We consider the problem of the limit of bio-inspired spatially extended
neuronal networks including an infinite number of neuronal types (space
locations), with space-dependent propagation delays modeling neural fields. The
propagation of chaos property is proved in this setting under mild assumptions
on the neuronal dynamics, valid for most models used in neuroscience, in a
mesoscopic limit, the neural-field limit, in which we can resolve the quite
fine structure of the neuron's activity in space and where averaging effects
occur. The mean-field equations obtained are of a new type: they take the form
of well-posed infinite-dimensional delayed integro-differential equations with
a nonlocal mean-field term and a singular spatio-temporal Brownian motion. We
also show how these intricate equations can be used in practice to uncover
mathematically the precise mesoscopic dynamics of the neural field in a
particular model where the mean-field equations exactly reduce to deterministic
nonlinear delayed integro-differential equations. These results have several
theoretical implications in neuroscience we review in the discussion.Comment: Updated to correct an erroneous suggestion of extension of the
results in Appendix B, and to clarify some measurability questions in the
proof of Theorem