBDs estimated using 

LIBRA software, with a median and mean of 8% and 13% respectively. 

 

Figure 5.3: Distribution of glandularity for 31,097 mammography images. 

Figure 5.4 shows MBD changes with age, MBD increased until the age of 42 then 

started to steadily decrease to the age of 60, then smaller decreases after. A peak was 



 

 
133 

noted at 89 years old, which seems to be an outlier as it had a very high error (seen by 

the wide confidence intervals). Figure 5.5 presents the linear regression line between 

MGD and AGD, showing a high correlation between the two methods (R2 = 0.987), 

which is reasonable given that the base calculation method is similar, however, this 

does not mean there is an agreement as that is measured by the Bland-Altman analysis 

presented in the paper. The complete published journal article is presented in the next 

section.  

 

Figure 5.4: Median MBD behaviour with age, error bars represent the 95% confidence 

intervals (CI). 
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Figure 5.5: Linear regression scatter plots showing the line of best-fit between Actual 

glandular dose (AGD) and Mean glandular dose (MGD) for 31,097 mammograms. 
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 Abstract 

Objectives: This work proposes the use of mammographic breast density (MBD) to 

estimate actual glandular dose (AGD), and assesses how AGD compares to mean 

glandular dose (MGD) estimated using Dance et al. method. 

Methods: A retrospective sample of anonymised mammograms (52,405) was 

retrieved from a central database. Technical parameters and patient characteristics 

were exported from the Digital Imaging and Communication in Medicine (DICOM) 

header using third party software. LIBRA (Laboratory for Individualized Breast 

Radiodensity Assessment) software package was used to estimate MBDs for each 

mammogram included in the dataset. MGD was estimated using Dance et al. method, 

whilst AGD was calculated by replacing Dance et al.’s standard glandularities with 

LIBRA estimated MBDs. A linear regression analysis was used to assess the 

association between MGD and AGD, and a Bland-Altman analysis was performed to 

assess their mean difference.  

Results: The final data set included 31,097 mammograms from 7,728 women. MGD, 

AGD, and MBD medians were 1.53 mGy, 1.62 mGy and 8% respectively. When 

stratified per breast thickness ranges, median MBDs were lower than Dance’s standard 

glandularities. There was a strong positive correlation (R2 = 0.987, p<0.0001) between 

MGD and AGD although the Bland-Altman analysis revealed a small statistically 

significant bias of 0.087 mGy between MGD and AGD (p < 0.001).  

Conclusion: AGD estimated from MBD is highly correlated to MGD from Dance 

method, albeit the Dance method underestimates dose at smaller CBTs 

Advances in knowledge: Our work should provide a stepping-stone towards an 

individualised dose estimation using automated clinical measures of MBD. 
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 Introduction 

Screening mammography is an effective tool for the early detection of breast cancer, 

and has been shown to reduce cancer mortality by 25 - 40% [1-3]. Since screening 

mammography was first instigated at a national level in Sweden in 1977, there has 

been continuous debate about the extent of benefits and the nature of the risk [4]. The 

risks arising from screening mammography are two-fold: risk from radiologist’s errors 

such as false positives, false negatives and over diagnosis [5]; radiation-induced cancer 

risk arising from the high radiosensitivity of rapidly dividing epithelial cells in the 

fibroglandular tissues [6]. Therefore, it is increasingly important to appropriately 

account for the effect of radiation when assessing the risk vs benefit of screening 

mammography [5]. The relative risk of radiation-induced cancer from mammography 

is quantified by the mean glandular dose (MGD). 

MGD is an estimate of the energy deposited per unit mass of glandular tissue averaged 

over all glandular tissue in the breast [7]. MGD is estimated using conversion factors 

derived from Monte-Carlo simulations [8-10]. All estimates use assumptions and the 

available MGD estimation methods operate on the assumption that the breast is 50% 

glandular and 50% fatty (50:50 model) [11] or that glandularity is proportional to 

compressed breast thickness [12, 13]. The 50:50 model proposed by Hammerstein et 

al. [11] was based on a phantom with homogeneous distribution of glandular tissue 

and the authors suggested that the 50:50 model can be used for comparing 

mammography doses delivered using different techniques and equipment. MGD 

calculation models such as Wu et al. [10, 14] and Boone et al. [8, 15, 16] are based on 

the 50:50 model. However, it is well known that the breast composition is not 

homogeneous [17]. Additionally, it has been shown, in a volumetric breast density 

study, that about 80% of females have breasts with less than 27% fibroglandular tissue 

[18]. Thus, the assumptions made in the 50:50 model are clearly not true for all breasts, 

and do not represent the glandularity of the population. To address these limitations, 

another model was established by Dance et al. [12, 13]. To account for the increased 

cancer risk in glandular tissue, this model incorporates estimates of breast glandularity 

taking into consideration patient age and compressed breast thickness (CBT).  

Although the incorporation of glandularity and CBT in the Dance et al. model is 

logical, this approach to estimation of glandularity has some limitations. First, the 
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Dance et al. method estimates changes in glandularity using CBT and age. However, 

breast composition differs across females within age groups and CBTs. Second breasts 

with similar CBT can have different glandular compositions. Third, females of the 

same age and CBT can have different amount of glandular tissues. Thus, it is 

increasingly relevant to explore alternative models that account for a female’s actual 

breast composition when estimating glandularity. Also, breast density, which is the 

amount of fibroglandular tissue in the breast, is a determinant of X-ray attenuation and 

risk of cancer [19]. The fibroglandular tissue contains high concentrations of primitive 

epithelial cells, the most susceptible to radiation damage, and from which 80% of 

cancers arise [20]. As the proportion of dense breast influences susceptibility to cancer, 

it is important that we should be exploring mammographic breast density (MBD) data 

when estimating radiation-induced risk from mammography. This makes 

individualized MBD a promising alternative to the 50:50 and Dance models for 

estimating glandularity and patient-specific dose estimates. 

MBD is a representation of the fibroglandular tissue of the breast as seen by the X-ray 

attenuation patterns on a mammogram. MBD can be assessed qualitatively (visual 

grading) and quantitatively (area-based (2D) or volumetric (3D) methods) [21, 22]. 

However, qualitative visual methods are prone to intra-and inter-reader variability 

[23], suggesting a need to automate MBD measurement for dose calculation. The 

automated use of MBD for dose assessment has been developed [24] and a white paper 

by Highnam et al. [24] was the first to report MGD using MBD. This approach has 

now been incorporated into VolparaTM software to propose Volpara Dose for patient-

specific MGD estimation from mammography unit firmware [24]. Although Volpara 

Dose is robust, and automated it has a hardware and software cost, it requires 

networked systems and needs to be supported by the mammography equipment 

vendors. Furthermore, Volpara Dose only works on the “Raw Projection” data. These 

challenges limit its applicability for low-resource facilities and countries, and highlight 

the need for less costly, accessible and versatile automated alternative. Automated 

area-based methods utilise computer assisted interactive thresholding techniques to 

measure the percentage area covered by the dense tissue on a radiograph and uses this 

as a proxy for fibroglandular tissue. The Laboratory for Individualized Breast 

Radiodensity Assessment (LIBRA) software for MBD estimation uses post-processed 

images, can do batch processing, is freely available and is therefore a possible low 



 

 
142 

cost, low man-power alternative. LIBRA is freely available, fully automated software 

for the estimation of MBD. It estimates MBD on both “raw projection” data and “post 

processed” images, and has been validated for GE and Hologic digital mammography 

systems [25]. 

The current work proposes the use of a demale’s automatically generated actual MBD 

to estimate the actual glandular dose (AGD) to the breast. This work explores the use 

of MBD measured by LIBRA to estimate AGD. It also assesses whether the AGD 

estimated using MBD compares to MGD estimates from Dance et al. method. 

 Materials and methods 

The work involved a retrospective sample of screening mammograms. A total of 

52,405 mammograms from 12,034 women were used. Mammograms were acquired 

on 63 mammography units across 50 Breast Screen centres in New South Wales, 

Australia between September and October 2014. The data were retrieved from the 

Cancer Institute of New South Wales Picture Archiving and Communication System, 

following ethics approval (HREC2014/08/552) from the Cancer Institute Human 

Research Ethics Committee.  

Patient related information such as mammographic projections, age and breast 

thickness, exposure parameters, and mammography unit information (make, model) 

were exported from the Digital Imaging and Communication in Medicine (DICOM) 

image header to MS Excel using a third party software (YAKAMI DICOM Tools ver. 

1.4.1.0, Kyoto University, Japan) [26]. Medical physics annual reports were also 

obtained from participating centres, as the calculation of MGD requires these data.  

MBD was estimated for the data set using LIBRA software [27]. LIBRA uses a 

thresholding technique to detect the boundaries of the breast and the pectoral muscle 

on the mammogram. An “adaptive multi-class fuzzy c-means” algorithm is then 

applied to partition the mammographic breast tissue into clusters of similar intensity 

These clusters are then aggregated to a dense tissue area. The software package then 

generates quantitative estimates of breast area, dense tissue area, and calculates MBD 

by dividing the dense area by the total breast area [27, 28]. 

LIBRA has only been validated for GE and Hologic mammography units [25]. 

Therefore, mammograms obtained using Philips and Fujifilm units (14,065 
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mammograms) were excluded in the current work. Further exclusion criteria related 

to the calculation method were applied on the data. These included mammograms 

reported to have 0% glandularity by LIBRA (180 mammograms) which were 

considered as an indicative of measurement error, mammograms with breast implants 

(1337 mammograms), mammograms not within 20-110 mm CBT (39 mammograms), 

incomplete calculation data (1971 mammograms). The final data set was imported to 

an excel workbook developed in-house which calculated MGD and our proposed 

AGD. 

The calculation of MGD in our study followed the methods described by Dance et al. 

[9, 12, 13]. This method calculates MGD using entrance air kerma and three 

conversion factors that depend on age, CBT, half value layer (HVL), and anode/filter 

combination. A full explanation of the methodology has been previously described 

[29] (Figure 5.6). AGD in our work was calculated by replacing the original c factor 

values (box 6 in figure 5.6) with a look-up table of interpolated c values for MBDs 

ranging from 1% to 100%. 

 

Figure 5.6: Dance calculation method: input information that needs to be available for the 

calculation of MGD, the steps taken to calculate MGD for a mammogram and the 

equations utilized for that process 

 

The data were stratified by age (40-49 and 50-64) and CBT (20mm – 110mm in 10mm 

increments). For each age group, our estimated median MBD was compared to 
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Dance’s glandularity for each CBT (Figure 5.7). The distribution of the data was 

assessed using a D'Agostino & Pearson normality test, and a non-parametric 

Spearman’s correlation was used to assess the relationship between median MBD and 

age.  

MGD and AGD medians were calculated per mammogram. The median MGD and 

AGD were compared across different breast thicknesses (Figure 5.8). Bland-Altman 

analysis was performed to show the mean difference between the two dose estimation 

methods. Bland-Altman analysis also provided a measure of the bias and 95% limits 

of agreement (LOA) between MGD and AGD [30]. A linear regression analysis was 

performed to assess the linear correlation between MGD and AGD. AGDs and MGDs 

were stratified by CBT, and the median differences between AGD and MGD as well 

as their 95% confidence intervals were calculated for each range of CBTs.  

 

Figure 5.7:Average glandularity vs. breast thickness for 31,097 mammograms, glandularity 
estimated using LIBRA, and compared to Dance method typical glandularity for two 

age groups (40-49, 50-64).  
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Figure 5.8: Mean glandular dose (MGD) and Actual glandular dose (AGD) variation with 

different compressed breast thicknesses (CBT). The difference between median AGD 

and MGD for different CBT ranges becomes insignificant at CBTs greater than 

80mm. 

 

 Results 

A further 3,716 mammograms failed LIBRA analysis, and the final data set comprised 

of 31,097 mammograms (7728 women) from 48 Breast screen centres. Table 5.1 

provides a descriptive summary of the data set, including the minimum, maximum, 1st 

and 3rd quartiles, median, mean, variance, and standard deviation for age, CBT, 

compression, MBD, MGD, and AGD. Both MGD and AGD showed skewed 

distributions with medians of 1.53 mGy and 1.62 mGy respectively. MBD showed a 

skewed distribution with a median and a mean of 8% and 13% respectively.  
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Table 5.1: Statistical description of the included dataset (31,097 mammograms) 

Statistic Age CBT MBD MGD AGD 

Minimum 40 20 0.01 0.37 0.40 

Maximum 89 110 0.99 14.53 13.93 

1st Quartile 54 50 0.04 1.27 1.37 

Median 60 59 0.08 1.53 1.62 

Mean 60 59 0.13 1.71 1.80 

3rd Quartile 66 68 0.17 1.96 2.03 

Variance (n-1) 63 175 0.02 0.58 0.55 

SD (n-1) 8 13 0.13 0.76 0.74 

AGD, Actual glandular dose; CBT, Compressed breast thickness; MBD, Mammographic breast density; MGD, Mean 

glandular dose; SD, Standard deviation. 

Findings show that the median MBD decreased at higher CBTs but were lower than 

the Dance method at corresponding phantom CBTs for all age groups (Figure 5.7). 

There was a direct relationship between dose and compressed breast thickness. The 

AGD calculated using MBD followed a similar trend as the MGD estimated using 

Dance Method. However, the Dance method MGD underestimated dose at lower 

CBTs (below 80 mm) compared to AGD (Figure 5.8). Further analysis showed that 

the 95% confidence interval of the difference between median AGD and MGD for 

different CBT ranges becomes insignificant at CBTs greater than 80 mm (Figure 5.9). 

Bland-Altman analysis revealed a small yet statistically significant bias of 0.087 mGy 

between MGD and AGD (Figure 5.10), with 95% confidence intervals and p value of 

-0.08 - 0.26 and < 0.0001 respectively. Linear regression analysis demonstrated a 

strong positive correlation (R2 = 0.987, p<0.001) between MGD and AGD. 
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Figure 5.9: Median difference between Actual glandular dose (AGD) and Mean Glandular 
Dose (MGD) at different Compressed Breast Thicknesses (CBTs) and the 95% 

confidence intervals (shown in bars). 

 

Figure 5.10: Bland-Altman plot for mean glandular dose (MGD) and Actual glandular dose 

(AGD) showing a Bias of 0.087 and 95% LOA of -0.08, 0.26 for 31,097 digital 

mammography images. 
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 Discussion 

Previous studies estimating radiation risk from mammography made assumptions that 

are not necessarily true for all breast compositions. Given that the breast is infrequently 

50% glandular, and that breasts with the same CBT and age vary in glandularity, the 

current work argues the importance of integrating actual measures of glandularity in 

dose calculation. The current work proposes the use of MBD to quantify individual’s 

glandularity for the purpose of patient-specific dose estimation during mammography. 

Our work demonstrates that MBD is inversely related to CBT, with our median MBDs 

being lower than the glandularity estimated by Dance et al. [12, 13] at corresponding 

CBTs for all age groups. Findings also demonstrated a direct association between CBT 

and AGD as well as MGD. MGD was lower than AGD at smaller CBTs, with the 

difference becoming insignificant at higher CBTs (>80 mm). Bland-Altman analysis 

showed a small yet statistically significant bias between MGD and AGD. 

The median breast glandular tissue content in our data set was 8%, with a mean of 

13%, similar to that previously reported (17.4% -27%) elsewhere [18, 31] and for 

Australian females (8.1%) [32]. These values are substantially lower than the 50% 

glandularity used in the standard breast composition model for mammography dose 

optimisation. These findings suggest that the 50:50 model overestimates glandularity 

and that there is in reality the same dose going to less glandular tissue. Therefore, the 

mean glandular dose is actually higher than estimated by the 50:50 model. This same 

finding is explained by Dance et al [12] in a different way, they indicate that “The 

increase of the c-factor with decreasing glandularity is due to the increased percentage 

depth dose for fattier breasts”. In other words, fattier breasts allow more photon 

penetration. Therefore, underestimating the dose absorbed per 1 gm of fibroglandular 

tissue, lead to an underestimation of radiation risk from mammography. Similarly, in 

comparison to the current work, the Dance et al. method, which accounted for variation 

in breast composition using CBT, overestimated glandularity at smaller CBTs for all 

ages. We found that the glandularity estimated using the Dance method was almost 

double the actual glandularity at smaller CBTs, suggesting an overestimation of 

glandularity in small breasts. Such overestimation may result in underestimation of 

dose and risk to patients undergoing mammography procedures, limiting the 

applicability of Dance model for patient-specific dose estimation, particularly for 

small breasts.  
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Further analysis demonstrated a linear increase in AGD and MGD with CBT. MGD 

was consistently significantly lower (6% difference; p<0.001) than AGD at CBTs <80 

mm. However, Bland-Altman analysis, revealed a small but significant positive bias 

towards AGD and a narrow LOA. Although the bias was statistically significant, it 

represents less than 5% of the average dose to the standard breast described by the 

European protocol [33]. Nonetheless, when females were stratified into different 

CBTs, the differences in MBD for smaller CBTs resulted in a higher difference (10%) 

between MGD and AGD, while larger CBTs (over 80 mm) demonstrated under a 2% 

difference, with narrower 95% confidence intervals (Figure 5.9). Smaller breast may 

have lesser fibroglandular content than larger ones but demonstrate higher percentage 

glandularity. This is perhaps the reason why AGD was higher in smaller breast when 

individuals’ MBDs were accounted for. This finding implies that Dance et al., model 

may not be suitable for dose calculation in smaller breasts. The high correlation 

between AGD and MGD reported in the current work may be due to the use of a similar 

methodology for estimating both parameters.  

The 2%–10% difference in AGD and MGD at different CBTs has implications for risk 

and lifetime effective risk, as MGD contributes to 98% of effective lifetime risk, while 

the other body parts (irradiated during mammography) such as contralateral breast, 

thyroid and lungs contribute to only 2% [34]. Furthermore, according to the Linear 

Non-Threshold (LNT) model, which is often used for radiation-induced risk 

assessment, cancer risk from radiation exposure increases linearly with dose. This 

suggests that underestimation of dose using MGD will result in an underestimation of 

risk. Although the LNT model is still being debated due to the lack of drop-off effect 

from death at higher doses and the paucity of data at lower doses, it is still used to 

quantify risk. There are contentions about the effects of radiation at low doses. Whilst 

one theory suggests that the processes by which our cells repair damage (hormesis) 

and destroy unrepairable cells (apoptosis) occur at low doses [35] another asserts that 

cells are hypersensitive to low level doses [36]. Importantly, it has been shown that 

radiation-induced genetic effects vary between individuals [37]. These individual 

differences in risk emphasise the need to personalise glandularity and dose 

measurements in order to provide patient-specific estimates of radiation-induced risk.  

The overestimation of glandularity at lower CBTs and underestimation of dose by 

Dance et al. model highlights the limitations in the current mammography dosimetry 
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approaches. The current work provides a more objective clinical approach to patient-

specific mammography dose estimate. Although the difference between AGD and 

MGD was small (2–10%), it constitutes a significant difference in terms of risk 

according to the LNT model, and should be considered when estimating radiation-

induced risk from mammography.  

Another factor supporting individualized dose and risk estimation is the fact that risk 

from radiation and DNA repair differ between individuals even at similar dose levels 

[36]. For example, females with BRCA1&2 mutations as well as those with single 

nucleotide polymorphisms (SNPs) are less likely to successfully repair and more likely 

to develop breast cancer [38, 39]. Unfortunately, because 45-65% of women with 

BRCA mutations will develop breast cancer by the age of 70 [40], they are targeted 

for more regular screening. Cancer risk will also vary between individuals due to 

difference glandular content. Therefore, it is important to take into consideration these 

differences when estimating risk from mammography.  

Although doses from medical procedures are relatively small, the effect of medical 

exposure to radiation is well established. A longitudinal study has reported an overall 

24% increase in cancer incidence in individuals exposed to low doses compared to 

unexposed individuals [41]. Evidence also shows that oncogenecity in younger 

females may be higher at low mammography doses compared to higher doses [36] . A 

significant relationship has also been established between low doses and cell repair 

[42]. Therefore, one cannot definitely say that low doses are beneficial, harmful or 

have no effect, as radiation effects may vary between individuals.  

The uncertainty of radiation effects at all doses suggests a conservative risk strategy 

should be adopted, and that actual measures of the radiosensitive fibroglandular tissues 

be included in dose calculation models for individualised dose estimation. Thus, AGD 

may be a better dosimetric parameter, as it accounts for the actual glandular content at 

risk. Importantly, advances in technology and automation of MBD measurement 

should facilitate easier estimation of breast glandular tissue content and AGD. This 

will provide actual measures of dose received by each patient and the potential risk 

from screening mammography. 

The current work is limited in that only images retrieved from two mammography 

vendors were used. LIBRA is currently being tested on mammography units from 

different vendors, and may become more versatile in the future. Future work will 
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explore AGD with LIBRA MBD measures from Philips (Sectra), Fuji, and Siemens 

systems. The strengths of our work include the use of clinical images rather than 

phantoms for dose calculation as well as a large sample. Furthermore, the use of an 

automated MBD measurement software package (LIBRA) eliminates the variability 

associated with subjective human assessment. It does not however, deal with 

heterogeneous glandular tissue distribution in the breast. Using a voxel phantom 

Dance et al. [43] found that accounting for different glandular distributions in the 

breast could give up to 48% error in the conversion factors estimated using simple 

homogenous phantoms. He concluded, “For accurate breast dosimetry, it is therefore 

very important to take the distribution of glandular tissues into account”. Therefore, 

the MBD proposed in the current work although not yet accounting for heterogeneity, 

is a reasonable alternative. Our work should provide a stepping-stone towards an 

individualised dose estimation using automated clinical measures of MBD. 

 Conclusion 

The use of MGD underestimates dose from screening mammography compared to 

AGD. There are inconsistent differences between AGD and MGD at different CBTs, 

with larger differences seen in smaller breasts. This inconsistency may result in the 

underestimation of radiation risk during mammography for women with smaller 

CBTs. 
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6 Chapter six 

Discussion 
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The current work proposes Diagnostic Reference Levels for digital mammography in 

NSW. While the initial aim of providing a DRL value for all women was achieved, 

the results revealed high degree of variability in MGD for different ranges of CBTs, 

this led to the proposal of stratified DRLs for nine CBT ranges. Furthermore, the 

results revealed variability in MGD delivered using different detector technologies, 

which also suggested that DRLs should be stratified according to detector technology. 

Hence, the proposed DRLs can be interpreted by the conventional definition of a DRL 

and can also be used in a stratified way for specific CBTs and detector technology.  

The results of our investigation of dose in mammography not only reveals the technical 

issues affecting dose, it also reveals the need for greater urgency in the collection and 

communication of medical imaging dose data. Most of the focus in mammography is 

rightly on diagnosis, whilst dose appears unimportant comparatively. Radiation dose 

research in mammography would benefit from a 21st century mindset, where the digital 

image is not seen as a replacement for film. A digital image is data and has associated 

metadata that could be useful for more than detecting abnormalities [1].  

In other domains, the digital image is being converted to ‘high-dimensional’ mineable 

data, a process called radiomics, where information from multiple sources can be 

analysed to better support decision making. In medical imaging this could provide a 

potential improvement in quality control, diagnosis, prognosis and predictive accuracy 

of image interpretation and disease detection.  

Recent studies have shown the potential benefits of radiomics in the diagnosis of 

cancer, an example is the use of mathematical analysis of extracted data from prostate 

MRI to distinguish cancerous from benign tissue in prostate [2]. Another example is 

extracting quantitative lesion characteristics such as texture intensity, tumour shape, 

and tumour texture from CT lung images. The analysis of such information with the 

help of bio-markers improves the prognosis of lung cancer by predicting clinically 

relevant factors such as distant metastasis [3]. Furthermore, in multi-contrast brain 

MRI images, contrast enhanced regions were used to extract certain features to predict 

the overall survival of glioblastoma multiforme (GBM) patients, showing the 

advantages of tissue texture analysis to predict the prognosis of GBM patients [4].  

In mammography, machine learning (ML) and artificial intelligence (AI) could be 

used for the diagnosis of cancer, and analysing tissue texture to predict the potential 

risk of malignant legions. Furthermore, the raw data may have a role in the use of ML 
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and AI, however, most of it is not visible or cannot be displayed with sufficient contrast 

for the human eye, therefore removed. A 16-bit image is reduced to a 10-bit image so 

that it can be displayed on a 10-bit monochrome monitor. The amount of data lost is 

underestimated as it may be used in the colorisation of mammograms, diagnosis and 

prognosis of cancer. The under-utilised raw image has potential to be a driver for 

innovation. Raw images are mostly discarded after being processed to a “for 

presentation” image. If there were raw images, even in this project, VOLPARA and 

QUANTRA usage to estimate breast density become possible. Storing raw data is now 

cheaper than ever before.  

Deleting data to save storage space is again the mindset of the 20th century, where the 

limitations of hardware in the 1980 and 90’s pushed vendors to look at and store only 

the necessary information. The 21st century has seen exponential advancements in 

computational power, data storage, transfer and analysis, supported by the low-cost 

hardware, and the abundant number of programming professionals who can write 

highly sophisticated algorithms to mine such expansive amounts of information. 

The answer to shifting from a 20th to a 21st century paradigm rests in the hands of 

responsible authorities, researchers and vendors. Collaboration between these groups 

could see a consistent, compatible and shareable output from medical imaging 

technologies. Sadly, developing proprietary technology is still the major driver of 

profit and therefore innovations are not shared or made open sources. This is 

understandable, as each vendor is a competitor in the market, with profit as one of its 

major drivers. However, this may mean that strategic opportunities for research and 

optimisation that could help patients are lost. 

The American College of Radiology (ACR) and the National Electrical Manufacturers 

Association (NEMA) standard “DICOM” and the “Integrating health enterprise” 

(IHE) are in place to connect vendors and improve cross-communications. “The 

DICOM standard aims to facilitate interoperability of devices claiming conformance, 

this is realised by: 

• Addressing the semantics of Commands and associated data. For devices to 

interact, there must be standards on how devices are expected to react to 

Commands and associated data, not just the information that is to be moved 

between devices. 
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• Addressing the semantics of file services, file formats and information 

directories necessary for off-line communication. 

• Is explicit in defining the conformance requirements of implementations of the 

Standard. In particular, a conformance statement must specify enough 

information to determine the functions for which interoperability can be 

expected with another device claiming conformance. 

• Facilitating operation in a networked environment. 

• Is structured to accommodate the introduction of new services, thus facilitating 

support for future medical imaging applications. 

• Making use of existing international standards wherever applicable, and itself 

conforms to established documentation guidelines for international standards 

[5].” 

The key point in this to our “Organ Dose” research is “Addressing the semantics of 

file services, file formats and information directories…” Despite these standards, there 

are considerable variations between manufacturers. There are 4,115 tags in a DICOM 

header, some of which are used in different ways by different manufacturers. For 

example, the “Organ Dose” is used by all vendors, however, the information each 

manufacturer stores under that tag is derived from different calculations. The 

calculations used for “Organ Dose” by the four manufacturers studied in this work are 

discussed in detail in chapter four.  

The problems that can arise with data being stored inconsistently by different 

manufacturers is exemplified in chapter four. Through the process of examining DRLs 

for NSWs, the complexity of calculating MGD for multiple systems and multiple 

centres triggered a search for a more efficient measure; a measure that could facilitate 

regular and convenient evaluation of DRLs. The benefits of “big data” come when 

algorithms can be applied to large consistent data sets. Big data is often defined as 

“extremely large data sets that may be analysed computationally to reveal patterns, 

trends, and associations, especially relating to human behaviour and interactions.” 

When all fields are present and consistent, then we can maximise the potential of the 

analysis. Missing values in the database or inconsistent values (sometimes called 

noise) mean that a record cannot be used or is of limited use. In chapter three for 

example, we lost 1662 data sets due to missing QA data.  
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 Hence, chapter four explored the “Organ Dose”, which is DICOM header tag number 

0040,0316. Organ Dose is an MGD estimate available within the DICOM header of a 

mammogram. Chapter four examined whether MGD has the potential to be used in 

DRLs. The findings showed that the Organ Dose varied across different vendors due 

to differences in the methods utilised for dose estimation. Clearly, there has been a 

lack of collaboration between vendors, or perhaps limited discussion between them, 

resulting in an inconsistent approach to Organ Dose calculation. A consistent approach 

would have been for the ultimate good of the patient, and certainly would ease the 

process of generating DRLs in countries that have networked imaging centres. 

Nonetheless, Organ Dose was found to have potential for dose audits limited to similar 

mammography unit types. Organ Dose therefore, could be used to compare local DRLs 

between NSW mammography centres with similar mammography units. Using Organ 

Dose for DRLs would reduce the administrative burden and the time spent on dose 

audits and the establishment DRL. This is a major advantage for developed countries, 

where resources are networked, and cost is a major consideration. The frequency of 

QA tests is of great importance, as more frequent QA tests can make screening 

programs more expensive, while less frequent test will affect the reliability of 

screening units [6]. Cost savings could be possible because the dose audit process has 

many manual steps. However, the use of readily available reliable dose data, embedded 

within the image, could reduce the cost of performing QA tests. 

Previous works assumed predetermined percentages of glandularity, a 50% 

glandularity [7-13] or a CBT and age related glandularities [14, 15], and that risk from 

exposure is proportional to CBT. However, recent evidence shows that 95% of women 

have less than 50% of fibroglandular tissue [16], and that the epithelial cells and the 

connective tissue within the fibroglandular component of the breast are most 

radiosensitive due to the mitotic phases. Furthermore, in chapter four variations were 

found when MGD was calculated using different factors within the estimation 

methodologies, particularly, the use of breast fibroglandular content estimations. To 

address these limitations, this thesis proposed the use of mammographic breast density 

(MBD) for dose and radiation risk assessment, since it was the best descriptor of the 

amount of fibroglandular tissue. MBD also provides opportunities to calculate 

individualised dose estimates rather than extrapolations based on assumption set by 

earlier studies. This led to a new measure known as Actual Glandular Dose (AGD) 
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being proposed in chapter five to more appropriately account for the dose absorbed by 

the fibroglandular tissue. The proposed method enables patient-specific dose 

assessment and is derived from the widely used Dance et al. method for MGD 

calculation. 

In summary, this thesis has advanced the knowledge base pertaining to DRLs for 

mammography in NSW, and dose optimisation for digital mammography breast 

screening services. The study in chapter three proposed DRLs for mammography 

screening services in NSW, providing a benchmark for dose optimisation strategies 

for women undergoing screening investigations. The use of stratified DRLs according 

to breast thickness explored in this work should facilitate the optimisation of screening 

practices across all CBTs, hence, protecting all women from unnecessarily radiation 

doses that do not contribute to the clinical benefits of a mammogram. Furthermore, the 

stratification of DRLs according to detector technology in the work also provided a 

more robust QA process, which when adopted should improve the efficiency of a 

mammography units with regards to the delivery of radiation doses to the patients. The 

study in chapter four examined the consistency in Organ Dose across vendors; the 

results however showed that the use of Organ Dose for optimisation practices should 

only be limited to similar vendors, as variations were found between Organ Dose 

estimated across different vendors. These results will provide guidance on the suitable 

use of Organ Dose and its limitations as a tool for QA practices. The study in chapter 

five proposed an Individualised dose estimation method, which provides the basis of 

Individualised risk assessment. Dose assessment using this method will lead to more 

accurate radiation risk estimation for each patient undergoing mammography 

examination. Furthermore, the consistent integration of MBD in clinical decision-

making will inform patient-specific screening methods to improve early detection and 

minimise risks from screening. The results provided should facilitate strategies to 

reduce dose and dose variations across mammography screening services. The 

findings of this thesis should also contribute to an improvement in the optimisation of 

dose in digital mammography, and the estimation of risk from radiation delivered 

during screening mammography practices. 
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6.1 Major findings of the thesis and clinical implications 

The next subsections discuss how the aims of this thesis were realised and their clinical 

implications. Finally, I present the limitations of this thesis, future directions, and end 

with suggestions to the industry backed by the results presented for each aim. 

 To establish DRLs for digital mammography in NSW Australia 

DRLs in mammography are mainly used to identify mammography centres delivering 

higher median dose to women undergoing screening and aims to trigger an 

investigation into the reasons. Centres with a median dose above the mammography 

DRL can trigger optimisation strategies such as modified protocols or new equipment, 

to help achieve doses below the DRL level while maintaining an acceptable image 

quality.  

Arising from my studies I see that, aside from implementing photon counting 

technology, dose optimisation in mammography can be achieved at the table side. 

Which is done through the optimisation of exposure parameters such as AEC (which 

controls Anode/Filter combinations), mAs, and kVp, which determine the amount of 

radiation delivered to the breast. The optimisation of automatic exposure control 

(AEC) is achieved through the proper choice of AEC mode, available in some 

mammography units such as GE systems, which offer three AEC modes, contrast 

(CNT), standard (STD), and dose (DOSE). These modes vary the balance between low 

dose and image quality. It has been shown that the dose may be lowered by up to 50% 

when using the DOSE mode with acceptable image quality [17].  

Radiographers training on optimisation strategies can play a major role in dose 

reduction [18]. The proper use of compression, image plate, exposure parameters, and 

positioning are all factors that may affect the dose delivered to the patient. Also, 

training radiographers to understand the application of DRLs and how to interpret the 

dose displayed by a mammography unit will allow the radiographer to assess risk 

There may be a gap in radiographer knowledge due to the complexity of dosimetry of 

the breast. for example, MGD and Organ Dose are measured in mGy and reflects the 

absorbed dose. ESAK is measured in mGy and reflects the amount of radiation at the 

surface of the breast. Effective dose is measured in mSv and reflects the risk to the 
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breast as it includes the tissue weighing factor. Navigating this and understanding how 

to apply this knowledge will assist with dose reduction and can reduced variation in 

doses. Knowledge of these factors should be an accreditation requirement for 

radiographers.  

In Australia ARPANSA is responsible for “promoting uniformity of radiation 

protection and nuclear safety policy and practices across all jurisdictions”. However, 

there is a disconnect. The practise of radiography is regulated by Australian Health 

Practitioner Regulating Agency (AHPRA) and the Medical Radiation Practice Board 

of Australia (MRPBA). They set the accreditation standards for universities and 

professionals. They do not require this specific knowledge of DRLs. Radiation use has 

a complex web of regulatory bodies. Nonetheless, one part of ARPANSA’s 

responsibilities is the establishment of DRLs for different modalities in medical 

imaging. Currently, there is no established DRLs for mammography in Australia, 

however, mammography DRL is listed in ARPANSA’s corporate plan for 2016-2020, 

as 2016-2017 activity [19]. Nonetheless, the data published in chapter three was 

obtained in 2014; and published in 2016 since then mammography DRLs have not 

been established. DRLs should be reviewed every three/five year, so by 2019 the 

proposed DRLs will be ready for review. The DRLs proposed for NSW in this thesis, 

which have been presented to ARPANSA in the form of a peer-review published 

scientific paper [20], could be adopted by ARPANSA as the DRL for mammography 

dose surveillance across Australia. 

The methods proposed in chapter three are also recommended by the ICRP, and the 

results presented in this chapter, and shared with ARPANSA, should provide a 

baseline for mammography dose optimisation in NSW if not Australia. My work 

proposes a single DRL as well as stratified DRLs according to CBT and detector 

technology. If the DRLs proposed in this thesis are adopted and strategies for 

implementation put in place, we could significantly lower doses from mammography 

and reduce dose variations. 

Recommendation: A process and quality control mechanisms for moving a 

DRL proposed by an academic institution into national DRLs should be put in 

place.  

Recommendation: ARPANSA should consider adopting the DRLs proposed 

in our study as the Australian national DRL for digital mammography. 
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While the results were established using patient data, an earlier study that proposed 

DRLs for Queensland hospitals has utilised phantom data [21]; in our work the study 

presented in chapter three resulted in higher DRLs than those proposed by Thiele et 

al. for similar average CBT, 1.92 and 1.30 mGy compared to 1.4 and 1.1 mGy for CR 

and DR, respectively. Although the comparison is not accurate as the method differed, 

it confirms that using phantom data can under or overestimate the dose to the breast 

and that there is no easy way to convert between patient breast composition and 

phantom thicknesses [22]. Another explanation for the higher DRLs in the current 

study is that the phantom used by Thiele et al. was equivalent to a 42 mm CBT which 

was compared to an average CBT of 45 mm, although this is a small difference in 

CBT, it will have an effect on the dose as larger CBTs attract higher doses [11]. 

A comparison with international studies that established DRLs have revealed 

differences in the results with the DRLs proposed for NSW Australia in chapter three. 

Figures 6.1 and 6.2 show a comparison of the DRLs for NSW screening services and 

DRLs internationally when the 75th and 95th percentiles are used, respectively. 

Differences in results are mainly explained by the different technologies utilised within 

the international studies. The work in chapter three included CR units, which have 

since been upgraded to DR units. Nonetheless, comparisons with international studies 

suggest potential need for the optimisation of mammography units surveyed in NSW 

so that the DRLs comparable to international standards. 

 

Figure 6.1: DRLs (75th percentile) for patient studies categorised by Compressed Breast 

Thickness. 
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Figure 6.2: DRLs (95th percentile) for patient studies categorised by Compressed Breast 

Thickness. 

 

The reader might ask “why has this study used patient data and Dance et al. method?” 

when ACPSEM, the authority entrusted with dose monitoring and QA policies in 

Australia, have had a different recommended MGD calculation method at the time this 

study was designed. If phantom data was used to estimate MGD, with Wu et al. or 

Boone et al. methods, the results would have lacked utility for international 

comparison. Furthermore, since this study was published, ACPSEM have changed the 

recommendation to reflect the international move towards Patient dose audits and 

Dance et al. MGD calculation method [23], hence, confirming the validity of my 

methodology.  

The method used to establish the DRLs in this thesis has some initial weaknesses: it 

required computing power to process the collected data and new macros needed to be 

written to automate the calculation of MGD for the large sample of women. With 

technological advances such as high-powered computers that allow for fast and robust 

processing of high volumes of data, these limitations have been overcome. Further 

weaknesses are related to the data collection method, where a high volume of data 

requires a centralised source of images, and full QA data on the included 

mammography units. However, this is now mostly available as international medical 

imaging authorities are moving toward digital technologies and reducing the number 

of film screen x-ray systems. The study in chapter three did not account for cofounding 
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factors for dose variation including, the degree of compression, and breast density. 

These factors affect the amount of radiation delivered to the patient, with dense breasts 

and lower compression requiring higher X-ray energy, thereby increasing the radiation 

dose. A better understanding and integration of these confounders into dose calculation 

could improve the accuracy of dose audit and quality control processes. 

The strengths of this thesis however, include the large sample size which allows for a 

more extensive statistical analysis, examination of causal factors such as CBT and 

technology type and higher statistical power. Therefore, allowing for a higher chance 

of finding significant differences when they exist to support recommendations. 

Finally, a semi-automated method of MGD calculation may potentially pave the way 

for a fully automated data analysis with artificial intelligence (AI) warning systems for 

dose. An algorithm would utilise the PACS data to calculate the MGD and add it to 

the national DRLS Data, machine learning algorithms or simpler algorithms could be 

developed to identify anomalies in the data.  

 To explore whether DRLs should be stratified by compressed breast 

thickness. 

Although the use of CBT to stratify doses adds to the complexity of establishing DRLs, 

it has been established that a single standard CBT proposed by previous studies does 

not account for the wide variability in the CBT of the population. One study [23] 

however, suggested three different DRLs depending on different average CBTs, with 

one being the average CBT and the other two to allow for comparisons with the 

European [24] and Irish [25, 26] guidelines for CBT ranges of 45 – 55 mm and 55 – 

65 mm, respectively. Nonetheless, the limited presentation of DRLs to a single CBT 

in other studies reduces the power DRLs for assessing the dose of a population with 

varying CBTs. As shown in figures 6.1 and 6.2, the stratification of DRLs allow for 

international comparisons even where methodologies differ. This is important in 

comparing how the national DRLs compare to international norms. Although this is 

not of direct benefit to the patient, regulating authorities and screening centres could 

have the benefit of identifying dose anomalies within a given certain CBT range. A 

larger breast requires higher dose, and centre screening women with larger breast may 

consistently demonstrate doses higher than the recommended DRLs. Therefore, such 

higher doses are not necessarily due to errors arising from the screening method or 
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equipment in use and emphasise the need to account for larger CBTs when establishing 

DRLs. 

It can be argued that the use of single standard CBT to establish DRLs is sufficient for 

QA practices as DRLs are used to compare mammography units’ performance. 

However, the impact of differences in anthropometric factors on dose variations has 

been identified by the ICRP with regards to paediatric imaging. Thus, stratification is 

used in paediatric imaging, where the new ICRP recommendations for DRLs states 

that: “Establishing DRL values for children is more challenging than for adults, due to 

the broad range of sizes of Paediatric patients. Weight in children can vary by a factor 

of more than 100 from a premature infant to an obese adolescent. A single ‘standard’ 

patient should not be used to define DRL values for paediatric imaging” [27]. Given 

that CBT depends on breast size and composition, which can vary by a factor of more 

than 10, it is reasonable to stratify mammography dosimetry according to CBT to 

account for population differences in breast size and composition. Furthermore, 

Abdomen imaging utilises different methods, modalities and protocols depending on 

the clinical indications for the examination, each of which delivers a different dose 

value to the patient, as a result, different DRLs have been recommended for each 

method, modality, or protocol. It is clear that the new ICRP recommendation document 

recognises the need for further stratifications of the DRLs as needed [28]. However, 

DRLs stratification has not been recommended for mammography in the ICRP 

guidelines. With current understanding of causal factors for mammography dose 

variation and the big data in the digital era, it is logical to stratify DRLs according to 

patient characteristics and technology. Such stratification should account for 

differences in technologies average CBTs across centres and states. On the other hand, 

ARPANSA could also adopt the DRL for the average study population CBT, which 

should reflect the national average CBT as Australian states and territories have 

diverse ethnic representation of women that would make the national average CBT 

close to our sample’s average CBT. 

Recommendation: The ICRP should introduce the stratification for DRLs in 

mammography to account for different compressed breast thicknesses. 
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 To explore the effect of different detector technologies on the effectiveness 

of DRLs and whether DRLs should be stratified by detector technology. 

The effect of detector technology on the dose delivered to women during 

mammography has been shown in many studies [27,29-31] and in figures 6.1 and 6.2 

where comparisons are made between international DRLs, with differences in dose 

between detector technologies being as high as three-folds. Such variations in dose 

cannot be overlooked as it could have an effect on the efficiency of DRLs as an 

optimisation trigger tool. Further to the effect of detector technology on dose variation, 

this thesis explored the idea of stratifying DRLs per detector technology. The study in 

chapter three found that in a screening service where different technologies are 

utilised, a low dose technology, such as photon counting detectors, will always have a 

significantly lower median dose than other digital detectors, and therefore, will not be 

included in the optimisation practices. 

The dose-saving performance of photon counting technology (PCT) compared to the 

conventional digital mammography systems was explored in an Irish study. This work 

found that PCT using a mean 40% lower dose compared to the digital mammography 

system was not inferior [32]. However, a German study, analysing the efficacy of PCT 

in screening mammography, concluded that PCT systems “enable detection of small 

invasive cancers and DCIS above the desirable level of the European guidelines”, 

however, PCT recall rates were higher than those of other detector technology systems 

[33]. The natural question that should be asked is: if PCT has the lowest dose and 

provides high image quality, why shouldn’t all mammography screening migrate to 

this technology? To answer this question, further research will have to explore the 

benefit of higher detection rates versus the harms of higher recall rate, this topic is still 

an open discussion. Nonetheless, an earlier study which surveyed 1570 women of 

which 1548 responded, found that 97% of women preferred the inconvenience and 

anxiety of recall, given the possibility of detecting cancer at earlier stages [34]. The 

overall cost of a PCT system to a screening service is comparable to other 

mammography units with different detector technologies therefore, PCT should be the 

first choice for new screening mammography systems [35]. The selling point of a PCT 

should then be the lower dose to patients. An informed patient may weigh the benefits 

of screening against the harms. The lower radiation may attract certain patients to a 

PCT systems. This lower dose was one of the selling points for the transition from 
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screen film mammography to digital mammography, and it should be for a transition 

to PCT too. Although this recommendation may be a driver for equipment 

replacement, replacement would be to the benefit of the patient but at a cost the 

exchequer. Perhaps a rolling replacement would mitigate that cost. Increasing the 

prioritisation of dose to the patient in tender selection criteria would support this 

recommendation. 

Recommendation: The ICRP should consider introducing the stratification of 

DRLs according to detector technology, because CR, DR and PCT are 

sufficiently different that they need a separate DRL. 

 To verify the consistency of Organ Dose provided by different 

mammography vendors. 

An important practice during mammography screening is to monitor doses received 

by women to minimise harms of radiation to healthy women. The Organ Dose, which 

is available in the DICOM header for the radiographer to check during examination 

was explored for the purpose of establishing DRLs. However, it was found that this 

value is inconsistent across different mammography units, which has also been 

confirmed by other studies [36, 37]. Nonetheless, there is potential benefits to Organ 

Dose for monitoring dose to the patient and establishing DRLs given that 

mammography units vendors agree on a single estimation method which will eliminate 

the inconsistency in results. 

Furthermore, a consistent Organ Dose estimate within the DICOM header of a digital 

image across all mammography vendors could potentially be beneficial for the 

development of automated systems that will help with the optimisation of imaging 

practices. An early warning system may support DRLs and QA processes, as it will 

act in a robust way to warn of increased doses and maintain image quality. 

Recommendation: Manufacturers should agree on one Organ Dose 

measurement methodology, just like they agreed on the structure of the 

DICOM header. This work should be led by the DICOM Standard Committee. 
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 To propose the use of Mammographic Breast Density (MBD) for the 

calculation of Actual Glandular Dose (AGD) 

Risk reduction from the exposure to harmful radiations during medical imaging is the 

single most important aim of all dose optimisation practices. Therefore, it is imperative 

that the dose to the patient be estimated with the highest accuracy possible. This thesis 

explored a method to produce more accurate estimation for the dose absorbed during 

mammography. The general acceptance of the 50:50 breast model for the purposes of 

QA practices in mammography is unreasonable and the need to change that practice is 

unequivocal. Although it is easier to use the 50:50 model, the results produced are not 

only used for the purposes of QA. Most dose audit results are used for the estimation 

of risk from mammography, making it increasingly important to produce accurate dose 

estimations. 

The new method explored in the chapter five work incorporates MBD in the estimation 

of absorbed dose resulting in the Actual glandular dose (AGD). Although not 100% 

accurate, AGD provides an idealised estimation of dose, as an individualised risk 

estimator from radiation. It is illogical that a single inaccurate model of a woman’s 

glandularity or CBT should be used to estimate the risk from radiation, as women’s 

breasts differ in composition. 

In chapter five, our results showed significant differences between MGD and AGD, 

with MGD underestimating the absorbed dose by up to 10% for smaller breasts, this 

is because MBD was found to be significantly less, up to 50% of Dance et al. model 

glandularities for smaller breasts. The underestimation of absorbed dose may be 

translated to an underestimation of risk when using the LNT model, as LNT model 

suggests a linear relation between cancer risk from radiation and absorbed dose.  

Furthermore, it is reasonable to suggest that our MBD estimation method using 2D 

mammograms may carry errors as seen in figure 6.3, which shows the type of errors 

in estimating MBD in 2D mammograms versus volumetric estimation. Nonetheless, 

the average MBD presented in chapter five is almost identical to a volumetric study 

that explored Australian women’s breast density [38]. 

Recommendation: Further work should be carried out to assess the utility and 

differences in AGD calculated using area-based measures and volumetric 

measures of MBD. 
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6.2 Further remarks 

The absorption of X-ray in biological tissues can either cause direct damage to DNA 

leading to mutation or indirect damage to the tissue through the hydrolysis of water 

within the tissue. Hydrolysis of water within the tissue results in free radical formation 

and biological changes which could lead to cancer. The effect of radiation transfer to 

the tissue can be predicted where the tissue is exposed to high energy radiation, and 

this type of effect is called a deterministic or non-stochastic effect. Low doses of 

radiation on the other hand, lead to random biological damage or stochastic effects, 

whose probability increases with energy absorbed.  

Two risk models attempt to explain the effects of radiation exposure on healthy tissues. 

The Linear No Threshold model (LNT), which proposes a linear effect of radiation on 

tissues and oncogeneity. The other model suggests that there is a radiation energy 

threshold below which exposure is safe. Nonetheless, these are still under scrutiny 

each by the opposing communities [39]. Regardless of the correct model, it seems 

logical however, to take all measures available to ensure that exposure to medical is 

as low as reasonably achievable. 

In this thesis, new methods were suggested to reduce the probability of oncogeneity 

due to mammography screening, whether by finetuning the dose optimisation process 

using stratified DRLs, or by introducing AGD for the estimation of individualised dose 

and risk. However, authorities carry the responsibility to inform women that there is a 

possibility, even if small, that screening may cause cancer. This small probability 

compared to other causes of death could be seen as negligible, however, stating this 

probability in numbers may change our view on radiation risk. For example, we all 

know smoking is bad for your health, and there have been many anti-smoking 

campaigns. In Australia in a 2014, Cancer Australia estimated the mortality from lung 

cancer to be 23 in 100,000, of which 77% are caused by smoking [40]. Now compare 

that to 11 deaths in 100,000 for women caused by radiation induced cancer due to 

screening from the age of 40 to 74 years [41], this is almost half the number of deaths 

caused by road accidents or smoking yet, it is not considered negligible. There are of 

course a lot of caveats to this type of comparison and certainly risk models are based 

on the multiplication of an estimated risk over many years. So clearly also multiplies 

the error of estimation.  
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To reduce the risk of radiation induced cancer and other harms of screening 

mammography, such as false negatives, other non-ionising modalities are used in 

conjunction with mammography. Using non-ionising imaging modalities reduces the 

use of extra mammography and DBT examinations, thus reducing the amount of 

radiation women are subjected to. MRI is used as an adjunctive screening tool for high 

risk women. This technique has shown higher sensitivity to digital mammography, 92 

% compared to 30%, albeit with lower specificity 85% compared to 97% [42]. 

Combining digital mammography with MRI has proven beneficial as the combined 

use yields higher specificity and sensitivity, reducing recall rates [43]. Nonetheless, 

MRI carries higher costs, and should be used for women with dense breasts where 

tumours are hidden within the dense tissue and are hard to identify with digital 

mammography. MRI can also be beneficial for women with higher risk of developing 

breast cancer due to family history and the existence of the higher risk genes such as 

BRCA1 and BRCA2. Imaging modalities such as ultrasound is better in detecting 

small-sized lesions and cystic masses when utilised as an adjunct to mammography. 

Adjunctive ultrasound enhances the radiologist’s ability to detect cancer and assess 

disease extent. Nonetheless, breast screening with ultrasound may increase recall rates 

[44, 45], increasing false positives and it is operator dependant [46]. 

6.3 Thesis limitations 

The work presented here reflects results from digital mammography only, however 

our systematic review only included digital mammography studies, Furthermore, 

NSW screening service uses only digital mammography, consequently, our results 

reflect the present technologies available in NSW. Furthermore, Digital Breast 

Tomosynthesis (DBT) has not been included here as this technology has not been 

utilised for screening, hence there is no available data for DBT. Future studies should 

explore DRLs for DBT in diagnostic mammography.  

Furthermore, results here did not reflect diagnostic mammography in NSW. DRLs 

should be explored in future studies and compared to screening DRLs, it is expected 

that diagnostic DRLs may be higher than screening DRLs as diagnostic services 

include younger women with denser breasts [23]. 
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Although MGD calculations are accepted to be the descriptor of dose absorbed in 

mammography, it represents an estimation that has inherent errors relating to the 

composition of a woman’s breast. Dance et al. found that the radiation absorption in a 

heterogeneous breast phantom gives rise to 48% variation in the ESAK to MGD 

conversion factors [47], and up to 30% error in MGD values [48]. Nonetheless, in 

patient studies the heterogeneity varies, and no method is available to quantify the 

heterogeneity of breast composition. Perhaps future work will fill this gap. Hence, our 

method still represents an acceptable estimation of MGD, and is the current best 

practice. Furthermore, certain estimations of HVL and ESAK were used to replace 

missing QA data. The methods applied for estimating this missing data have been 

previously published and are widely cited [49].  

Finally, the estimation of MBD using 2D mammograms carries errors relating to the 

volumetric nature of breast density. Figure 6.3, is an example of how density 

estimation can vary between volumetric versus area-base breast density estimation 

methods.

 

Figure 6.3:Illustrates the possibility of under- or over-estimating MBD by visual or area-
based methods. “figures 2 and 3”, show how stacked dense tissue could affect the 

result of area-based estimation of MBD compared to volumetric estimations 

(Reproduced with permission) [50]. 

 nonetheless, the only way to estimate MBD retrospectively was to use 2D 

mammograms as volumetric density is not available for our data. Finally, the 

estimation of MBD using LIBRA software is limited to two vendors, as LIBRA has 

been tested only for GE and Hologic systems. 
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6.4 Future directions 

• DRLs for DBT was not explored here, however the optimisation of this 

technology using DRLs should be explored, as DBT is utilised in the diagnostic 

services. 

• Australia’s northern territory (NT) has a unique population that is different 

from the rest of Australian population; indigenous individuals comprise almost 

50% of the population of NT. Therefore, MBDs in the NT may be different, 

and DRLs for this population should be explored separately. 

• Symptomatic mammography has not been explored in this thesis. MGD values 

may be different as the symptomatic population includes younger women with 

higher breast density. Hence DRLs may be different and needs to be explored 

in future studies and also compare symptomatic and asymptomatic DRLs. 

• The effect of compression levels used within the included centres has not been 

quantified. Future work may assess such effect and recommend optimisation 

practices depending on the results of such study. 

• Artificial Intelligence (AI) and Machine Learning (ML) are now at the 

forefront of research, and may be utilised to integrate automated MBD 

estimation into dose assessment modules. This can help streamline the use of 

MBD in the calculations of individualised dose and risk assessment. 

• Further exploration of AGD is required for the purpose of estimating 

individualised patient dose and risk. Therefore, future studies may explore 

other mammography units, such as Philips, Fujifilm, and Siemens, to facilitate 

the use of LIBRA across all systems used in Australia to incorporate more 

estimates of breast density.  
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6.5 Summary of key results and recommendation from the thesis. 

 DRLs were proposed for Australian digital mammography screening 

services. 

Recommendation 1: A process and quality control mechanisms for moving a 

DRL proposed by an academic institution into national DRLs should be put in 

place. 

Recommendation 2: ARPANSA should consider adopting the DRLs 

proposed in our study as the Australian national DRL for digital 

mammography. 

 DRLs were presented in stratified format according to different CBTs 

and detector technologies. 

Recommendation 3: The ICRP should consider introducing the stratification 

for DRLs in mammography to account for different CBTs. 

Recommendation 4: The ICRP should consider introducing the stratification 

of DRLs according to detector technology, because CR, DR and PCT are 

sufficiently different that they need a separate DRL 

 Organ Dose was found to be inconsistent across different vendors, and an 

unreliable estimation of MGD for the purposes of establishing DRLs. 

Recommendation 5: Manufacturers should agree on one Organ Dose 

measurement methodology, just like the agreed on the structure of the DICOM 

header. This work should be led by the ACR NEMA. 
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 AGD was proposed as a more accurate method of estimating the dose 

absorbed by the breast during mammography. 

Recommendation 6: Further work should be carried out to assess the utility 

and differences in AGD calculated using area-based measures and volumetric 

measures of MBD. 

6.6 Conclusion 

This thesis has established DRLs for mammography in Australia and shows that MGD 

is dependent upon compressed breast thickness and detector technology. The work 

also shows wide variation in Organ Dose and dose calculation methodologies across 

mammography vendors, and that organ doses reported by vendors vary from that 

calculated using established methodologies. Data produced also show that the use of 

MGD calculated using 50% glandularity and certain breast thicknesses to represent 

dose from screening mammography underestimates radiation risk, and proposed AGD, 

which considers differences in breast composition for individualised radiation-induced 

risk assessment.   
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This study aims to review the literature on existing diagnostic reference levels (DRLs) in digital mammography and methodolo-
gies for establishing them. To this end, a systematic search through Medline, Cinahl, Web of Science, Scopus and Google
scholar was conducted using search terms extracted from three terms: DRLs, digital mammography and breast screen. The
search resulted in 1539 articles of which 22 were included after a screening process. Relevant data from the included studies were
summarised and analysed. Differences were found in the methods utilised to establish DRLs including test subjects types, proto-
cols followed, conversion factors employed, breast compressed thicknesses and percentile values adopted. These differences com-
plicate comparison of DRLs among countries; hence, an internationally accepted protocol would be valuable so that
international comparisons can be made.

INTRODUCTION

Breast cancer causes almost half a million deaths in
the world per year(1), but early detection has been
demonstrated to reduce mortality by up to 30 %(2).
Mammography, radiographic imaging of the breast
with X rays, is the most important diagnostic tool
for the early detection of breast cancer. There are two
types of patients on whom mammograms are per-
formed: symptomatic women in the clinic and asymp-
tomatic women in breast screening programmes.

The Australian breast screening programme was
established in 1991, targeting women aged 50–69 y for
2-yearly screening mammograms with the aim of redu-
cing deaths from breast cancer(3). It has been estimated
that since 1991 breast cancer mortality in Australia has
been reduced by 21–28 %(3); however, as with any
other X-ray examination, screening programmes can
add to the risk of inducing cancer in healthy women by
exposure to ionising radiation. Therefore, the dose to
the patient must be kept as low as reasonably achiev-
able(4). The three pillars of radiation protection are
justification, optimisation and dose limitation.

The International Commission of Radiation
Protection (ICRP) introduced diagnostic reference
levels (DRLs) in their 1996 publication 73 as a par-
ameter to be used for quality control, comparison of
dose levels, optimisation and limiting variations in
dose among diagnostic imaging centres. DRLs were
defined as follows:

A form of investigation level, applied to an easily
measured quantity, usually the absorbed dose in
air, or tissue-equivalent material at the surface of
a simple phantom or a representative patient(4).

A year later, the European Council defined DRLs as:

Dose levels in medical radiodiagnostic practices,
for typical examinations for groups of standard-
sized patients or standard phantoms for broadly
defined types of equipment. These levels are
expected not to be exceeded for standard proce-
dures when good and normal practice regarding
diagnostic and technical performance is applied(5).

The methods through which the DRLs are established
become important when trying to establish inter-
national comparisons as radiation dose measure-
ments are required(3). Historically, mammography
was screen-film based(6 – 12), but now this technology
is being phased out and replaced with digital mam-
mography, which includes full-field digital mammog-
raphy and computerised radiography systems; hence,
only studies with digital mammography or a mix of
digital mammography and screen-film mammography
(SFM) are included. Measuring the radiation dose to
the breast has been performed or represented using a
variety of approaches including air kerma(13), entrance
surface dose(14), mid-breast dose(15), total energy trans-
mitted to the breast(16) and the average dose absorbed
by the glandular tissue(17). The latter was found to be
the most effective way of measuring absorbed dose to
the breast because the mammary glands are most sensi-
tive to ionising radiation and have the highest risk of
developing radiation-induced carcinogenesis(17). Called
mean glandular dose (MGD), this metric is now the
recommended measure by many authorities such as the
ICRP(18), the United States National Council on
Radiation Protection and Measurements(19), the British
Institute of Physics and Engineering in Medicine
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(IPEM)(20), the European Council Protocol (EP)(21–23)

and the International Atomic Energy Agency
(IAEA)(24).

Dose to the glandular tissue of the breast cannot be
directly measured during an X-ray examination but
can be assessed with certain standard assumptions
that depend on breast characteristics and X-ray
spectra. MGD represents the effective dose absorbed
by the breast and is calculated from conversion
factors that have been established using Monte-Carlo
techniques(25 – 28). Such factors relate MGD to the en-
trance surface dose and allow for a wide and flexible
range of X-ray spectra, breast thickness and breast
glandularity(26, 29). The estimation of this quantity
can be done using either a standard phantom or a
patient. Although phantoms are good indicators of
machine quality and can be used as an inter-centre
and inter-suite comparison tool, direct patient mea-
surements can reveal much more information on tech-
nique and the relation between breast composition
and absorbed dose(9, 30 – 32).

A number of countries around the world have
established DRLs for mammography examination,
but many others are yet to do so. The aim of this
study is to review the literature on established DRLs
and methodologies for establishing them in digital
mammography.

METHODS

Search strategy

Using the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses methodology(33, 34), a
systematic literature search of Medline, Cinahl, Web
of Science, Scopus and Google scholar was conducted
to identify studies that have established DRLs for
digital mammography. The search terms shown in
Table 1 were applied; a search filter was used to limit
results to specific criteria of population (female,

human), age (adult .19), publication language
(English) and publication year (1990–2014).

Selection criteria

An initial screening of identified abstracts and titles
was conducted by two reviewers (M.S. and M.M.).
Only abstracts that discussed MGDs in mammog-
raphy were included in the full text review. Articles
were independently considered for inclusion in the
review if they discussed DRLs in digital mammog-
raphy and included data from phantoms or patients.

RESULTS

The combined search strategy identified 1539 cita-
tions: 494 were identified from MEDLINE, 626 from
SCOPUS, 385 from Web of Science, 9 from Cinhal
and 25 from Google Scholar and manual search. Of
these, 270 were duplicates and 1058 citations were
excluded after the initial screening based on titles and
abstracts. Finally, 211 articles were considered eligible
for full text review. On full text review of the remain-
ing articles, 188 were excluded because they did not
establish DRLs for digital mammography or had no
clinical data (Figure 1). The final number of articles
to be included in the systematic review was 22.

Review

The included studies cover different regions in the
world, with 13 from Europe(35 – 47), 5 from Asia and
the Middle East(48 – 52), 1 worldwide study(53) and 1
each from Australia(54), the USA(55) and Nigeria(56).
The main characteristics of the studies are sum-
marised in Tables 2 and 3. Six of the 22 studies were
based on phantom data, 13 on patient and 3 on both.
For comparison purposes, studies with both phantom
and patient data were included in both tables. The
review demonstrated that four main quality control

Table 1. The search terms used to find the relevant literature, separated into the intervention, cohort and other, where the search
formula was (Intervention combined with ‘OR’) AND (Cohort combined with ‘OR’) AND (other combined with ‘OR’).

Intervention Cohort Other

DRLs Mammography Breast screening
DRLs Mammographic Examination Mass screening
Dose reference levels Mammogram Population screening
MGD Digital mammography
Average glandular dose
Reference levels
Dose survey
Population dose
Glandular dose
Radiation dose
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protocols were followed for estimating MGD and
finding DRLs, those published by the American
College of Radiology (ACR)(57), the European Council
Protocol (EP)(21–23), the IAEA(24) and the British
IPEM, formerly the Institute of Physical Sciences in
Medicine (IPSM)(60).

Phantom studies: methods used

Phantom-based studies have the benefits of standard
baseline, standard exposure protocols and quick
inter- and intra-X-ray suites comparison. Therefore,
it is not unexpected that 6 of the 22 studies investigat-
ing DRLs were performed using phantoms only
(Table 2) and 3 performed on patients and phantoms.
Of the three studies that were performed on patients
and phantoms, one reported DRLs for phantoms
only, one reported for patients only and one reported
for both patients and phantoms (Tables 2 and 3).
A total of eight studies reported DRLs for phan-
toms although the phantoms used were not of the
same size and type; three used ACR polymethyl-
methacrylate (PMMA) phantoms(50, 54, 55), three
used EP PMMA phantoms(35, 45, 47), one used a 45-mm
RMI-156 phantom(51) and another used a 40-mm
BR12 phantom(38).

The phantom types and the protocols used to
collect measurements, the coefficients used for the
conversion to MGD and the percentile used to report
the DRL varied among the studies (Table 2). The
ACR measurement protocol(57) and the Wu et al.

MGD conversion factors(29, 58) were followed by
three of the seven PMMA studies(50, 54, 55), two fol-
lowed European measurement protocol(21) and used
the Dance et al. MGD conversion factors(45, 47) and
one followed the IAEA measurement protocol with
the Dance et al. MGD conversion factors(35). Thus,
DRL values found in these studies cannot be com-
pared directly without conversion calculations; this
complicates inter-study comparisons and detracts
from the benefit of using a standard phantom.

Phantom studies: DRLs

The overall distribution of DRLs calculated from
phantom studies are shown in Figure 2. These are cate-
gorised by phantom types. However, other factors
need to be discussed before these DRLs can be com-
pared. The three ACR PMMA phantom studies
reported overall 75th percentiles of 1.3 mGy(54), 1.75
mGy(50) and 2.0 mGy(55). Although the same standard
phantom and conversion factors were used to estimate
the average MGDs, the results demonstrate a 0.7-mGy
difference in the average MGDs between Australia (1.3
mGy) and the USA (2.0 mGy). The low DRL in the
Australian study might be explained by the absence of
film-screen mammography units in the study where the
other two studies had a mix of digital and film-screen
units. The RMI 156 phantom following the ACR
protocol reported a 75th percentile of 1.44(38).

The two EP PMMA phantom studies reported
75th percentile of 1.70 mGy(47) and 95th percentile of

Figure 1. Flow diagram of included and excluded studies with specifics for DRLs in digital mammography.
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Table 2. Summary data from included phantom studies.

Country Authors (year) Data collection
method

Dose protocol/
conversion factors

Phantom type
(thickness/

E-BCT/G %)

Average MGD mGy
(unless otherwise

stated)

DRLs mGy

75 % 95 % Recommended

Australia Thiele et al. (2011)(54) Measured ESAK ACR(57)/Wu et al.(29, 58) ACR PMMA (45 mm/
42 mm/50 %)

All: 1.16
DR: 1.04
CR: 1.28

All: 1.30
DR: 1.10
CR: 1.36

DR: 1.10a

CR: 1.40a

Taiwan Hwang et al. (2009)(50) Measured ESAK ACR(57)/Wu et al.(29) ACR PMMA (45 mm/
42 mm/50 %)

All: 1.48
DR: 1.47
SFM: 1.49

1.75

USAb Spelic et al. (2007)(55) Measured ESAK ACR(57)/Wu et al.(29) ACR PMMA (45 mm/
42 mm/50 %)

All: 1.78
DR: 1.63

SFM: 1.80

All: 2.0
DR: 1.92
SFM: 2.04

All: 2.35
DR: 2.29
SFM: 2.39

Slovenia Zdesar (2008)(47) Estimated ESAK EP(21)/ Dance et al.(59) PMMA (45 mm/
53 mm/50 %)

1.5 1.7

Belgium Smans et al. (2006)c(45) Estimated ESAK EP(21)/Dance et al.(59) PMMA (45 mm/
53 mm/50 %)

d 2.08

Bulgaria Avramova and
Vassileva (2011)(35)

Measured IAK IAEA(24) /Dance
et al.(59)

PMMA (45 mm/
50 mm/50 %)

1.8 2.3

Turkey Bor et al. (2008)(38) Measured ESAK IPSM(60)/Dance
et al.e(59)

BR12 (40 mm/
45 mm/50 %)

1.46 2.0

Malaysia Jamal et al. (2003)c(51) Measured ESAK ACR(57)/Wu et al.(29) RMI 156f (45 mm/
42 mm/50 %)

1.23 1.44
4.61 (ESAK)

2.0 (93.3 %)a

ACR, American College of Radiology; EP, European protocol; IPSM, Institute of Physical Sciences in Medicine/now; IPEM, Institute of Physical and Engineering in
Medicine; IAEA, International Atomic Energy Agency; ESAK, entrance surface air kerma; IAK, incident air kerma; E-BCT, equivalent breast compressed thickness; G %,
glandularity; PMMA, polymethyl-methacrylate; DR, digital radiography; CR, computed radiography; SFM, screen-film mammography.
aRecommended by the authors.
bData estimated from Figures 4 and 10 of Spelic et al.(55).
cStudies include phantom and patient data.
dNo average MGD value mentioned in the study.
eDance et al. not specifically mentioned.
fRMI 156 is made from acrylic with wax inserts.
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Table 3. Summary data from included patient studies.

Country Author(s) (year) Number of
patients

Data collection
method

Dose protocol/
conversion factors

Mean
BCT mm

Average MGD
mGy

DRLs mGy

75 % 95 % Recommended

Japan Asada et al.
(2014)(48)

NA Measured
ESAK

EP(23)/Wu et al.(29) 42 1.58 1.91

Iran Bahreyni et al.
(2013)(49)

100 Measured
ESAK (TLDs)

EP(23)/Wu et al.(29) CC: 47
MLO: 53
SMLO:
50–60

CC: 0.88
MLO: 1.11

SMLO: 1.33

Nigeria Ogundare et al.
(2009)(56)

40 Measured
ESAK (TLDs)

ACR(57)/Wu et al.(29) All: 41.1
CC: 33.8
MLO:
48.5

All: 0.88
CC: 0.33
MLO: 1.43

2.5a

Japan Kawaguchi et al.
(2014)(52)

300 Measured
ESAK

EP(21, 61)/Dance
et al.(59)

SMLO:
30–40
MLO:
37.6

SMLO: 1.88
MLO: 1.84

SMLO: 2.0

Ireland O’Leary (2013)(44) 1010 Estimated
ESAK

EP(23) /Dance et al.(27) DR: 54.7
SFM:
52.3

DR: 1.33
SFM: 2.64

DR: 1.5
SFM: 3.17

DR: 2.26
SFM: 5.59

45–55 All: 1.68
DR: 1.13
SFM: 2.16

All: 1.2
DR: 1.2
SFM: 2.55

All: 1.5
DR: 1.5
SFM: 3.85

55–65 All: 2.04
DR: 1.40
SFM: 2.88

All: 2.47
DR: 1.50
SFM: 3.41

All: 4.33
DR: 2.40
SFM: 5.84

Malta Borg et al.
(2013)b(39)

759 Estimated
ESAK

EP(21)/Dance et al.(59) All: 57.5
CC: 53.8
MLO:
63.4

All: 1.07
CC: 1.06
MLO1.07

All: 1.11
CC: 1.11
MLO: 1.11

All: 1.68
CC: 1.65
MLO: 1.87

1.87c

Norway Hauge et al.
(2013)(41)

1335 Estimated
ESAK

EP(21)/Dance
et al.(27, 59, 62)

SMLO:
55–65

SCC: 1.23
SMLO: 1.35
CC: 1.18
MLO: 1.31

SMLO : 1.44 SMLO :
1.98

2.0c

Worldwide Geeraert et al.
(2012)(53)

14 7497 Estimated
ESAK from
DICOM data

N/A /Dance et al.(59) Na Europe: 1.48
North America:
1.42
Asia-Pacific: 1.42

Europe: 1.6
North America: 1.6
Asia-Pacific: 1.1

Europe: 2.4
North
America:
2.1
Asia-
Pacific: 2.3

Continued
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Table 3. Continued

Country Author(s) (year) Number of
patients

Data collection
method

Dose protocol/
conversion factors

Mean
BCT mm

Average MGD
mGy

DRLs mGy

75 % 95 % Recommended

Ireland Baldelli et al.
(2011)(36)

2910 Estimated
ESAK from
DICOM data

EP(21)/Dance
et al.(27, 59, 62)

CC: 60.5
MLO:
63.0

CC: 1.27
MLO: 1.34

1.75

Ireland Baldelli et al.
(2010)(37)

3016 Estimated
ESAK from
DICOM data

EP(21)/Dance et al.(62) CC: 60
MLO:
62.5

CC: 1.27
MLO: 1.35

1.75

Belgium Michielsen
(2008)(42)

NA Estimated
ESAK

EP(21)/Dance et al.(59) SMLO:
48–58

All: 1.69 2.37

Belgium Smans et al.
(2006)b(45)

10 093 Estimated
ESAK

EP(23)/Dance et al.(59) SMLO:
48–58

All: 1.67 2.44

Spain Moran et al.
(2005)(43)

5034 Estimated
ESAK from
DICOM data

EP(23)/Dance et al.(59) All: 52
CC: 49
MLO: 54

All: 1.88
CC: 1.80
MLO: 1.95

All: 2.1
CC: 2.0
MLO: 2.1

UK Young et al.
(2005)b(46)

16 505 Estimated
ESAK

IPEM(60)/ Dance
et al.(27, 59)

SMLO:
50–60
CC: 54.1
MLO:
56.8

SMLO: 2.03
CC: 1.96
MLO: 2.23

SMLO: 3.5d

Spain Chevalier et al.
(2004)(40)

5034 Estimated
ESAK
from DICOM
data

EP(22)/Dance et al.(59) All: 52
CC: 49
MLO: 54

All: 1.88
CC: 1.80
MLO: 1.95

All: 2.1
CC: 2.0
MLO: 2.1

ACR, American College of Radiology; EP, European protocol; IPSM, Institute of Physical Sciences in Medicine/now; IPEM, Institute of Physical and Engineering in
Medicine; ESAK, entrance surface air kerma; CC, cranio-caudal; MLO, mediolateral oblique; SMLO, standard mediolateral oblique (only standard breast thickness range
included for DRLs calculations); TLDs, thermoluminescence dosemeters; DR, digital radiography; CR, computed radiography; SFM, screen-film mammography.
aReported 92.5 percentile.
bStudies include phantom and patient data.
cRecommended by authors.
dReported 96.5 percentile.
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2.08 mGy(45). Although the two studies used the same
phantom and same conversion factors to report
MGD DRLs, a comparison cannot be made because
the percentiles used were different(45, 47). A PMMA
phantom study following the IAEA protocol reported
an MGD 75th percentile of 2.30 mGy. The authors
reported non-standardised techniques and lack of
optimisation as possible causes for the higher dose(35).
A BR12 phantom following the IPSM protocol
reported a 75th percentile of 2.0 mGy(38).

Patient studies: methods

Patient studies have an advantage over phantom studies
that they offer a more realistic and comprehensive as-
sessment of the doses delivered to patients with differ-
ent breast sizes and compositions. A total of 15 patient
studies investigating DRLs were reviewed (Table 3) and
once again, methods of data collection varied. Two
studies used thermoluminescence dosemeters (TLDs)
to measure ESAK values(49, 56) and the rest estimated
ESAK values from exposure parameters such as tube
output and tube loading(36, 37, 39–46, 48, 52, 53). Two differ-
ent methods of calculating MGDs have been used: the
Wu et al. MGD conversion factors were used to calcu-
late MGDs in 3 of the 15 patient studies(48, 49, 56) and 12
used the Dance et al. conversion factors(36, 37, 39–46, 53).
A wide range of mean breast compressed thicknesses
(BCTs) was reported. These diverse methodologies
complicate direct comparison among results; hence,
studies are categorised according to reported average
BCT and plotted in Figures 3 and 4.

Patient studies: DRLs

A range of DRLs have been reported with 75th per-
centiles ranging from 1.11(39) to 2.47 mGy(44) and the

95th percentiles ranging from 1.5(44) to 4.33 mGy(44),
in the average BCT range of 55–65 mm. The three
Irish studies reported different 95th percentile values
from each other, two breast screening mammo-
graphy studies with only digital units reported a 1.75
mGy(36, 37) of DRL value and the third that included
SFM units and symptomatic patients reported a 2.40
mGy for digital units only (an overall digital and
SFM value of 4.33 mGy), which is the highest among
the three; this may be due to the inclusion of symp-
tomatic patients(44). A Norwegian study, which
included only digital units in a breast screening pro-
gramme, reported a 95th percentile of 1.98 mGy(41)

and a Maltese study reported a lower value of 1.87
mGy(39); both though are higher than the two breast
screening Irish studies that used the same percentile
value(36, 37). International differences may be due to
variation in population breast composition and the
use of certain type of units that contribute to higher
patient dose. Many authors have discussed the differ-
ences in breast dose when using different makes and
models of mammography units on similar size and
composition breasts(36, 41).

In the BCT range of 45–55 mm, international com-
parisons can be made. Two Belgian studies reported
similar 95th percentiles of 2.44(45) and 2.37 mGy(42).
For the same average BCT range, two Spanish studies
reported a 75th percentile of 2.1 mGy(40, 43), which is
almost double the 1.2 mGy reported by an Irish
study(44) and 1.33 mGy reported by an Iranian
study(49). Studies with equal BCT, measurement proto-
col, MGD conversion factors and percentile reported
facilitate easier international comparison; however,
they do show a worrying outcome of large variations in
the dose received by women in different countries. The
reasons for these potential differences are thoroughly

Figure 2. DRLs for phantom studies categorised by phantom types (*95th percentile).
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discussed in the discussion section but include, tech-
nique, technology and population characteristics.

In the BCT range of ,45 mm, two Japanese
studies reported 75th percentiles of 1.91(48) and 2
mGy(52). The authors followed two different protocols
and methods to calculate the dose, which could
explain the 0.09 (5 %) difference in their results, as a
9–21 % difference would be expected between Dance
et al. and Wu et al. methods(63).

An all-digital worldwide study that collected dose
information from different geographical areas (and

did not report BCT) showed the 95th percentiles for
Europe, North America and Asia-Pacific of 2.4, 2.1
and 2.3 mGy, respectively(53) and 75th percentiles of
1.6, 1.6 and 1.1 mGy, respectively.

DISCUSSION

The studies reviewed followed two main groups of
authors that reported conversion factors for the calcu-
lation of breast dose: Dance et al.(27, 59, 62, 64) and Wu
et al.(29, 58), which are both used to compensate for the

Figure 4. DRLs (95th percentile) for patient studies categorised by BCT.

Figure 3. DRLs (75th percentile) for patient studies categorised by BCT.
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X-ray spectrum characteristics and breast composition
(glandularity). Four phantom studies(50, 51, 54, 55) and 3
patient studies(48, 49, 56) used Wu et al. conversion
factors whereas 4 phantom(35, 38, 45, 47) and 12 patient
studies(36, 37, 39–46, 52, 53) used Dance et al. conversion
factors. It has been reported that MGD calculated
from exposure measurements using Wu et al. conver-
sion factors was 9–21 % less compared with Dance
et al. conversion factors(63). Dance et al. acknowledged
that a variation of up to 16 % exists between the two
methods; this is due to differences in the breast model,
X-ray spectra and photon interaction cross sections(59)

(this will not be discussed as it is beyond the scope
of this paper). Wu et al. conversion factors are still
valid for newer technologies and can report accurate
results(65). Dance et al. conversion factors though have
been updated to include new factors that compensate
for different technologies, different types of target/
filter combinations and wider range of BCTs and
breast glandularities(59, 62, 64).

Four different quality control protocols that have
different approaches to exposure measurements
(Table 4) were followed. The two most common are the
EP(21–23) and the ACR(57); both are well-established
protocols. The EP was updated to include digital mam-
mography(21), a supplement fourth edition of the
European guidelines has been published(69), and
according to the European Reference Organisation for
Quality Assured Breast Screening and Diagnostic
Services website, a further update is on the way(70). An
update of the ACR protocol to cover digital mammog-
raphy is also known to be in progress(71); information
regarding calculation standards and conversion factors
to be used has not been released yet. However, the
authors would suggest the use of Dance et al. conver-
sion factors as the latest published data are based on
newer technologies.

Two main percentiles were used to establish DRLs,
the 75th and 95th percentiles. The 75th percentile is
more common and is used when there is a large range
of MGDs. Its use encourages 25 % of the centres to
reduce their dose. On the other hand, the 95th per-
centile is used when there is a small range of MGDs
and means that only 5 % of the centres require an
intervention to reduce dose. Thus, the 95th percentile
is more suited to well-established screening environ-
ments whose variation in doses is likely to be small.
Nonetheless, when establishing DRLs, any recom-
mendations of lowering dose should be balanced with
a measure of image quality as poor image quality
degrades image interpretation accuracy(72 – 75)

A diverse range of standard BCTs has been reported
depending on the protocol followed. Phantom studies
that followed the EP used thicker equivalent BCT
phantoms (53 mm) and hence reported higher average
MGDs than ACR protocol studies that used thinner
equivalent BCT phantoms (42 mm). In patient studies,
the range of standard BCT varied even for the same
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protocol. In general, a thicker BCT requires higher ex-
posure and is expected to receive higher dose in a
similar X-ray examination environment. The most two
common ranges of BCT used among the reviewed
studies are 45–55 and 55–65 mm, which falls within
the range followed by the EP for patient studies (40–
60 mm). The standard EP phantom also has an
equivalent BCT of 53 mm, which falls into that range.
Although establishing DRLs normally requires the
use of standard BCT, any study that aims to establish
DRLs for mammography could also include a range
of BCTs, which would result in a more accurate
measure of dose variations across the population.
Plotting graphically BCT versus DRL would be a
good quality control measure that radiographers could
refer to in order to assure that useful data are available
for the non-standard breast thickness.

Although breast thickness is not the only factor to
have an effect on MGD, it is the most consistently
reported. Other factors that effect MGD are not con-
sistently reported; for example, kVp is reported in 13
of the 22 papers included in this review, target filter
combination in 13 of the 22, HVL in 5 of the 22, and
mAs in 8 of the 22. Therefore, for the purpose of con-
sistency, a detailed comparison of these factors was
not feasible and is not included.

The lack of consistency and a worldwide standard
methodology to establish DRLs complicates compari-
son of dose among countries. International compari-
sons have shown differences that are often discussed
by authors; for example, the difference in the digital
screening services of Ireland (1.75 mGy)(36) and
Norway (1.98 mGy)(41). Hauge et al. explained the
lower DRL in the Irish study to be a result of including
more of a certain mammography unit that was proven
to contribute to lower dose values and hence lower
DRLs within the Irish study(41). Both studies found
that MGDs varied depending on the model of mam-
mography units; Hauge et al. reported that eliminating
one type of mammography units resulted in the reduc-
tion of the 95th percentile from 1.98 to 1.65 mGy
bringing the results closer to Baldelli et al. 95th
percentile (1.75 mGy)(41).

CONCLUSION

DRLs for mammography have been established
across the world, and variable methods and techni-
ques were used. The most common method used was
patient studies following the EP combined with
Dance et al. MGD conversion factors for BCT ranges
of 45–55 and 55–65 mm. DRLs for these ranges
varied with the 75th percentiles ranging from 1.11 to
2.47 mGy and the 95th percentiles from 1.5 to 3.5
mGy. However, an internationally accepted protocol
that includes dose measurement method, conversion
factor, BCT for patients or phantoms and DRL per-
centile needs to be established before important,

useful and accurate international comparison can be
made.
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6. González, L., Vañó, E., Oliete, S., Manrique, J.,
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Abstract

Introduction: This work aims to explore radiation doses delivered in screening
mammography in Australia, with a focus on whether compressed breast thick-
ness should be used as a guide when determining patient derived diagnostic
reference levels (DRLs).
Methods: Anonymized mammograms (52,405) were retrieved from a central
database, and DICOM headers were extracted using third party software.
Women with breast implants, breast thicknesses outside 20–110 mm and
images with incomplete exposure or quality assurance (QA) data were
excluded. Exposure and QA information were utilized to calculate the mean
glandular dose (MGD) for 45,054 mammograms from 61 units representing
four manufacturers using previously well-established methods. The 75th and
95th percentiles were calculated across median image MGDs obtained for all
included data and according to specific compressed breast thickness ranges.
Results: The overall median image MGD, minimum, maximum were: 1.39,
0.19 and 10.00 mGy, respectively, the 75th and 95th percentiles across all
units’ median image MGD for 60 � 5 mm compressed breast thickness were
2.06 and 2.69 mGy respectively. Median MGDs, minimum, maximum, 75th
and 95th percentiles were presented for nine compressed breast thickness
ranges, DRLs for NSW are suggested for the compressed breast thickness
range of 60 � 5 mm for the whole study and three detector technologies CR,
DR, and photon counting to be 2.06, 2.22, 2.04 and 0.79 mGy respectively.
Conclusion: MGD is dependent upon compressed breast thickness and it is rec-
ommended that DRL values should be specific to compressed breast thickness
and image detector technology.

Key words: breast; dosimetry; mean glandular dose; optimization; screening.

Introduction

Mammography is an important tool for the early detection
of breast cancer as early detection has been demonstrated
to reduce mortality by up to 30%.1 Aiming to reduce
breast cancer deaths, the Australian breast-screening pro-
gramme has targeted 50–69 year old Australian women
since 1991 for biennial screening mammograms, recently
increasing this upper age limit to 74.2 Exposing healthy
women to ionizing radiation, however, is associated with a
risk of inducing breast cancer, therefore the dose to the
breast must be kept as low as reasonably achievable.3

Diagnostic Reference Levels (DRLs) provide a measure of
quality control and optimization of protection to help limit

variations in dose delivered among and within imaging
centres and these levels are expected not to be exceeded
for a standard diagnostic procedure when good and
normal practice is applied.3 A DRL was defined in the
International Commission of Radiation Protection (ICRP)
publication 73 in 1996 as:

‘A form of investigation level, applied to an easily measured
quantity, usually the absorbed dose in air, or tissue-equiva-
lent material at the surface of a simple phantom or a repre-
sentative patient.’3

DRL establishment requires the use of readily available
or easily calculated dose metrics. Measurements of radi-
ation dose to the breast have been performed using

© 2016 The Royal Australian and New Zealand College of Radiologists
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different approaches including total energy transmitted
to the breast,4 mid-breast dose,5 air kerma,6 entrance
surface dose7 and mean dose absorbed by the glandular
tissue (MGD).8 Due to the radiosensitivity of the glandu-
lar tissue of the breast, MGD is now considered to be the
most relevant quantity,8 is widely used and is recom-
mended by the ICRP,9 the United States National Council
on Radiation Protection and Measurements,10 the British
Institute of Physics and Engineering in Medicine
(IPEM),11 the European Council Protocol (EP)12–14 and
the International Atomic Energy Agency (IAEA).15 Most
studies implementing DRLs have therefore focussed on
MGD values.

To establish a DRL, appropriate groupings of stan-
dard-sized patients should be used. For adult DRLs in
radiography, fluoroscopy and CT a weight range for a
group of patients of 70 � 10 kg is used. In paediatric
examinations, patients are categorized by weight or
age range. In mammography, researchers have used a
‘standard’ compressed breast thickness that varies
from 35 to 65 cm depending on the DRL.16 Choosing a
single thickness to represent an entire population,
although a simple approach, is arguably inappropriate
as the population is not homogenous and the breast
can vary in thickness from 1 cm to 10 cm. Further-
more, it is well known that dose differs for different
breast thicknesses. A more complex, but representative
approach might be to establish DRLs for groups of
standard-sized breasts.

While DRLs have been established for mammography
in many countries around the world;17–22 the Australian
breast screening programmes are into their third decade;
to date, no patient-based DRLs are available, nonethe-
less, phantom-based DRLs were established in 2011 for
Queensland hospitals.23 However, Phantom-based DRLs
may not reflect the clinical environment; hence, this
study aims to propose patient-based DRLs for screening
mammography in New South Wales, and to explore
whether compressed breast thickness should be taken
into account when determining DRLs.

Methods

This study was performed retrospectively using a patient
data sample from 50 BreastScreen NSW centres and
mobile units, ethical approval was granted by the Cancer
Institute Human Research Ethics Committee (No.2014/
08/552). In total, data were obtained from 63 mammog-
raphy units. Radiation dose and supplementary data
were assembled from 12,034 patient cases (52,405
mammograms).

Data relating to the patient and required for dose cal-
culations were extracted from the Digital Imaging and
Communication in Medicine (DICOM) headers (Table 1)
and exported to a CSV format file using third party soft-
ware (YAKAMI DICOM Tools ver. 1.4.1.0, Kyoto Univer-
sity, Japan).

Dose calculation also required data from the annual
medical physics quality assurance (QA) reports for each
centre; these data included tube output and HVL for all
kVps and anode/filter combinations available for each
mammography unit.

Based on the information gathered, exclusion criteria
were applied thus removing from the study mammo-
grams involving breast implants (1337 images), and
incomplete or unavailable QA data (1662 images), as
well as images with compressed breast thickness not
within 20–110 mm (82 images). Data were then
imported into an excel sheet with macros developed in-
house that calculates MGD for each acquired image using
the methods described by Dance et al.24–26

For each image, MGDs were calculated using the fol-
lowing equation:

MGD ¼ Kgcs

where K is the incident air kerma (IAK) at the upper surface
of the breast without backscatter, calculated from mAs, kVp
and the tube output corrected using the inverse square law.
The g factor is the IAK to MGD conversion factor for breasts
with 50% glandularity and an anode/filter combination of
Mo/Mo. The c factor corrects for any difference in breast
glandularity from 50% for different thickness breasts and is
available for two ranges of age, 40–49 and 50–64, women
aged over 64 were included in the 50–64 range table, we
have moderately assumed here that the breast density of
women over the age of 64 will behave in a similar way that
the density of women aged 50–64; this is an estimation that
will be investigated in future studies. The s factor corrects
for any difference in the types of anode/filter combination
used other than Mo/Mo.24–26

Note: Both g and c factors are tabulated as functions of
breast thickness and half-value layer (HVL) of the x-ray
beam. The HVL for each system was obtained from concur-
rent QA data.

Table 1. Information extracted from the DICOM headers of digital images

Information DICOM tag

Patient age 0019,1052

Body part thickness 0018,11A0

Implant present 0028,1300

Patient orientation 0020,0020

Image laterality 0020,0062

Tube voltage (kVp) 0018,0060

Exposure (mAs) 0018,1152

Anode target material 0018,1191

Filter material 0018,7050

Exposure control mode 0018,7060

Detector ID 0018,700A

Manufacturer’s model name 0008,1090

Manufacturer 0008,0070

© 2016 The Royal Australian and New Zealand College of Radiologists
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For each woman and mammographic unit, the MGD
median was found per image and examination, the med-
ian examination MGD was found by summing image
MGDs for each examination and dividing the result by
two; this is to average for one breast.

To determine DRLs, the 75th and 95th percentiles
were calculated across the median image MGDs per
mammography unit. Then values for each mammogra-
phy unit were categorized according to their compressed
breast thickness to ranges of 10 mm thicknesses and
median image MGDs per mammography unit were calcu-
lated for each thickness range, an ANOVA with a Tukey
post hoc test was used to analyse the significance of the
differences between the median image MGDs for each
thickness range. The 75th and 95th percentiles were
determined for each thickness range.

Results

Summary of data

The final data set included 11,029 women with a mean
age of 60 years and a total of 45,054 images (DR:
40,033 images and CR: 5,021 images). Forty-eight
BreastScreen centres (Sixty-one digital mammography
units) were involved, (two centres were disqualified due
to missing QA data) consisting of 53 DR and 8 CR units
as shown in Table 2; it is worth highlighting here that
Rhodium (Rh) anodes were unavailable or disabled in the
CR units included for this study during the period in
question. Image sets included in the analysis comprised
of the standard 4 view examinations (MLO and CC for left
and right breasts) and extra projections, the latter repre-
senting <6% of all examinations.

The histogram of compressed breast thicknesses for
the study showed a normal distribution with a mean of
58 mm (Fig. 1), while image MGDs showed a skewed
distribution that ranged from 0.19 mGy to 10.00 mGy
with a mean and a median of 1.51 mGy and 1.39 mGy
respectively (Fig. 2). An overall summary of the back-
ground data for each unit is shown in Table 3.

Radiation doses and percentile values

Median image MGD across all patients for each MLO and
CC image were 1.43 and 1.36 mGy, respectively, with
individual doses per image ranging from 0.32 to
10.00 mGy for the MLO and 0.19 to 7.45 mGy for the
CC. Also, the lowest and highest median image MGD per
mammography unit, respectively, were 0.67 and
2.43 mGy for MLO, 0.66 and 2.24 mGy for CC.

Median MGD per examination for all women was
2.84 mGy with the smallest and highest dose being
delivered being 0.68 and 21.9 mGy respectively. Fur-
thermore, the lowest and highest median examination
MGD per mammography unit were 1.40 and 4.42 mGy in
units 51 and 54 respectively.

Median MGD per image, view (MLO, CC) and examina-
tion as well as mean patient age, compressed breast
thickness, kVp, mAs for each mammography unit are
displayed in Table 3. The 75th and 95th percentiles
across all units’ median image MGD for 60 � 5 mm com-
pressed breast thicknesses were 2.06 and 2.69 mGy
respectively (Fig. 3). Percentile values and proposed
DRLs are also presented for each of the nine compressed
breast thickness ranges and for the three different detec-
tor technologies (Table 4), Tukey’s post hoc test showed
statistically significant differences between median
image MGDs for each 10 mm compressed breast thick-
ness range examined (p < 0.05).

Discussion

DRLs have been shown to be an effective method for
dose optimization of protection in medical exposure of
patients for diagnostics and interventional procedures.
DRLs work by minimizing the wide variations in dose
demonstrated across centres for the same examination
for groups of standard-sized patients.27 Centres deliver-
ing the highest doses are identified using the percentile
method. A 75th percentile which is often used for general
X-ray examinations, identifies the 25% of centres that
are giving higher doses and encourages them to optimize

Table 2. Manufacturer, model, technology, Anode/ filter combinations and number of mammography units included in the dose audit from BreastScreen

centres in NSW/Australia

Manufacturer Model Technology Anode/Filter Unit number

General Electric (GE) Senographe Essential ADS_54.11 DR Mo/Mo, Mo/Rh, Rh/Rh 1–14

Senographe Essential ADS_54.10 DR Mo/Mo, Rh/Rh 15

Senographe Essential ADS_53.40 DR Mo/Mo, Mo/Rh, Rh/Rh 16

Senographe DS ADS_54.11 DR Mo/Mo, Mo/Rh, Rh/Rh 17, 18

Senographe DS ADS_53.40 DR Mo/Mo, Rh/Rh 19

Senographe 2000D ADS_17.4.5 DR Mo/Mo, Mo/Rh, Rh/Rh 20

Hologic Selenia Dimensions DR W/Ag, W/Rh 21–41

Philips (Sectra) L30 DR W/AL 42–52

Fuji Film Amulet DR W/Rh 53

CR Mo/Mo, Mo/Rh 54–61

DR, digital radiography; CR, computed radiography; Mo, molybdenum; Rh, rhodium; W, tungsten; Ag, silver; Al, aluminium.

© 2016 The Royal Australian and New Zealand College of Radiologists
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Fig 2. Distribution of image mean glandular dose (MGD) for 45,054 mammography images.

Fig. 1. Distribution of compressed breast thickness for 45,054 mammography images.
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exposures, thus making DRLs a dynamic and changing
value. Often in mammography, however, a 95th per-
centile is used due to rigorous quality assurance proce-
dures and tight dose variations.28 However, in the
current work, the long tail exhibited in Figure 2 would
suggest that at this time a 75th percentile maybe more
prudent across the state from which our measurements
are obtained.

Examination of the data in Table 3 demonstrates mini-
mal differences in dose between left and right breasts

and between the CC and MLO projections compared with
the inter-centre differences, hence and in alignment with
previous authors, the median image MGD will be used
throughout this discussion.17,29,30 Examination of the
median image MGD, demonstrated that the lowest values
belong to the Philips L30 (Sectra) units (units 51 and
52), with all of the Philips units reporting median MGDs
below the 20th percentile. The low dose associated with
these units is in line with other studies in the litera-
ture,19,31 and is likely linked to the effective utilization of

Fig. 3. A histogram plot of the median image MGD for a compressed breast thickness of 60 � 5 mm is indicated for each mammography unit, the 75th

and 95th percentile values are indicated by the horizontal lines.

Table 4. 75th and 95th percentiles for different compressed breast thickness ranges and three different detector technologies, representing 45,054 mam-

mograms from 61 BreastScreen units (Proposed DRLs for 60 � 5 mm breast thickness are in bold).

Breast thickness range All Units CR DR Photon counting

75th % (mGy) 95th % (mGy) 75th % (mGy) 95th % (mGy) 75th % (mGy) 95th % (mGy) 75th % (mGy) 95th % (mGy)

20–29 0.97 1.19 1.17 1.26 0.97 1.11 0.58 0.63

30–39 1.13 1.50 1.50 1.52 1.12 1.22 0.60 0.65

40–49 1.31 1.86 1.92 2.08 1.30 1.41 0.58 0.65

50–59 1.67 2.38 2.48 2.58 1.65 1.80 0.65 0.69

60–69 2.37 3.00 3.08 3.21 2.35 2.57 0.88 0.99

70–79 2.23 4.38 4.41 4.46 2.08 2.67 1.08 1.56

80–89 2.48 6.24 6.39 6.74 2.34 3.07 1.12 1.52

90–99 2.89 7.75 7.84 7.85 2.63 3.48 0.99 1.39

100–110 3.24 5.97 6.26 6.26 3.31 5.38 0.91 0.92

DRLs 60 � 5 2.06 2.22 2.04 0.79

CR, computed radiography; DR, digital radiography.
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tightly collimated scanning slot beam of X-rays and a
detector technology that employs photon counting with
energy discrimination, so scattered photons are rejected
from the image. This means that a grid is not required
and consequently, doses are lower. The highest median
image MGD and case MGD were delivered in CR units
(Fujifilm Corporation) in a mobile setting with five of the
eight CR units reporting an overall median image MGD
that was over the 75th percentile for all compressed
breast thickness ranges. It is interesting to note that all
Hologic units reported median image MGDs higher than
the 50th percentile while 11 out of the 20 GE units
reported median image MGDs less than or equal to the
50th percentile. These data emphasize the impact of
technology on reported dose variations. It should be
stressed, however, that drawing conclusions regarding
technology, based on dose values alone without a full
consideration of diagnostic efficacy must be treated with
caution.

While it is important to acknowledge the variations
shown in Figure 3 and to focus on existing units/centres
that are responsible for the higher doses, it is important
to put these inter-unit or inter-centre dose variations into
context. The variations in dose values represented in the
long tailed distribution in Figure 2 are similar to the dis-
tribution reported in an earlier large UK study.32 In addi-
tion, the level of difference between the highest and the
lowest dose units/centres reported here are not dissimi-
lar from that expressed in other countries with other
work demonstrating marginally less,20,28,33 compara-
ble18,19 or higher variations.34 It should be acknowl-
edged that the higher doses in this study as discussed
above, mainly relate to CR units, which at the time of
writing have generally now been replaced and the next
round of DRL surveys should reflect this. Overall, when
taking into consideration the reported compressed breast
thicknesses by other international studies, it was found
that our reported dose medians and percentiles were less
than most of patient studies reviewed by Suleiman et al.
in 2014.16

The median MGD and 75th percentile for compressed
breast thicknesses of 60 � 5 mm were 1.62 and
2.06 mGy respectively (Mean compressed breast thick-
ness for the study is 58 mm), while, for comparison
reasons, the median MGD and 75th percentile for com-
pressed breast thicknesses of 50 � 5 mm were 1.35 and
1.50 mGy respectively. These values are lower than the
1.88 and 2.1 mGy reported in a Spanish study in 2005,
which used similar methods to estimate the dose, albeit
with a lower overall mean compressed breast thickness
of 52 mm.35 The higher doses reported in the Spanish
work are most likely due to possibly different technology
and the study’s focus on diagnostic mammography
(symptomatic women). With regard to this last point,
O’Leary et al. suggested that the higher mean dose
received by symptomatic women could be explained by
the inclusion of younger women with denser breasts and

the less strict mammographic educational requirements
for radiographers compared with those involved in the
breast screening services.28 More recent studies in Ire-
land and Malta reporting a closer overall mean com-
pressed breast thicknesses (57.5 and 54.7 mm
respectively) to our findings indicated lower mean MGDs
(1.07 and 1.33 mGy respectively) and 75th percentiles
(1.11 and 1.5 mGy respectively) than those reported
here.28,36 While differences in technology and subtle dif-
ferences in compressed breast thickness may contribute
to the higher doses reported here, the results suggest
some potential for optimization of the units or practices
included in this study.

It is important to revisit the interpretation of DRL defi-
nitions, particularly since these have been available and
employed for 20 years. In particular, the term ‘represen-
tative patient’ has often been translated in mammogra-
phy to mean average compressed breast thickness of the
study sample. However, some authors have calculated
DRLs for groups of standard compressed breast thick-
ness in order to facilitate national and international com-
parisons.28 Differences in compressed breast thicknesses
are clearly responsible for at least some of the statisti-
cally significant MGD variations displayed in our work. If
we use a standard-sized group of patients with com-
pressed breast thickness 60 � 5 mm to represent the
overall population, the 75th percentile at this value is
more than double and almost half that of the lowest and
highest compressed breast thickness categories respec-
tively. These results alongside the compressed breast
thickness-dependent dose variations demonstrated else-
where highlight the importance of clearly identifying
standard-sized groups of compressed breast thicknesses
when specifying DRLs.16 Although to date, this is not
often seen, such stratification would extend the transla-
tion of a ‘representative patient’ from average com-
pressed breast thickness to ranges of compressed breast
thicknesses that are more representative of the popula-
tion of women. In addition, such a compressed breast
thickness specific approach if used universally would
facilitate useful and accurate national and international
comparisons.

Finally, it is important to acknowledge that this paper is
limited to radiation dose values. It should be stressed that
similar to almost all previous DRL work, comparing dose
data does not factor in image quality variations, therefore
the potential for highest dose locations offering best diag-
nostic efficacy cannot be out-ruled. Equally, however, cur-
rently there is no evidence here or elsewhere that those
centres or units with the lowest dose are offering less
accurate diagnoses than elsewhere. This is an area of
research that requires much more attention.

In conclusion, patient-based DRL values for different
compressed breast thickness ranges and different image
detector technology have been proposed for the first
time in Australia, providing valuable insights into the
radiation dose status of screening mammography in
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NSW. DRL values in mammography should be specific to
breast thickness and image detector technology, as large
variations between compressed breast thickness ranges
and different image detector technologies were shown.
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ABSTRACT  

This study aims to analyze the agreement between the mean glandular dose estimated by the mammography unit (organ 
dose) and mean glandular dose calculated using Dance et al published method (calculated dose). Anonymised digital 
mammograms from 50 BreastScreen NSW centers were downloaded and exposure information required for the 
calculation of dose was extracted from the DICOM header along with the organ dose estimated by the system. Data 
from quality assurance annual tests for the included centers were collected and used to calculate the mean glandular 
dose for each mammogram. Bland-Altman analysis and a two-tailed paired t-test were used to study the agreement 
between calculated and organ dose and the significance of any differences. A total of 27,869 dose points from 40 
centers were included in the study, mean calculated dose and mean organ dose (± standard deviation) were 1.47 (±0.66) 
and 1.38 (±0.56) mGy respectively. A statistically significant 0.09 mGy bias (t = 69.25; p<0.0001) with 95% limits of 
agreement between calculated and organ doses ranging from -0.34 and 0.52 were shown by Bland-Altman analysis, 
which indicates a small yet highly significant difference between the two means. The use of organ dose for dose audits 
is done at the risk of over or underestimating the calculated dose, hence, further work is needed to identify the causal 
agents for differences between organ and calculated doses and to generate a correction factor for organ dose.  
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1. INTRODUCTION  

Screening mammography invites healthy women for an x-ray examination of the breast, with the aim of early detection 
of breast cancer. The benefits of screening mammography have been scientifically examined and it has been shown, on 
the basis of randomized controlled trials [1-3], that screening mammography reduces breast cancer mortality by up to 
25% [4]. This evidence was revisited in 2015 to find out if it still valid today, the International Agency for Research on 
Cancer conducted a review of all published peer reviewed literature through which they concluded that mammography 
screening is still effective in reducing breast cancer mortality [5].  

The use of ionizing radiation in screening mammography is associated with a risk of radiation induced cancer to 
fibroglandular tissues of the breast [6], and possibly other exposed organs, as very few research studies examine the dose 
absorbed by other body parts [7]. Thus monitoring the dose is vital to ensure unnecessarily high doses do not occur. 

Breast absorbed dose has been calculated using different methods throughout the years, mean glandular dose (MGD) is 
now the adopted method of estimating breast absorbed dose and is calculated using conversion factors established by 
monte-carlo simulations. The conditions underlying monte-carlo simulation employed by different authors can impact 
the estimated dose by up to 19% [8]. Dance et al [9-11], Wu et al [12, 13] and Boone et al [14-16] have established conversion 
factors that are widely used to estimate MGD. The three models differ slightly in the simulation method but all reported 
conversion factors depend on breast thickness, glandularity, x-ray spectra, and beam quality.  

There are three main principles of radiation protection: justification, optimization and dose limitation, hence strict 
quality assurance (QA) policies are applied to keep the dose “as low as reasonably achievable”, known as the ALARA 
principle [17]. Diagnostic reference levels (DRLs) are a method of dose optimization. Protocols have been proposed to 
attempt to standardize how DRLs are established around the world, although these protocols differ in methods such as 
calculation of dose, average breast density, and standard breast thickness [18-21]. Such differences have been proven to 
make international comparisons difficult [22].  

Current QA practices are reported on a local level to make sure mammography units are operating within internationally 
approved guidelines, such practices use a limited range of phantoms that do not reflect the population of women 
attending screening, and do not identify operator errors. Thus a more clinically aligned method of measuring the dose is 
needed to account for variation in the breasts of the patient population.  

The introduction of digital mammography and the readily available estimation of MGD displayed by the digital systems 
provides a digital indication of the breast dose named organ dose, as well as information on radiographic technique and 
the performance of the imaging system. However, this estimated organ dose needs to be validated against other 
calculation methods before it can be used as an alternative approach to dose surveys for QA purposes and perhaps 
establishing DRLs. Therefore, this study aims to analyze the agreement between organ dose estimated by digital 
mammography units and calculated dose values for the same exposures using methods published by Dance et al [9-11]. 

 

2. MATERIALS AND METHODS 
Data collection 

Ethical approval was granted by the Human Research Ethics Committee (HREC) of the Cancer Institute of NSW 
(No.2014/08/552). The dose audit included 61 mammography units from 50 BreastScreen centers and mobile vans 
throughout the state of NSW Australia. 52,405 (12,034 women) anonymised mammograms were downloaded from the 
Picture Archiving and Communication System located at the Cancer institute of NSW . 
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The following information was extracted from the Digital Imaging and Communication in Medicine (DICOM) headers 
using a third party software (YAKAMI DICOM Tools ver. 1.4.1.0, Kyoto University, Japan), namely: age, study date, 
compressed breast thickness (CBT), presence of implants, view, laterality, tube voltage (kVp), tube current exposure 
time product (mAs), target material, filter material, exposure control mode, organ dose, detector ID and mammographic 
unit model. Further quality assurance (QA) data required for the calculation of mean glandular dose (MGD) were 
collected from the annual QA medical physics reports of participating centers through the Cancer Institute of NSW, 
these reports consisted of dose measurements on 20 mm, 42 mm (ACR), and 60 mm phantom thicknesses for different 
anode/filter combinations. It should be noted here that some estimations have been made to calculate the output and 
HVL using the QA reports for certain systems, also different dosimeters utilized to measure the output may have slight 
differences which could carry up to 5% error in calibration. 

Data preparation and analysis 

Only mammograms for women with no breast implant, aged 40-64 and a compressed breast thickness (CBT) 20-110 
mm were included as the MGD calculation method utilized is limited to these criteria. Any exposure information with 
manual exposure settings, no organ dose in DICOM header, or missing QA data was excluded due to the lack of 
exposure information to calculate MGD. For each mammogram, MGD was calculated using an in-house developed 
excel workbook utilizing the methods published by Dance et al [9-11], using the following equation: 

MGD = Kgcs 

Where: K is the incident air kerma (IAK) at the upper surface of the breast. g converts IAK to  MGD for a breast with  
50% glandularity. c corrects for differences in glandularity other than the 50% and is given for two age groups 40-49 
and 50-64 years. g and c are dependent on HVL and compressed breast thickness. s is spectra dependent, it corrects for 
different types of spectra where s = 1 for Mo/Mo anode/filter combination and changes for other combinations.  

A Bland-Altman analysis was used to study the level of agreement between organ dose and calculated dose, this 
graphical method is used to compare two measurement techniques where the differences between the two methods are 
plotted against the means of the two methods [23]. On the plot a reference line is drawn at the average difference between 
the methods, this is called the bias, it describes the average discrepancy between the methods and its value is interpreted 
clinically, to determine whether the bias is large enough to be considered clinically important. Another output for the 
Bland-Altman analysis is the limits of agreement. Wider limits of agreement would mean ambiguous results. A two-
tailed paired t-test was also used to determine the significance of differences. Linear regression analysis was used to 
study the correlation between the two methods of dose estimation and find the best-fit equation. 

3. RESULTS 

The final data set included 27,869 mammograms from 40 BreastScreen centers and mobile vans (53 digital 
mammography units). Both calculated and organ dose showed skewed distributions that ranged from 0.31 mGy to 8.05 
mGy and 0.29 mGy to 7.40 mGy with means (±SD) of 1.47 (±0.66) mGy and 1.38 (±0.56) mGy respectively. The 
Bland-Altman analysis revealed that the organ dose underestimates the calculated dose by a significant bias of 0.09 
mGy (t = 69.25; p<0.001) with 95% limits of agreement between calculated and organ dose that ranged from -0.336 and 
0.517 mGy (Figure 1). Linear regression showed high correlation between the calculated and organ dose (R= 0.95) with 
statistically significant regression model (R2 = 0.9038, p < 0.005) (Figure 2). 

Table 1 demonstrates the number of systems included, number of images, mean calculated dose, mean organ dose, bias, 
and limits of agreement per model. The average calculated and average organ dose per exposure for each type of 
mammography unit in the study ranged from 0.83 mGy to 1.97 mGy and from 0.86 mGy to 1.73 mGy respectively. The 
differences between organ dose and calculated dose, although very small, were statistically significant (p<0.001 for all 
systems).  The highest bias belonged to the Hologic Selenia Dimensions, where the organ dose is overestimating the 
calculated dose by a bias of 0.24 mGy. 
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Table 1: Calculated and organ average mean glandular dose (MGD) with 95% confidence interval (CI) and 
their Bias for different mammography unit models from 27,869 digital mammography images. 

 
 
 

4. DISCUSSION 

Worldwide mammography QA protocols that govern establishing DRLs have a similar goal, which is keeping the dose 
as low as reasonably achievable. Nonetheless, it has been shown that the methods through which DRLs are established 
differ from one country to the other, as does the tolerance to variations in dose values, making useful international 
comparisons difficult [22]. An internationally accepted protocol needs to be established before accurate international 
comparisons can be made. The same issue exists for the organ dose displayed by the imaging system, where different 
vendors are using different methods to estimate the organ dose. For example Philips systems and Fujifilm Amulet use 
Dance et al conversion factors to estimate the dose while GE systems use Wu et al conversion factors and Hologic uses 
Boone et al calculation method, although its important to emphasize here that the calculation methods employed by 
different vendors are not clear. Organ dose displayed by the system could be used as a robust method to evaluate the 
dose for a wide range of breast thicknesses, systems, and bigger sample size, yet this needs to be validated against other 
dose calculation methods before it can be implemented. This study examined the agreement and correlation between 
calculated dose and organ dose. Results overall showed statistically significant bias between the two methods, 
demonstrating that if the organ dose were to be used to calculate DRLs it would under or over estimate in comparison to 
the calculated dose depending on the vendor.  

Make Model Systems Images

Mean 
calculated 

dose (mGy) 
± 95% CI 

Mean 
organ dose 
(mGy) ± 
95% CI 

Bias 
(mGy) p value 

Lower, 
upper 95% 
Limits of 
agreement 

(mGy) 

GE 
MEDICAL 
SYSTEMS 

Senographe 
Essential 

VERSION 
ADS_54.11 

14 8282 1.48 ± 0.01 1.45 ± 0.01 0.03 <0.001 -0.35, 0.29

Senographe 
Essential 

VERSION 
ADS_54.10 1 488 1.43 ± 0.02 1.46 ± 0.02 -0.03 <0.001 -0.22, 0.27

Senographe 
Essential 

VERSION 
ADS_53.40 1 727 1.34 ± 0.02 1.26 ± 0.02 0.08 <0.001 -0.29, 0.13

Senograph DS 
VERSION 
ADS_54.11 2 982 1.23 ± 0.02 1.16 ± 0.02 0.07 <0.001 -0.30, 0.17

Senograph DS 
VERSION 
ADS_53.40 1 454 1.38 ± 0.02 1.52 ± 0.03 -0.13 <0.001 -0.16, 0.43

Senograph 
2000D 

ADS_17.4.5 1 316 1.64 ± 0.04 1.54 ± 0.04 0.10 <0.001 -0.37, 0.17

 All GE 
Systems 20 11249 1.45 ± 0.01 1.42 ± 0.01 0.03 <0.001 -0.28, 0.34

HOLOGIC Selenia 
Dimensions 21 9504 1.97 ± 0.01 1.73 ± 0.01 0.24 <0.001 -0.27, 0.74

Philips L30 11 6210 0.83 ± 0.01 0.86 ± 0.01 -0.03 <0.001 -0.21, 0.15
Fujifilm Amulet 1 906 1.01 ± 0.03 0.93 ± 0.02 0.09 <0.001 -0.18, 0.35
Overall  53 27869 1.47 ± 0.01 1.38± 0.01 0.09 <0.001 -0.34, 0.52
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The Philips systems showed a statistically significant bias indicating the organ dose is overestimating the calculated 
dose by an average of 0.030 mGy with 0.153 mGy and -0.213 mGy upper and lower 95% limits of agreement 
respectively. On the other hand the Bland-Altman graph for the Philips systems revealed a group of dose points that 
have a higher difference between organ and calculated dose, these belonged to one system and may be due to an error in 
the QA data collection for that system or an error in the system calibration; once that system was removed from the 
analysis, the bias became -0.047 with a narrower upper and lower 95% limits of agreement (-0.152, 0.057). A scatter 
plot with the outliers removed shows the dose points aligned towards the origin line with possible agreement even if the 
bias was statistically significant (Figure 1).  
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Figure 3: Scatter plot showing calculated versus Organ dose for Philips systems (6,210 mammography images) also showing 
the origin line and regression line with R2 value. A. Showing one problematic unit, B. Problematic unit excluded.
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GE systems varied in performance depending on the model and version; in total though, they showed on average an 
under estimation of 0.03 mGy with 0.34 and -0.28 upper and lower 95% limits of agreement, a few units had higher or 
lower bias one of which overestimated the calculated dose by an average of 0.13 mGy, but removing them from the 
analysis did not have any significant change to the result. It is important to state here that it has been reported that GE 
systems utilize a different method for the calculation of dose (Wu et al). Hence, further work is needed to investigate 
the agreement between organ dose and dose calculated using Wu et al calculation method. 

The highest bias reported belonged to Hologic systems (0.24 mGy) with 0.74 mGy, -0.27 mGy upper and lower 95% 
limits of agreement, this shows a difference of up to 0.74 mGy which is clinically unacceptable as it represents the 
complete absorbed dose for small breast thicknesses. Nonetheless it is important to mention that Boone method was 
reported to have up to 19% difference in results from Dance et al method, which would explain some of the difference. 

Only one Fujifilm amulet unit was included in this survey, this unit showed average results underestimating the 
calculated dose by a bias of 0.09 mGy.  

It is crucial to understand that MGD calculation methods are all estimates; they inherit systematic errors throughout the 
measurements and calculations. Earlier methods of measuring the entrance dose using TLDs, although difficult, time 
consuming and having smaller sample sizes, offered more accurate measurements with higher accepted error of 25% for 
the entrance dose. The bias reported here for some systems was 3-12% and is still within the error value that is 
considered clinically acceptable. Nonetheless choosing the use of organ dose may risk underestimating the dose by up 
to an average of 0.09 mGy this is a level of bias that could include clinically important discrepancies of up to 0.74 mGy. 
Considering that the European protocol DRL for a 53 mm breast thickness is 2.0 mGy [18-21], this could have significant 
implications for the reporting of doses locally and nationally. 

5. CONCLUSION 

Organ dose is potentially beneficial for rapid dose audits and DRLs, however conclusions drawn based on the Organ 
dose have a risk of over or underestimating the calculated dose to the patient and this error should be included in any 
reported results. Further investigation is needed to study the correlation, if any, between the two methods. Further work 
is needed to identify the causal agents for the difference and to possibly generate a correction factor for Organ dose. 
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Abstract. Our objective was to analyze the agreement between organ dose estimated by different digital mam-
mography units and calculated dose for clinical data. Digital Imaging and Communication in Medicine header
information was extracted from 52,405 anonymized mammograms. Data were filtered to include images with no
breast implants, breast thicknesses 20 to 110 mm, and complete exposure and quality assurance data. Mean
glandular dose was calculated using methods by Dance et al., Wu et al., and Boone et al. Bland–Altman analysis
and regression were used to study the agreement and correlation between organ and calculated doses. Bland–
Altman showed statistically significant bias between organ and calculated doses. The bias differed for different
unit makes and models; Philips had the lowest bias, overestimating Dance method by 0.03 mGy, while general
electric had the highest bias, overestimating Wu method by 0.20 mGy, the Hologic organ dose underestimated
Boone method by 0.07 mGy, and the Fujifilm organ dose underestimated Dance method by 0.09 mGy. Organ
dose was found to disagree with our calculated dose, yet organ dose is potentially beneficial for rapid dose
audits. Conclusions drawn based on the organ dose alone come with a risk of over or underestimating the cal-
culated dose to the patient and this error should be considered in any reported results. © 2017 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.4.1.013502]
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1 Introduction
Screening mammography invites healthy women for an x-ray
examination of the breast, with the aim of early detection of
breast cancer. The benefits of screening mammography have
been scientifically examined and it has been shown, on the
basis of randomized controlled trials, that screening mammog-
raphy reduces breast cancer mortality by up to 25%.1–4 This evi-
dence was revisited in 2015 to find out if it is still valid today.
The International Agency for Research on Cancer conducted a
review of all published peer-reviewed literature through which
they concluded that mammography screening is still effective in
reducing breast cancer mortality.5

Mammography efficacy in detecting breast cancer in early
stages comes with a small but nonnegligible risk of radiation-
induced cancer to the fibroglandular tissues of the breast6 and
possibly other exposed organs.7 Monitoring the breast-absorbed
dose is thus vital to ensure unnecessarily high doses do not occur;
therefore, many quality assurance (QA) protocols have included
breast dose assessments to govern the diagnostic adequacy of the
imaging techniques in mammography.8–11

Mean glandular dose (MGD) is the main descriptor of
absorbed dose to the breast. MGD is calculated using conversion
factors established by Monte-Carlo simulations. Dance et al.,12–14

Sobol and Wu,15 Wu et al.,16 and Boone et al.17–19 have estab-
lished conversion factors that are widely used to estimate
MGD. The three models differ slightly in the simulation method,
but all reported conversion factors dependent on breast thickness,
glandularity, x-ray spectra, and beam quality. The conditions

underlying Monte-Carlo simulation employed by different
authors can impact the estimated dose by up to 19%.20

The estimation of MGD is dependent on the values of half
value layer (HVL) and output, while these values are also de-
pendent on the measurement methods and can change substan-
tially depending on the dosimeters and how they are used.21

Furthermore, MGD is estimated using Monte-Carlo simulations,
which utilize a computer model of the breast to simulate photon
absorption in the glandular tissue of the breast, hence making
MGD a dose to a breast model rather than a dose to the breast.
This makes the estimation of MGD prone to errors regardless of
the method used, hence, it is important to highlight that MGD is
and will always be an estimation as it is not possible to measure
the dose absorbed by the glandular tissue directly as well as the
differences in density distribution of the glandular tissue that
also depend on the thickness of the breast and age of women.

Modern technology and the introduction of digital mammog-
raphy provide valuable utility to easily collect data required to
facilitate dose audits. The readily available estimation of MGD
displayed by the digital systems provides a digital indication of
the breast dose named organ dose, as well as information on
radiographic technique and the performance of the imaging sys-
tem. However, this estimated organ dose needs to be validated
against other calculation methods before it can be used for dose
audits or as an alternative approach to establish diagnostic refer-
ence levels (DRLs). Borg et al.22 studied two mammography
units [General Electric (GE) Essential and Hologic Selenia]
to establish the correlation between organ dose and the dose cal-
culated for different thickness phantoms using the three Monte-
Carlo estimations mentioned earlier. The authors concluded that
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organ dose compares well with the Monte-Carlo estimations
within small to medium phantom thicknesses and differs slightly
with thicker phantoms.

This study aims to analyze the agreement and correlation
between organ dose displayed by four types of digital mammog-
raphy units and calculated dose values for clinical data with a
wide range of breast thicknesses using methods published by
Dance et al.,12–14 Sobol and Wu,15 Wu et al.,16 and Boone
et al.17–19

2 Materials and Methods

2.1 Data Collection

Ethical approval was granted by the Human Research Ethics
Committee of the Cancer Institute of NSW (No. 2014/08/
552). The dose assessment included 61 mammography units
from 50 BreastScreen centers and mobile vans throughout the
state of NSW Australia. 52,405 (12,034 women) anonymized
mammograms were downloaded from the Picture Archiving
and Communication System located at the Cancer institute
of NSW.

The following information was extracted from the Digital
Imaging and Communication in Medicine (DICOM) headers
using a third party software (YAKAMI DICOM Tools ver.
1.4.1.0, Kyoto University, Japan), namely: age, study date, com-
pressed breast thickness (CBT), presence of implants, view, lat-
erality, tube voltage (kVp), tube current exposure time product
(mAs), target material, filter material, exposure control mode,
organ dose, detector ID, and mammographic unit model.
Further QA data required for the calculation of MGD were col-
lected from the annual QA medical physics reports of partici-
pating centers through the Cancer Institute of NSW. These
reports consisted of dose measurements on 20, 42 American
College of Radiology (ACR) mammography accreditation phan-
tom, and 60 mm phantom thicknesses for different anode/filter
combinations. It should be noted here that as QA reports vary in
detail given, some estimation is necessitated to calculate the out-
put and HVL. The normal QA practice for mammography units
is made on three different phantoms, hence, different sets of data
(HVL, output, and mAs) were provided for different anode/filter
combinations. Extrapolation was used to estimate the HVL for
mammograms taken by anode/filter combinations that had one
set of QA data using the method published by Robson et al.23

and expanded by Borg et al.22 Different dosimeters utilized to
measure the output may have slight differences some of which
are stated in the calibration certificates provided from the man-
ufacturers and could carry up to 5% error in calibration.24,25

2.2 Data Preparation

Only mammograms for women with no breast implants, aged 40
to 64 and a CBT 20 to 110 mm, were included. Any exposure
information with manual exposure settings, no organ dose in
DICOM header, or missing QA data were excluded due to
the lack of exposure information to calculate MGD. The final
data set included 27,869 mammograms from 40 BreastScreen
centers and mobile vans (53 digital mammography units).

2.3 Mean Glandular Dose Estimation

Mammography system vendors utilize different methods for the
estimation of organ dose displayed by the imaging systems.
Philips (Sectra) and Fujifilm utilize Dance method, while

Hologic utilize Boone method and GE utilizes Wu method26

(it is important to stress here that the calculation methods are
not clear) (Table 1). Hence, for each mammogram, MGD
was calculated using an in-house developed excel workbook uti-
lizing the three methods published by Dance et al.,12–14 Sobol
and Wu,15 and Boone et al.17–19

2.3.1 Dance’s method

Dance et al. method utilizes the following equation to calculate
MGD:

EQ-TARGET;temp:intralink-;sec2.3.1;326;460MGD ¼ Kgcs;

where K is the incident air kerma (IAK) at the upper surface of
the breast. g converts IAK to MGD for a breast with 50% glan-
dularity. This method incorporates an estimation of glandularity
provided as the c factor, which corrects for differences in glan-
dularity other than the 50% and is given for two age groups 40 to
49 and 50 to 64 years. g and c are dependent on HVL and CBT. s
is spectra dependent, it corrects for different types of spectra
where s ¼ 1 for Mo/Mo anode/filter combination and changes
for other combinations.

2.3.2 Wu’s method

Wu’s method utilizes the following equation:

EQ-TARGET;temp:intralink-;sec2.3.2;326;289MGD ¼ K × DgN;

where K is the IAK at the upper surface of the breast and DgN is
the normalized glandular dose per unit IAK. This method was
applied using the paper published by Sobol and Wu,15 which
provides parameterization equations to calculate DgN for differ-
ent anode/ filter combinations and different glandularities. The
parameterization equations were implemented into our excel
workbook using 50% glandularity. Wu’s method is limited to
three spectra namely Mo/Mo, Mo/Rh, and Rh/Rh, hence it
could only be applied on the GE units.

2.3.3 Boone et al. method

Boone’s method17–19 utilizes Wu’s equation to calculate the
MGD with data tables having an extended utility to include
more anode/filter combinations (W/Rh and W/Ag) and thicker
breasts. Boone data tables are provided for 0%, 50%, and 100%
glaundularities and those tables were used to calculate the MGD
with the assumption of 50% glandularity.

Table 1 Calculation methods and glandularities known to be used by
each system included in this study for the estimation of displayed
organ dose (vendor Method).

Manufacturer

Displayed organ dose

Calculation method Glandularity

Philips (Sectra) Dance Unknown

GE Medical systems Wu Proprietary measure

Hologic Boone Unknown

Fujifilm Dance Unknown
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2.4 Data Analysis

Bland–Altman analysis was used to study the agreement
between organ dose and each of the three other calculation
methods. Multiple regression analysis was performed to
study the correlation between organ dose and each calculation
method (SPSS v22, Excel 2011).

3 Results
Table 2 shows the average MGD values and standard deviation
(SD) for the organ dose and the three calculation methods.

The Bland–Altman analysis revealed statistically significant
bias between organ dose and the three calculation methods
with bias values, 95% limits of agreements (LOA), and p values
shown in Table 3. Linear regression models for each mammog-
raphy unit make are shown in Figs. 1(a), 2(a), 3, and 4.

4 Discussion
The variation in methods used to estimate MGD makes interna-
tional comparisons difficult.27 The same issue exists for the
organ dose displayed by the imaging system, where different

Table 2 Average MGD for system displayed dose, three dose calculation methods and their SD for 27,869 digital mammography images from four
different mammography unit makes.

Make Model Images

Average MGD (mGy), SD

System Dance Wu Boone

Philips (Sectra) L30 6210 0.86, 0.25 0.83, 0.26 N/A 0.95, 0.27

GE Medical systems All 11249 1.42, 0.31 1.45, 0.34 1.22, 0.26 1.60, 0.41

Hologic Selenia dimensions 9504 1.73, 0.66 1.97, 0.74 N/A 1.80, 0.68

Fujifilm Amulet 906 0.93, 0.32 1.01, 0.42 N/A 0.91, 0.41

Table 3 Bland–Altman bias and 95% LOA to study the agreement between organ dose (displayed by the digital mammography unit) and dose
calculated using three Monte-Carlo methods (Dance et al., Wu et al., and Boone et al.) for different mammography unit models from 27,869 digital
mammography images.

Make Model Systems Images

Organ versus Dance Organ versus Wu Organ versus Boone

Bias
(mGy)

LOAs
(mGy) p value

Bias
(mGy)

LOAs
(mGy) p value

Bias
(mGy)

LOAs
(mGy) p value

Philips
(Sectra)

L30 11 6210 0.03 −0.15, 0.21 <0.001 N/A N/A <0.001 −0.09 −0.33, 0.15 <0.001

GE
Medical
Systems

Senographe
Essential
ADS_54.11

14 8282 −0.03 −0.29, 0.35 <0.001 0.21 −0.13, 0.54 <0.001 −0.20 −0.68, 0.28 <0.001

Senographe
Essential
ADS_54.10

1 488 0.03 −0.27, 0.22 <0.001 0.26 0.00, 0.53 <0.001 −0.14 −0.54, 0.26 <0.001

Senographe
Essential
ADS_53.40

1 727 −0.08 −0.13, 0.29 <0.001 0.13 −0.13, 0.38 <0.001 −0.22 −0.54, 0.10 <0.001

Senograph
DS
ADS_54.11

2 982 −0.07 −0.17, 0.30 <0.001 0.12 −0.17, 0.42 <0.001 −0.14 −0.50, 0.23 <0.001

Senograph
DS
ADS_53.40

1 454 0.13 −0.16, 0.43 <0.001 0.36 0.01, 0.71 <0.001 −0.04 −0.44, 0.37 <0.001

Senograph
2000D
ADS_17.4.5

1 316 −0.10 −0.37, 0.17 <0.001 0.17 −0.47, 0.126 <0.001 −0.04 −0.43, 0.35 <0.001

GE Systems 20 11249 −0.03 −0.34, 0.28 <0.001 0.20 −0.14, 0.54 <0.001 −0.18 −0.64, 0.28 <0.001

GE Systems
with
gladularity

20 11249 −0.03 −0.34, 0.28 <0.001 0.03 −0.14, 0.21 <0.001 −0.18 −0.64, 0.28 <0.001

Hologic Selenia
dimensions

21 9504 −0.24 −0.74, 0.27 <0.001 N/A N/A <0.001 −0.07 −0.67, 0.53 <0.001

Fujifilm Amulet 1 906 −0.09 −0.35, 0.18 <0.001 N/A N/A <0.001 0.01 −0.28, 0.30 <0.001

Overall 53 27869 −0.09 −0.52, 0.34 <0.001 N/A N/A <0.001 −0.12 −0.60, 0.37 <0.001
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vendors are using different methods to estimate the organ dose,
although it is important to emphasize here that the calculation
methods employed by different vendors are not clear. Organ
dose displayed by the system could be used as a robust method
to evaluate the dose for a wide range of breast thicknesses and
systems, as well as facilitating larger sample sizes. However, the
use of organ dose needs to be validated against other dose cal-
culation methods before it can be implemented. This study
examined the agreement and correlation between MGDs calcu-
lated using three Monte-Carlo methods and the organ dose dis-
played by the mammography systems.

Philips systems showed a statistically significant bias indicat-
ing the displayed organ dose is overestimating Dance MGD by
an average of 0.03 mGy, while Boone MGD under estimated the
organ dose by a higher bias (Table 3). This is expected as the
Philips (Sectra) systems employ Dance conversion factors for
the organ dose estimation. On the other hand, the scatter plot for
the Philips systems revealed a group of dose points that have a
higher difference between the organ and Dance MGD [Fig. 1(a)].
These belonged to one system and are due to an error in the QA
data collection for that system or an error in the system calibra-
tion. A scatter plot with those dose points removed shows a
higher correlation increasing from R2 ¼ 0.87 to R2 ¼ 0.96
[Fig. 1(b)]. Removing that system from the analysis increased
the bias from 0.03 to 0.047 mGy. Therefore, as the bias is small
in comparison to the clinical dose of 2.0 mGy, and there is a
narrow upper and lower 95% LOA (Table 3), we can conclude
that the calculated and organ doses are in agreement.

GE systems varied in performance depending on the model
and version; in total though, they showed an average bias

overestimated the organ dose by a 0.20 mGy, a few units
had higher or lower bias, one of which overestimated the calcu-
lated dose by an average of 0.36 mGy. Figure 2(a) shows the
correlation between calculated dose (Wu method) and the
organ dose with R2 ¼ 0.85. Due to the higher bias, further inves-
tigation was carried out and it was discovered that GE systems
utilize a proprietary measure of glandularity and they enter this
into the DICOM header at tag 0040,0310 “Comments on radi-
ation dose.” It was also found that the glandularity estimation

Fig. 1 Linear regression scatter plots showing the line of best-fit
between MGD calculated using Dance method and organ dose dis-
played by Philips (Sectra) units for 6210 digital mammograms: (a) full
data and (b) data after removing a problematic unit. (Philips systems
utilize Dance method for the estimation of organ dose).

Fig. 2 Linear regression scatter plots showing the line of best-fit
between (a) MGD calculated using Wu method assuming 50% glan-
dularity and organ dose displayed by GE units and (b) MGD calcu-
lated using Wu method and using the DICOM glandularity
(0040,0310 comments on radiation dose) and organ dose displayed
by GE units for 11,249 digital mammograms. (GE systems utilize Wu
method for the estimation of organ dose).

Fig. 3 Linear regression scatter plot that shows the line of best-fit
between MGD calculated using Boone method and organ dose dis-
played by Hologic units for 9504 digital mammograms. (Hologic sys-
tems utilize Boone method for the estimation of organ dose).
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was set to 50% in some centers and many mammograms had 0%
or 100% estimations, regardless of the breast thickness. Neither
the glandularity estimation method nor its accuracy is described
in the literature. Nonetheless, once the calculations were
adjusted to account for the proprietary glandularity estimation
the bias was substantially reduced (Table 3) and showed a much
better correlation with an R2 ¼ 0.92 [Fig. 2(b)]. Although the
GE organ dose had a higher level of agreement with the Wu
method after the inclusion of the proprietary glandularity esti-
mation, these 0% glandularity estimations in many of the GE
systems mean that these organ doses cannot reflect the calcu-
lated MGD correctly as they do not account for any glandularity.

Hologic system’s organ dose reported a small bias (Table 3)
underestimating the Boone calculated MGD, nonetheless, it
shows a difference of up to 0.67 mGy, which represents the com-
plete absorbed dose for small breast thicknesses. The correlation
between calculated dose (Boone method) and organ dose show
an R2 ¼ 0.8, which although good, is the lowest correlation out
of the four vendors. We can conclude that in our study the
Hologic system organ dose did not accurately reflect our calcu-
lated dose.

Fujifilm constitutes less than 4% of the total sample. Only
one Fujifilm amulet unit was included in this survey, hence
no intrasystem comparison was possible. Other Fujifilm units
were computed radiography (CR) systems that did not record
organ dose. The Fijifilm amulet unit showed average results
underestimating Dance MGD with a small positive bias of
0.09 mGy. Linear regression showed an excellent correlation
with R2 ¼ 0.94 (Fig. 4).

Organ dose from the four systems showed a statistically sig-
nificant bias when compared to the calculated dose. It has been
reported that the statistical significance of the bias in the Bland–
Altman method should not be the only value considered; the
clinical significance of that value and the LOA should be con-
sidered as well. In this study, the bias reported for Philips
(Sectra), Hologic, and Fujifilm are considered clinically insig-
nificant, being much smaller than the clinical dose. Nonetheless,
when considering how wide the LOA are, it can be concluded
that a disagreement between organ and calculated doses was
found. Furthermore, it should be stressed that vendors using dif-
ferent methods of estimating the organ dose make reporting the
dose across systems unreliable, as the dose reported by the three
methods differ by up to 19%. Nonetheless, with vendors using
various algorithms, some of which are not particularly well

defined, there is a need for further work to establish a bench-
mark and allow comparison of doses between systems.

MGD calculation methods are all estimates; they are prone to
systematic errors throughout measurement and calculation.
Earlier methods of measuring the entrance dose using TLDs,
although difficult, time consuming, and having smaller sample
sizes, offered more accurate measurements. The bias reported
here for some systems was 0.36 mGy, which is 18% of the
acceptable dose level of 2.00 mGy reported by the European
commission for a 4.5-mm breast thickness.11 This is still within
the error value that is reported for the dose calculation methods.
However, choosing to use organ dose may risk underestimating
the dose by up to an overall average of 0.09 mGy with a range
from −0.52 to 0.34 mGy. This range of bias could result in a
clinically important discrepancy between calculated and organ
dose of up to 0.52 mGy. Considering that the European protocol
DRL for a 45-mm breast thickness is 2.0 mGy,11 this could have
important implications for reporting doses locally and nation-
ally. Further work might examine actual air kerma using TLDs
on select phantoms, such as the ACR phantom and phantoms
with different thicknesses.

5 Conclusion
Organ dose was found to disagree with calculated dose, with a
bias ranging from −0.24 to 0.36 mGy. However, organ dose is
potentially beneficial for rapid dose audits in centers using
mammography units of the same make. Conclusions drawn
based on the organ dose alone, whether to establish DRLs or
for dose audits, come with a risk of over or underestimating the
calculated dose to the patient by up to 18% for a standard breast
and this error should be considered in any reported results.
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Objective: This work proposes the use of mammographic 
breast density (MBD) to estimate actual glandular dose 
(AGD), and assesses how AGD compares to mean glan-
dular dose (MGD) estimated using Dance et al method.
Methods: A retrospective sample of anonymised mammo-
grams (52,405) was retrieved from a central database. 
Technical parameters and patient characteristics were 
exported from the Digital Imaging and Communication 
in Medicine (DICOM) header using third party software. 
LIBRA (Laboratory for Individualized Breast Radiodensity 
Assessment)  software package  (University of Pennsyl-
vania, Philadelphia, USA) was used to estimate MBDs for 
each mammogram included in the data set. MGD was esti-
mated using Dance et al method, while AGD was calcu-
lated by replacing Dance et al standard glandularities with 
LIBRA estimated MBDs. A linear regression analysis was 
used to assess the association between MGD and AGD, 

and a Bland-Altman analysis was performed to assess 
their mean difference.
Results: The final data set included 31,097 mammograms 
from 7728 females. MGD, AGD, and MBD medians were 
1.53 , 1.62 mGy and 8% respectively. When stratified per 
breast thickness ranges, median MBDs were lower than 
Dance’s standard glandularities. There was a strong posi-
tive correlation (R2 = 0.987, p < 0.0001) between MGD 
and AGD although the Bland-Altman analysis revealed a 
small statistically significant bias of 0.087 mGy between 
MGD and AGD (p < 0.001).
Conclusion: AGD estimated from MBD is highly corre-
lated to MGD from Dance method, albeit the Dance 
method underestimates dose at smaller CBTs.
Advances in knowledge: Our work should provide a 
stepping-stone towards an individualised dose estima-
tion using automated clinical measures of MBD.

Cite this article as:
Suleiman ME, Brennan PC, Ekpo E, Kench P, McEntee MF. Integrating mammographic breast density in glandular dose calculation. Br J 
Radiol 2018; 91: 20180032.
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IntROduCtIOn
Screening mammography is an effective tool for the early 
detection of breast cancer, and has been shown to reduce 
cancer mortality by 25–40%.1–3 Since screening mammog-
raphy was first instigated at a national level in Sweden in 
1977, there has been continuous debate about the extent 
of benefits and the nature of the risk.4 The risks arising 
from screening mammography are two-fold: risk from 
radiologist’s errors such as false positives, false negatives 
and over diagnosis;5 radiation-induced cancer risk arising 
from the high radiosensitivity of rapidly dividing epithelial 
cells in the fibroglandular tissues.6 Therefore, it is increas-
ingly important to appropriately account for the effect of 
radiation when assessing the risk vs benefit of screening 
mammography.5 The relative risk of radiation-induced 
cancer from mammography is quantified by the mean glan-
dular dose (MGD).

MGD is an estimate of the energy deposited per unit mass 
of glandular tissue averaged over all glandular tissue in the 

breast.7 MGD is estimated using conversion factors derived 
from Monte-Carlo simulations.8–10 All estimates use 
assumptions and the available MGD estimation methods 
operate on the assumption that the breast is 50% glan-
dular and 50% fatty (50:50 model)11 or that glandularity 
is proportional to compressed breast thickness.12,13 The 
50:50 model proposed by Hammerstein et al11 was based 
on a phantom with homogeneous distribution of glandular 
tissue and the authors suggested that the 50:50 model can 
be used for comparing mammography doses delivered 
using different techniques and equipment. MGD calcula-
tion models such as Wu et al10,14 and Boone et al8,15,16 are 
based on the 50:50 model. However, it is well known that 
the breast composition is not homogeneous.17 Addition-
ally, it has been shown, in a volumetric breast density study, 
that about 80% of females have breasts with less than 27% 
fibroglandular tissue.18 Thus, the assumptions made in the 
50:50 model are clearly not true for all breasts, and do not 
represent the glandularity of the population. To address 
these limitations, another model was established by Dance 
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et al.12,13 To account for the increased cancer risk in glandular 
tissue, this model incorporates estimates of breast glandularity 
taking into consideration patient age and compressed breast 
thickness (CBT).

Although the incorporation of glandularity and CBT in the 
Dance et al model is logical, this approach to estimation of 
glandularity has some limitations. First, the Dance et al method 
estimates changes in glandularity using CBT and age. However, 
breast composition differs across females within age groups 
and CBTs. Second, breasts with similar CBT can have different 
glandular compositions. Third, females of the same age and 
CBT can have different amount of glandular tissues. Thus, it is 
increasingly relevant to explore alternative models that account 
for a female’s actual breast composition when estimating glan-
dularity. Also, breast density, which is the amount of fibroglan-
dular tissue in the breast, is a determinant of X-ray attenuation 
and risk of cancer.19 The fibroglandular tissue contains high 
concentrations of primitive epithelial cells, the most suscep-
tible to radiation damage, and from which 80% of cancers 
arise.20 As the proportion of dense breast influences suscep-
tibility to cancer, it is important that we should be exploring 
mammographic breast density (MBD) data when estimating 
radiation-induced risk from mammography. This makes indi-
vidualised MBD a promising alternative to the 50:50 and Dance 
models for estimating glandularity and patient-specific dose 
estimates.

MBD is a representation of the fibroglandular tissue of the breast 
as seen by the X-ray attenuation patterns on a mammogram. MBD 
can be assessed qualitatively (visual grading) and quantitatively 
(area-based (2D) or volumetric (3D) methods).21,22 However, 
qualitative visual methods are prone to intra- and inter-reader 
variability,23 suggesting a need to automate MBD measurement 
for dose calculation. The automated use of MBD for dose assess-
ment has been developed24 and a white paper by Highnam et al24 
was the first to report MGD using MBD. This approach has now 
been incorporated into Volpara™ software (Volpara Health Tech-
nologies Limited) to propose Volpara Dose for patient-specific 
MGD estimation from mammography unit firmware.24 Although 
Volpara  Dose is robust and automated, it has a hardware and 
software cost, it requires networked systems and needs to be 
supported by the mammography equipment vendors. Further-
more, Volpara  Dose only works on the “Raw Projection” data. 
These challenges limit its applicability for low-resource facili-
ties and countries, and highlight the need for less costly, acces-
sible and versatile automated alternative. Automated area-based 
methods utilise computer-assisted interactive thresholding tech-
niques to measure the percentage area covered by the dense tissue 
on a radiograph and uses this as a proxy for fibroglandular tissue. 
The Laboratory for Individualized Breast Radiodensity Assess-
ment (LIBRA) software for MBD estimation uses post-processed 
images, can do batch processing, is freely available and is there-
fore a possible low cost and low man-power alternative. LIBRA 
is freely available, fully automated software for the estimation of 
MBD. It estimates MBD on both “raw projection” data and “post 
processed” images, and has been validated for GE and Hologic 
digital mammography systems.25

The current work proposes the use of a female’s automati-
cally generated actual MBD to estimate the actual glandular 
dose (AGD) to the breast. This work explores the use of MBD 
measured by LIBRA to estimate AGD. It also assesses whether 
the AGD estimated using MBD compares to MGD estimates 
from Dance et al method.

MethOdS And MAteRIAlS
The work involved a retrospective sample of screening mammo-
grams. A total of 52,405 mammograms from 12,034 females were 
used. Mammograms were acquired on 63 mammography units 
across 50 Breast Screen centres in New South Wales, Australia 
between September and October 2014. The data were retrieved 
from the Cancer Institute of New South Wales Picture Archiving 
and Communication System, following ethics approval 
(HREC2014/08/552) from the Cancer Institute Human Research 
Ethics Committee.

Patient-related information such as mammographic projections, 
age and breast thickness, exposure parameters, and mammog-
raphy unit information (make, model) were exported from the 
Digital Imaging and Communication in Medicine (DICOM) 
image header to MS Excel using a third party software (YAKAMI 
DICOM Tools v. 1.4.1.0, Kyoto University, Japan).26 Medical 
physics annual reports were also obtained from participating 
centres, as the calculation of MGD requires these data.

MBD was estimated for the data set using LIBRA software.27 
LIBRA uses a thresholding technique to detect the boundaries 
of the breast and the pectoral muscle on the mammogram. An 
“adaptive multi-class fuzzy c-means” algorithm is then applied to 
partition the mammographic breast tissue into clusters of similar 
intensity. These clusters are then aggregated to a dense tissue 
area. The software package then generates quantitative estimates 
of breast area, dense tissue area, and calculates MBD by dividing 
the dense area by the total breast area.27,28

LIBRA has only been validated for GE and Hologic mammog-
raphy units.25 Therefore, mammograms obtained using Philips 
and Fujifilm units (14,065 mammograms) were excluded in 
the current work. Further exclusion criteria related to the 
calculation method were applied on the data. These included 
mammograms reported to have 0% glandularity by LIBRA 
(180 mammograms) which were considered as an indicative of 
measurement error, mammograms with breast implants (1337 
mammograms), mammograms not within 20–110 mm CBT (39 
mammograms), incomplete calculation data (1971 mammo-
grams). The final data set was imported to an excel workbook 
developed in-house which calculated MGD and our proposed 
AGD.

The calculation of MGD in our study followed the methods 
described by Dance et al.9,12,13 This method calculates MGD 
using entrance air kerma and three conversion factors that 
depend on age, CBT, half value layer (HVL), and anode/filter 
combination. A full explanation of the methodology has been 
previously described29 (Figure 1). AGD in our work was calcu-
lated by replacing the original c factor values (6 in Figure 1) with 
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Figure 1. Dance calculation method: input information that needs to be available for the calculation of MGD, the steps taken to 
calculate MGD for a mammogram and the equations utilised for that process. MGD, mean glandular dose.

Figure 2. Median glandularity  vs  breast thickness for 31,097 
mammograms, glandularity estimated using LIBRA, and com-
pared to Dance method typical glandularities for two age 
groups (40–49, 50–64). LIBRA, Laboratory for Individualized 
Breast Radiodensity Assessment.

Figure 3. MGD and AGD variation with different CBT. The 
difference between median AGD and MGD for different 
CBT ranges becomes insignificant at CBTs greater than  
80 mm. AGD, actual glandular dose; CBT, compressed breast 
thickness; MBD, mammographic breast density.

a look-up table of interpolated c values for MBDs ranging from 
1 to 100%.

The data were stratified by age (40–49 and 50–64) and CBT 
(20–110 in 10 mm increments). For each age group, our esti-
mated median MBD was compared to Dance’s glandularity for 
each CBT (Figure 2). The distribution of the data was assessed 
using a D’Agostino & Pearson normality test, and a non-para-
metric Spearman’s correlation was used to assess the relationship 
between median MBD and age.

MGD and AGD medians were calculated per mammogram. The 
median MGD and AGD were compared across different breast 
thicknesses (Figure  3). Bland-Altman analysis was performed 
to show the mean difference between the two dose estimation 

methods. Bland-Altman analysis also provided a measure of 
the bias and 95% limits of agreement (LOA) between MGD and 
AGD.30 A linear regression analysis was performed to assess the 
linear correlation between MGD and AGD. AGDs and MGDs 
were stratified by CBT, and the median differences between AGD 
and MGD as well as their 95% confidence intervals were calcu-
lated for each range of CBTs.

ReSultS
A further 3716 mammograms failed LIBRA analysis, and the 
final data set comprised of 31,097 mammograms (7728 females) 
from 48 Breast screen centres. Table  1 provides a descriptive 
summary of the data set, including the minimum, maximum, 1st 
and 3rd quartiles, median, mean, variance, and standard devia-
tion for age, CBT,  MBD, MGD, and AGD. Both MGD and AGD 
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Table 1. Statistical description of the included data set (31,097 mammograms)

Statistic Age CBT1 MBD MGD AGD
Minimum 40 20 0.01 0.37 0.40

Maximum 89 110 0.99 14.53 13.93

1st quartile 54 50 0.04 1.27 1.37

Median 60 59 0.08 1.53 1.62

Mean 60 59 0.13 1.71 1.80

3rd quartile 66 68 0.17 1.96 2.03

Variance (n-1) 63 175 0.02 0.58 0.55

SD (n-1) 8 13 0.13 0.76 0.74

AGD, actual glandular dose; CBT, compressed breast thickness; MBD, mammographic breast density; MGD, mean glandular dose; SD, standard 
deviation.

Figure 4. Median difference between AGD and MGD at dif-
ferent CBTs and the 95% confidence intervals (shown in 
bars).  AGD, actual glandular dose; CBT, compressed breast 
thickness; MBD, mammographic breast density.

Figure 5. Bland-Altman plot for MGD and AGD showing a Bias 
of 0.087 and 95% LOA of −0.08, 0.26 for 31,097 digital mam-
mography images.  AGD, actual glandular dose; MBD, mam-
mographic breast density.

showed skewed distributions with medians of 1.53 and 1.62 mGy 
respectively. MBD showed a skewed distribution with a median 
and a mean of 8 and 13% respectively.

Findings show that the median MBD decreased at higher 
CBTs but were lower than the Dance method at corresponding 
phantom CBTs for all age groups (Figure 2). There was a direct 
relationship between dose and compressed breast thickness. 
The AGD calculated using MBD followed a similar trend as 
the MGD estimated using Dance Method. However, the Dance 
method MGD underestimated dose at lower CBTs (below 80 
mm) compared to AGD (Figure 3). Further analysis showed that 
the 95% confidence interval of the difference between median 
AGD and MGD for different CBT ranges becomes insignificant 
at CBTs greater than 80 mm (Figure 4).

Bland-Altman analysis revealed a small yet statistically signifi-
cant bias of 0.087 mGy between MGD and AGD (Figure 5), with 
95% confidence intervals and p value of −0.08–0.26 and <0.0001 
respectively. Linear regression analysis demonstrated a strong 
positive correlation (R2 = 0.987, p < 0.001) between MGD and 
AGD.

dISCuSSIOn
Previous studies estimating radiation risk from mammography 
made assumptions that are not necessarily true for all breast 
compositions. Given that the breast is infrequently 50% glan-
dular, and that breasts with the same CBT and age vary in glan-
dularity, the current work argues the importance of integrating 
actual measures of glandularity in dose calculation. The current 
work proposes the use of MBD to quantify individual’s glandu-
larity for the purpose of patient-specific dose estimation during 
mammography. Our work demonstrates that MBD is inversely 
related to CBT, with our median MBDs being lower than the 
glandularity estimated by Dance et al12,13 at corresponding 
CBTs for all age groups. Findings also demonstrated a direct 
association between CBT and AGD as well as MGD. MGD was 
lower than AGD at smaller CBTs, with the difference becoming 
insignificant at higher CBTs (>80 mm). Bland-Altman analysis 
showed a small yet statistically significant bias between MGD 
and AGD.

The median breast glandular tissue content in our data set was 
8%, with a mean of 13%, similar to that previously reported 
(17.4–27%) elsewhere18,31 and for Australian females (8.1%).32 
These values are substantially lower than the 50% glandularity 
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used in the standard breast composition model for mammog-
raphy dose optimisation. These findings suggest that the 50:50 
model overestimates glandularity and that there is in reality the 
same dose going to less glandular tissue. Therefore the mean glan-
dular dose is actually higher than estimated by the 50:50 model. 
This same finding is explained by Dance et al12 in a different way; 
they indicate that “The increase of the c-factor with decreasing 
glandularity is due to the increased percentage depth dose for 
fattier breasts”. In other words, fattier breasts allow more photon 
penetration. Therefore, underestimating the dose absorbed per 
1 gm of fibroglandular tissue, leading to an underestimation of 
radiation risk from mammography. Similarly, in comparison to 
the current work, the Dance et al method, which accounted for 
variation in breast composition using CBT, overestimated glan-
dularity at smaller CBTs for all ages. We found that the glandu-
larity estimated using the Dance method was almost double the 
actual glandularity at smaller CBTs, suggesting an overestima-
tion of glandularity in small breasts. Such overestimation may 
result in an underestimation of dose and risk to patients under-
going mammography procedures, limiting the applicability of 
Dance model for patient-specific dose estimation, particularly 
for small breasts.

Further analysis demonstrated a linear increase in AGD and 
MGD with CBT. MGD was consistently significantly lower (6% 
difference; p < 0.001) than AGD at CBTs <80 mm. However, 
Bland-Altman analysis, revealed a small but significant positive 
bias towards AGD and a narrow LOA. Although the bias was 
statistically significant, it represents less than 5% of the average 
dose to the standard breast described by the European protocol.33 
Nonetheless, when females were stratified into different CBTs, the 
differences in MBD for smaller CBTs resulted in a higher differ-
ence (10%) between MGD and AGD, while larger CBTs (over 
80 mm) demonstrated under a 2% difference, with narrower 
95% confidence intervals (Figure  4). Smaller breast may have 
lesser fibroglandular content than larger ones but demonstrate 
higher percentage glandularity. This is perhaps the reason why 
AGD was higher in smaller breast when individuals’ MBDs were 
accounted for. This finding implies that Dance et al model may 
not be suitable for dose calculation in smaller breasts. The high 
correlation between AGD and MGD reported in the current 
work may be due to the use of a similar methodology for esti-
mating both parameters.

The 2–10% difference in AGD and MGD at different CBTs has 
implications for risk and lifetime effective risk, as MGD contrib-
utes to 98% of effective lifetime risk, while the other body 
parts (irradiated during mammography) such as contralateral 
breast, thyroid and lungs contribute to only 2%.34 Furthermore, 
according to the Linear Non-Threshold (LNT) model, which 
is often used for radiation-induced risk assessment, cancer 
risk from radiation exposure increases linearly with dose. This 
suggests that underestimation of dose using MGD will result 
in an underestimation of risk. Although the LNT model is still 
being debated due to the lack of drop-off effect from death at 
higher doses and the paucity of data at lower doses, it is still used 
to quantify risk. There are contentions about the effects of radia-
tion at low doses. While one theory suggests that the processes by 

which our cells repair damage (hormesis) and destroy unrepair-
able cells (apoptosis) occur at low doses35 another asserts that 
cells are hypersensitive to low level doses.36 Importantly, it has 
been shown that radiation-induced genetic effects vary between 
individuals.37 These individual differences in risk emphasise the 
need to personalise glandularity and dose measurements in order 
to provide patient-specific estimates of radiation-induced risk.

The overestimation of glandularity at lower CBTs and underesti-
mation of dose by Dance et al model highlights the limitations in 
the current mammography dosimetry approaches. The current 
work provides a more objective clinical approach to patient-spe-
cific mammography dose estimate. Although the difference 
between AGD and MGD was small (2–10%), it constitutes a 
significant difference in terms of risk according to the LNT 
model, and should be considered when estimating radiation-in-
duced risk from mammography.

Another factor supporting individualized dose and risk estima-
tion is the fact that risk from radiation and DNA repair differ 
between individuals even at similar dose levels.36 For example, 
females with BRCA1 &2 mutations as well as those with single 
nucleotide polymorphisms (SNPs) are less likely to successfully 
repair and more likely to develop breast cancer.38,39 Unfortu-
nately, because 45–65% of females with BRCA mutations will 
develop breast cancer by the age of 70,40 they are targeted for 
more regular screening. Cancer risk will also vary between 
individuals due to difference glandular content. Therefore, it is 
important to take into consideration these differences when esti-
mating risk from mammography.

Although doses from medical procedures are relatively small, 
the effect of medical exposure to radiation is well established. A 
longitudinal study has reported an overall 24% increase in cancer 
incidence in individuals exposed to low doses compared to 
unexposed individuals.41 Evidence also shows that oncogenecity 
in younger females may be higher at low mammography doses 
compared to higher doses.36 A significant relationship has also 
been established between low doses and cell repair.42 Therefore, 
one cannot definitely say that low doses are beneficial, harmful or 
have no effect, as radiation effects may vary between individuals.

The uncertainty of radiation effects at all doses suggests a conser-
vative risk strategy should be adopted, and that actual measures 
of the radiosensitive fibroglandular tissues be included in dose 
calculation models for individualised dose estimation. Thus, 
AGD may be a better dosimetric parameter, as it accounts for 
the actual glandular content at risk. Importantly, advances in 
technology and automation of MBD measurement should facil-
itate easier estimation of breast glandular tissue content and 
AGD. This will provide actual measures of dose received by each 
patient and the potential risk from screening mammography.

The current work is limited in that only images retrieved from 
two mammography vendors were used. LIBRA is currently being 
tested on mammography units from different vendors, and may 
become more versatile in the future. Future work will explore 
AGD with LIBRA MBD measures from Philips (Sectra), Fuji, 
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passions which urged on the contest, have contributed in no small measure to establish their value, and thus to render these truths
the permanent heritage of our race. Viewed in this light, propaga[on of error, although it may unfavourable or fatal to the temporary interests
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of individual, can never be long injurious to the cause of truth. It may, at a par[cular [me, retard its progress for a while, but it repays the
transitory injury by a benefit as permanent as the dura[on of the truth to which it is opposed!”*
 
Babbage, Bridgewater treatise, 1837, p28 
 
This electronic transmission and any accompanying documents may contain confiden[al informa[on. The
informa[on is intended only for use of the addressee. If you are not the addressee any disclosure, copying,
distribu[on, use or ac[on reliant on or regarding the contents is strictly prohibited.
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