5,009 research outputs found

    Heavy-traffic limits for waiting times in many-server queues with abandonment

    Full text link
    We establish heavy-traffic stochastic-process limits for waiting times in many-server queues with customer abandonment. If the system is asymptotically critically loaded, as in the quality-and-efficiency-driven (QED) regime, then a bounding argument shows that the abandonment does not affect waiting-time processes. If instead the system is overloaded, as in the efficiency-driven (ED) regime, following Mandelbaum et al. [Proceedings of the Thirty-Seventh Annual Allerton Conference on Communication, Control and Computing (1999) 1095--1104], we treat customer abandonment by studying the limiting behavior of the queueing models with arrivals turned off at some time tt. Then, the waiting time of an infinitely patient customer arriving at time tt is the additional time it takes for the queue to empty. To prove stochastic-process limits for virtual waiting times, we establish a two-parameter version of Puhalskii's invariance principle for first passage times. That, in turn, involves proving that two-parameter versions of the composition and inverse mappings appropriately preserve convergence.Comment: Published in at http://dx.doi.org/10.1214/09-AAP606 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    The morphing of fluid queues into Markov-modulated Brownian motion

    Get PDF
    Ramaswami showed recently that standard Brownian motion arises as the limit of a family of Markov-modulated linear fluid processes. We pursue this analysis with a fluid approximation for Markov-modulated Brownian motion. Furthermore, we prove that the stationary distribution of a Markov-modulated Brownian motion reflected at zero is the limit from the well-analyzed stationary distribution of approximating linear fluid processes. Key matrices in the limiting stationary distribution are shown to be solutions of a new quadratic equation, and we describe how this equation can be efficiently solved. Our results open the way to the analysis of more complex Markov-modulated processes.Comment: 20 page; the material on p7 (version 1) has been removed, and pp.8-9 replaced by Theorem 2.7 and its short proo

    Random Fluid Limit of an Overloaded Polling Model

    Get PDF
    In the present paper, we study the evolution of an overloaded cyclic polling model that starts empty. Exploiting a connection with multitype branching processes, we derive fluid asymptotics for the joint queue length process. Under passage to the fluid dynamics, the server switches between the queues infinitely many times in any finite time interval causing frequent oscillatory behavior of the fluid limit in the neighborhood of zero. Moreover, the fluid limit is random. Additionally, we suggest a method that establishes finiteness of moments of the busy period in an M/G/1 queue.Comment: 36 pages, 2 picture

    Simple models of network access, with applications to the design of joint rate and admission control

    Get PDF
    At the access to networks, in contrast to the core, distances and feedback delays, as well as link capacities are small, which has network engineering implications that are investigated in this paper. We consider a single point in the access network which multiplexes several bursty users. The users adapt their sending rates based on feedback from the access multiplexer. Important parameters are the user's peak transmission rate p, which is the access line speed, the user's guaranteed minimum rate r, and the bound ε on the fraction of lost data. Two feedback schemes are proposed. In both schemes the users are allowed to send at rate p if the system is relatively lightly loaded, at rate r during periods of congestion, and at a rate between r and p, in an intermediate region. For both feedback schemes we present an exact analysis, under the assumption that the users' job sizes and think times have exponential distributions. We use our techniques to design the schemes jointly with admission control, i.e., the selection of the number of admissible users, to maximize throughput for given p, r, and ε. Next we consider the case in which the number of users is large. Under a specific scaling, we derive explicit large deviations asymptotics for both models. We discuss the extension to general distributions of user data and think times

    Approximations for time-dependent distributions in Markovian fluid models

    Full text link
    In this paper we study the distribution of the level at time θ\theta of Markovian fluid queues and Markovian continuous time random walks, the maximum (and minimum) level over [0,θ][0,\theta], and their joint distributions. We approximate θ\theta by a random variable TT with Erlang distribution and we use an alternative way, with respect to the usual Laplace transform approach, to compute the distributions. We present probabilistic interpretation of the equations and provide a numerical illustration

    Performance Modelling and Optimisation of Multi-hop Networks

    Get PDF
    A major challenge in the design of large-scale networks is to predict and optimise the total time and energy consumption required to deliver a packet from a source node to a destination node. Examples of such complex networks include wireless ad hoc and sensor networks which need to deal with the effects of node mobility, routing inaccuracies, higher packet loss rates, limited or time-varying effective bandwidth, energy constraints, and the computational limitations of the nodes. They also include more reliable communication environments, such as wired networks, that are susceptible to random failures, security threats and malicious behaviours which compromise their quality of service (QoS) guarantees. In such networks, packets traverse a number of hops that cannot be determined in advance and encounter non-homogeneous network conditions that have been largely ignored in the literature. This thesis examines analytical properties of packet travel in large networks and investigates the implications of some packet coding techniques on both QoS and resource utilisation. Specifically, we use a mixed jump and diffusion model to represent packet traversal through large networks. The model accounts for network non-homogeneity regarding routing and the loss rate that a packet experiences as it passes successive segments of a source to destination route. A mixed analytical-numerical method is developed to compute the average packet travel time and the energy it consumes. The model is able to capture the effects of increased loss rate in areas remote from the source and destination, variable rate of advancement towards destination over the route, as well as of defending against malicious packets within a certain distance from the destination. We then consider sending multiple coded packets that follow independent paths to the destination node so as to mitigate the effects of losses and routing inaccuracies. We study a homogeneous medium and obtain the time-dependent properties of the packet’s travel process, allowing us to compare the merits and limitations of coding, both in terms of delivery times and energy efficiency. Finally, we propose models that can assist in the analysis and optimisation of the performance of inter-flow network coding (NC). We analyse two queueing models for a router that carries out NC, in addition to its standard packet routing function. The approach is extended to the study of multiple hops, which leads to an optimisation problem that characterises the optimal time that packets should be held back in a router, waiting for coding opportunities to arise, so that the total packet end-to-end delay is minimised

    Markov-modulated Brownian motion with two reflecting barriers

    Full text link
    We consider a Markov-modulated Brownian motion reflected to stay in a strip [0,B]. The stationary distribution of this process is known to have a simple form under some assumptions. We provide a short probabilistic argument leading to this result and explaining its simplicity. Moreover, this argument allows for generalizations including the distribution of the reflected process at an independent exponentially distributed epoch. Our second contribution concerns transient behavior of the reflected system. We identify the joint law of the processes t,X(t),J(t) at inverse local times.Comment: 13 pages, 1 figur
    corecore