4,837 research outputs found

    Propagation of chaos in neural fields

    Full text link
    We consider the problem of the limit of bio-inspired spatially extended neuronal networks including an infinite number of neuronal types (space locations), with space-dependent propagation delays modeling neural fields. The propagation of chaos property is proved in this setting under mild assumptions on the neuronal dynamics, valid for most models used in neuroscience, in a mesoscopic limit, the neural-field limit, in which we can resolve the quite fine structure of the neuron's activity in space and where averaging effects occur. The mean-field equations obtained are of a new type: they take the form of well-posed infinite-dimensional delayed integro-differential equations with a nonlocal mean-field term and a singular spatio-temporal Brownian motion. We also show how these intricate equations can be used in practice to uncover mathematically the precise mesoscopic dynamics of the neural field in a particular model where the mean-field equations exactly reduce to deterministic nonlinear delayed integro-differential equations. These results have several theoretical implications in neuroscience we review in the discussion.Comment: Updated to correct an erroneous suggestion of extension of the results in Appendix B, and to clarify some measurability questions in the proof of Theorem

    Noise-induced behaviors in neural mean field dynamics

    Full text link
    The collective behavior of cortical neurons is strongly affected by the presence of noise at the level of individual cells. In order to study these phenomena in large-scale assemblies of neurons, we consider networks of firing-rate neurons with linear intrinsic dynamics and nonlinear coupling, belonging to a few types of cell populations and receiving noisy currents. Asymptotic equations as the number of neurons tends to infinity (mean field equations) are rigorously derived based on a probabilistic approach. These equations are implicit on the probability distribution of the solutions which generally makes their direct analysis difficult. However, in our case, the solutions are Gaussian, and their moments satisfy a closed system of nonlinear ordinary differential equations (ODEs), which are much easier to study than the original stochastic network equations, and the statistics of the empirical process uniformly converge towards the solutions of these ODEs. Based on this description, we analytically and numerically study the influence of noise on the collective behaviors, and compare these asymptotic regimes to simulations of the network. We observe that the mean field equations provide an accurate description of the solutions of the network equations for network sizes as small as a few hundreds of neurons. In particular, we observe that the level of noise in the system qualitatively modifies its collective behavior, producing for instance synchronized oscillations of the whole network, desynchronization of oscillating regimes, and stabilization or destabilization of stationary solutions. These results shed a new light on the role of noise in shaping collective dynamics of neurons, and gives us clues for understanding similar phenomena observed in biological networks

    Chimera states: Coexistence of coherence and incoherence in networks of coupled oscillators

    Full text link
    A chimera state is a spatio-temporal pattern in a network of identical coupled oscillators in which synchronous and asynchronous oscillation coexist. This state of broken symmetry, which usually coexists with a stable spatially symmetric state, has intrigued the nonlinear dynamics community since its discovery in the early 2000s. Recent experiments have led to increasing interest in the origin and dynamics of these states. Here we review the history of research on chimera states and highlight major advances in understanding their behaviour.Comment: 26 pages, 3 figure

    Basins of Attraction for Chimera States

    Get PDF
    Chimera states---curious symmetry-broken states in systems of identical coupled oscillators---typically occur only for certain initial conditions. Here we analyze their basins of attraction in a simple system comprised of two populations. Using perturbative analysis and numerical simulation we evaluate asymptotic states and associated destination maps, and demonstrate that basins form a complex twisting structure in phase space. Understanding the basins' precise nature may help in the development of control methods to switch between chimera patterns, with possible technological and neural system applications.Comment: Please see Ancillary files for the 4 supplementary videos including description (PDF

    Synchronization and Noise: A Mechanism for Regularization in Neural Systems

    Full text link
    To learn and reason in the presence of uncertainty, the brain must be capable of imposing some form of regularization. Here we suggest, through theoretical and computational arguments, that the combination of noise with synchronization provides a plausible mechanism for regularization in the nervous system. The functional role of regularization is considered in a general context in which coupled computational systems receive inputs corrupted by correlated noise. Noise on the inputs is shown to impose regularization, and when synchronization upstream induces time-varying correlations across noise variables, the degree of regularization can be calibrated over time. The proposed mechanism is explored first in the context of a simple associative learning problem, and then in the context of a hierarchical sensory coding task. The resulting qualitative behavior coincides with experimental data from visual cortex.Comment: 32 pages, 7 figures. under revie

    Chimera states in pulse coupled neural networks: the influence of dilution and noise

    Get PDF
    We analyse the possible dynamical states emerging for two symmetrically pulse coupled populations of leaky integrate-and-fire neurons. In particular, we observe broken symmetry states in this set-up: namely, breathing chimeras, where one population is fully synchronized and the other is in a state of partial synchronization (PS) as well as generalized chimera states, where both populations are in PS, but with different levels of synchronization. Symmetric macroscopic states are also present, ranging from quasi-periodic motions, to collective chaos, from splay states to population anti-phase partial synchronization. We then investigate the influence disorder, random link removal or noise, on the dynamics of collective solutions in this model. As a result, we observe that broken symmetry chimera-like states, with both populations partially synchronized, persist up to 80 \% of broken links and up to noise amplitudes 8 \% of threshold-reset distance. Furthermore, the introduction of disorder on symmetric chaotic state has a constructive effect, namely to induce the emergence of chimera-like states at intermediate dilution or noise level.Comment: 15 pages, 7 figure, contribution for the Workshop "Nonlinear Dynamics in Computational Neuroscience: from Physics and Biology to ICT" held in Turin (Italy) in September 201
    • …
    corecore