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Abstract: Ramaswami showed recently that standard Brownian motion
arises as the limit of a family of Markov-modulated linear fluid processes.
We pursue this analysis with a fluid approximation for Markov-modulated
Brownian motion. We follow a Markov-renewal approach and we prove
that the stationary distribution of a Markov-modulated Brownian motion
reflected at zero is the limit from the well-analyzed stationary distribution
of approximating linear fluid processes. Thus, we provide a new approach
for obtaining the stationary distribution of a reflected MMBM without
time-reversal or solving partial differential equations. Our results open the
way to the analysis of more complex Markov-modulated processes.

Key matrices in the limiting stationary distribution are shown to be
solutions of a matrix-quadratic equation, and we describe how this equation
can be efficiently solved.
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1. Introduction

Our purpose is to construct and analyse a family of fluid queues converging to
Markov-modulated Brownian motion (MMBM) with the intention of adapting,
to the analysis of MMBM, tools and methods which have been developed in the
context of fluid queues.

Fluid queues are two-dimensional processes {X(t), ϕ(t) : t ≥ 0}, where {ϕ(t) :
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t ≥ 0} is a continous-time Markov chain on a finite state space S,

X(t) = X(0) +

∫ t

0

cϕ(t) dt,

and ci for i ∈ M are arbitrary real numbers. These are also known as Markov-
modulated linear fluid processes, with X referred to as the fluid level and ϕ as
the phase: during intervals of time where the phase ϕ remains in some state
i ∈ M, the fluid level varies linearly at the rate ci. The associated process
reflected at zero is denoted by {X̂(t), ϕ(t) : t ≥ 0}, where

X̂(t) = X(t)− inf
0≤v≤t

X(v),

assuming that X̂(0) = 0. Also referred to as first-order fluid processes, these
stochastic models are useful when the relevant rates of change can be well-
described by their first moments.

Markov-modulated Brownian motion (MMBM), or the family of second-order
fluid processes, takes into account first and second moments of the rates of
change. In particular, the fluid level Y (t) of a Markov-modulated Brownian
motion {Y (t), κ(t) : t ≥ 0} is a Brownian motion with drift µi and variance σ2

i

during time intervals where κ(t) = i; one sometimes writes that

Y (t) = Y (0) +

∫ t

0

cκ(t) dt+

∫ t

0

σκ(t) dW (t)

where {W (t)} is a standard Brownian motion.
Three papers appeared in close succession on the stationary distribution of

MMBM reflected at zero: Rogers [25], Asmussen [4], and Karandikar and Kulka-
rni [17]. The focus in the third paper is on solving partial differential equations,
and it is not of further concern to us in the present paper. In [4, 25], on the
other hand, the authors obtain the stationary distribution in a form which is
suitable for calculations with linear algebraic procedures. These results crucially
depend on the technique of reversing time, a method already used in Loynes [20]
whereby the stationary distribution of the process is obtained from the distri-
bution of the maximum of a random walk with negative drift. More recent work
for obtaining the stationary distribution of Markov-modulated Lévy processes
with reflecting boundaries, as in Asmussen and Kella [5], Ivanovs [16], D’Auria
et al. [11], and D’Auria and Kella [12], also uses the reverse-time approach.

For fluid processes without a Brownian component, another line of investi-
gation was open in Ramaswami [23], based on renewal-type arguments similar
to the ones used in the analysis of quasi-birth-and-death processes (Neuts [21,
Chapter 3], Latouche and Ramaswami [19, Chapter 6]). This eventually led, in
addition to interesting algorithmic procedures, to theoretical developments for
fluid processes in finite time, and for systems with more complex interactions
between phase and level. There, the flow of time is not reversed and this creates
a significant difference in the methods of analysis.
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Our intention is to establish a link between the results for fluid queues and
those for MMBM. In Section 2, we extend the argument from Ramaswami [24]
and define a parameterised family of linear fluid processes that converge weakly,
as the parameter tends to infinity, to a Markov-modulated Brownian motion.
Ahn and Ramaswami [1] are independently using matrix-analytic methods to an-
alyze Markov-modulated Brownian motions, with different approaches to ours.
We determine in Sections 3 the limiting structure of key matrices and quadratic
matrix equations, and we establish the connection between the stationary distri-
bution so obtained, and the one which follows from the time-reversed approach.
We present in Section 4 a computational procedure for solving the quadratic
equation efficiently.

2. Markov-modulated Brownian motion

We show here that a family of linear fluid processes converges weakly to a
Markov-modulated Brownian motion {Y (t), κ(t) : t ≥ 0}, where the phase pro-
cess κ is a Markov chain with state space M = {1, . . . ,m}, and Y is a Brownian
motion with drift µi and variance σ2

i whenever κ(t) = i ∈ M. We denote by D
the drift matrix diag(µ1, . . . , µm), by V the variance matrix diag(σ2

1 , . . . , σ
2
m),

and by Q the generator of κ, and we assume that Q is irreducible.

Assumption 2.1. At time 0, the level Y (0) is equal to 0, and the initial phase
κ(0) has the stationary distribution α of Q (αQ = 0 and α1 = 1).

Formally, for t ≥ 0 the process Y (t) can be defined recursively as

Y (t) = Y (T ) +
∑

i∈M

1{κ(T )=i}{Yi(t)− Yi(T )}, (1)

where Y (0) = 0, the random variable T is the last jump epoch of κ before t
(T = 0 if there has yet to be a jump), the process Yi is a Brownian motion with
mean µi and variance σ2

i , and 1{·} denotes the indicator function. The processes
Yi for al i ∈ M and ϕ are assumed to be mutually independent.

We construct the family of fluid processes {Lλ(t), βλ(t), ϕλ(t) : t ≥ 0} as
follows: the phase process is a two-dimensional Markov chain (βλ(t), ϕλ(t)) with
state space S = {(k, i) : k ∈ {1, 2} and i ∈ M} and generator

Tλ =

[
Q− λI λI
λI Q− λI

]
,

where the entries of Tλ follow the lexicographic ordering of {1, 2} × M, and
I denotes an appropriately-sized identity matrix. Whenever ambiguity might
arise, we write In to denote the n×n identity matrix. The fluid rate matrix Cλ

is given by

Cλ =

[
D +

√
λΘ

D −
√
λΘ

]
, where Θ =

√
V .
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Assumption 2.2. At time 0, the level Lλ(0) is equal to 0, and the initial phases
βλ(0) and ϕλ(0) have their respective stationary distributions γ = (1/2, 1/2) and
α, their joint distribution is p = γ ⊗α.

Intuitively speaking, we duplicate the state space M in the Markov-modulated
Brownian motion {Y (t), κ(t)} and the auxiliary process βλ(t) keeps track of
which copy is in use. Note that for λ sufficiently large, the phases in the copy
with βλ(t) = 1 have all positive rates while the phases in the other copy have
all negative rates. With this construction, we show that the conditional moment
generating function of {Lλ(t), ϕλ(t)} converges to that of {Y (t), κ(t)}.
Remark 2.3. Based on the recursive definition (1) of Y , an alternative inter-
pretation for our fluid-based approximation is that for each phase i ∈ M we
approximate the process Yi by a two-phase fluid process {Li

λ(t), β
i
λ(t)} the phase

βi
λ is a Markov chain with state space Si = {1, 2} and generator

T i
λ =

[
−λ λ
λ −λ

]
,

and the fluid rate matrix Ci
λ is given by

Ci
λ =

[
µi +

√
λσi

µi −
√
λσi

]
,

the approximating processes being independent.

Denote by ∆Y (s) the m × m Laplace matrix exponent of {Y (t), κ(t)}, by
∆̃λ(s) the 2m × 2m Laplace matrix exponent of {Lλ(t), βλ(t), ϕλ(t)}, and by
∆λ(s) the m×m Laplace matrix exponent of {Lλ(t), ϕλ(t)}. These matrices are
such that

[e∆Y (s)t]ij = E[esY (t)
1{κ(t)=j}|Y (0) = 0, κ(0) = i],

[e∆̃λ(s)t](k,i)(k′,j) = E[esLλ(t)1{βλ(t)=k′,ϕλ(t)=j}|Lλ(0) = 0, βλ(0) = k, ϕλ(0) = i],

and

[e∆λ(s)t]ij = E[esLλ(t)1{ϕλ(t)=j}|Lλ(0) = 0, ϕλ(0) = i]. (2)

By Asmussen and Kella [5], the Laplace matrix exponent of a Markov-modulated
Lévy process {Z(t), ξ(t)} with jumps is given by

∆Z(s) = diag(φ1(s), . . . , φp(s)) +Q ◦R(s),

where φi(s) is the Laplace exponent of an unmodulated Lévy process with pa-
rameters defined for phase i ∈ {1, . . . , p}, Q is the phase-transition matrix of
ξ(t), R is the matrix with components [R(s)]ij = E[esWij ], which are the Laplace
transforms of the jumps Wij for Z(t) when ξ(t) moves from i to j, and ◦ indicates
the Hadamard product.
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As the Laplace exponent of an unmodulated Brownian motion with drift µ
and variance σ2 is given by µs+ σ2s2/2, one can verify that

∆Y (s) = sD + (s2/2)V +Q,

∆̃λ(s) = sCλ + Tλ

= I ⊗M + s
√
λJ ⊗Θ+ λG⊗ I,

where M = sD +Q, and

e∆λ(s)t = (γ ⊗ I)e∆̃λ(s)t(1⊗ I), (3)

where 1 is an appropriately-sized column vector of ones.
The next lemma gives a technical property of the matrix exponential, it is

used in the proof of Theorem 2.5.

Lemma 2.4. Let S be the block-partitioned matrix

S =

[
S11 S12

S21 S22

]

where S11 and S22 are matrices of order m1 and m2, respectively. Denote by
H(t) the north-west quadrant of order m1 of eSt:

H(t) =
[
Im1×m1

0
]
eSt

[
Im1×m1

0

]
.

The matrix H(t) is the solution of

H(t) = eS11t +

∫ t

0

∫ t

v

eS11(t−u)S12e
S22(u−v)S21H(v) du dv. (4)

Proof. We decompose S as the sum S = SA + SE , with

SA =

[
S11 S12

0 S22

]
and SE =

[
0 0
S21 0

]
=

[
0
I

]
S21

[
I 0

]
.

By Higham [15, Equations (10:13) and (10:40)], we obtain

eSt = eSAt +

∫ t

0

eSA(t−v)SEe
S(v) dv.

and

eSAt =

[
eS11t

∫ t

0 e
S11(t−u)S12e

S22u du
0 eS22t

]

Thus,

H(t) =
[
I 0

]
eSAt

[
I
0

]
+

∫ t

0

[
I 0

]
eSA(t−v)SEe

S(v)

[
I
0

]
dv

= eS11t +

∫ t

0

[
I 0

]
eSA(t−v)

[
0
I

]
S21

[
I 0

]
eS(v)

[
I
0

]
dv

= eS11t +

∫ t

0

∫ t−v

0

eS11(t−v−u)S12e
S22uS21H(v) du dv
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which proves (4).

Theorem 2.5. The conditional moment generating function of {Lλ(t), ϕλ(t)}
converges to that of {Y (t), κ(t)}, that is,

lim
λ→∞

(γ ⊗ I)e∆̃λ(s)t(1⊗ I) = e∆Y (s)t. (5)

Proof. We proceed in three steps. First, we observe that

∆̃k
λ(s)(1⊗ I) = 1⊗Ak + e⊗Bk, for k ≥ 0, (6)

where e = (1,−1)T and
[
Ak

Bk

]
= Υk

[
I
0

]
, (7)

with

Υ =

[
M s

√
λΘ

s
√
λΘ M − 2λI

]
.

The proof of (6) is by induction: that equation trivially holds for k = 0, with
A0 = I and B0 = 0 and, if it also holds for a given value of k, then we easily
verify that ∆̃k+1

λ (s)(1⊗ I) = 1⊗Ak+1 + e⊗Bk+1 with

Ak+1 = MAk + s
√
λΘBk, Bk+1 = s

√
λΘAk + (M − 2λI)Bk,

or
[
Ak+1

Bk+1

]
=

[
M s

√
λΘ

s
√
λΘ M − 2λI

] [
Ak

Bk

]
.

Equation (7) readily follows.
To simplify the notation, we define Hλ(t) = e∆λ(s)t for the remainder of the

proof. By (3), we have

Hλ(t) =
1

2
(1T ⊗ I)

∞∑

k=0

tk

k!
∆̃k

λ(s)(1⊗ I)

=
∑

k≥0

tk

k!
Ak from (6)

=
[
I 0

]
expΥt

[
I
0

]
.

By Lemma 2.4, Hλ(t) is a solution of

Hλ(t) = eMt + s2λ

∫ t

0

{∫ t

v

eM(t−u)Θe(M−2λI)(u−v) du

}
ΘHλ(v) dv. (8)
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Integrating by parts the inner integral, we find

λ

∫ t

v

eM(t−u)Θe(M−2λI)(u−v) du

=
[
λeM(t−u)Θe(M−2λI)(u−v)(M − 2λI)−1

]t
v

+ λ

∫ t

v

MeM(t−u)Θe(M−2λI)(u−v)(M − 2λI)−1 du

= Θe(M−2λI)(t−v)(1/λM − 2I)−1 − eM(t−v)Θ(1/λM − 2I)−1

+

∫ t

v

MeM(t−u)Θe(M−2λI)(u−v)(1/λM − 2I)−1 du,

which converges to 1/2eM(t−v)Θ as λ → ∞. From (8), we conclude that

H∞(t) = eMt + (s2/2)

∫ t

0

eM(t−v)VH∞(v) dv,

and therefore

d

dt
H∞(t) = (M + (s2/2)V )H∞(t) = ∆Y (s)H∞(t).

This completes the proof.

The Laplace matrix exponent uniquely characterizes the finite-dimensional
distributions of the process and therefore Theorem 2.5 implies the following
result.

Corollary 2.6. The finite-dimensional distributions of {Lλ(t), ϕλ(t)} converge
to the finite-dimensional distributions of the Markov-modulated Brownian mo-
tion {Y (t), κ(t)}.
Theorem 2.7. The family {Lλ(t), ϕλ(t) : t ≥ 0} is tight.

Proof. In this proof, we use alternative interpretation of our fluid-based approx-
imation as outlined in Remark 2.3.

The proof of [24, Theorem 5] shows that for each i ∈ M the family of marginal
processes {Li

λ} is tight on any compact interval of [0,∞). By [26, Corollary 7],
we can extend this result to show that the family of marginal processes {Li

λ} is
tight on [0,∞).

As the family of {Li
λ} converges weakly to the Brownian motion {Y i} with

µi and σi, so do the processes {sups<t |Li
λ(t)|} to the corresponding supremum

process {sups<t |Y i(t)|}, by the continuous mapping theorem. Thus, the family
{sups<t |Y i(t)|} is tight on [0,∞).

Next, we define L̃λ(t) for t ≥ 0 as

L̃λ(t) =

m∑

i=1

sup
s≤t

|Li
λ(t)|. (9)
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As Lλ is stochastically dominated by L̃λ, the tightness property of the family
of {Lλ} follows from the tightness property of the family {sup

s<t
Li
λ(t)} for all

i ∈ S.

The next theorem follows from Corollary 2.6 and Theorem 2.7.

Theorem 2.8. The processes {Lλ(t), ϕλ(t) : t ≥ 0} converge weakly to the
Markov-modulated Brownian motion {Y (t), κ(t) : t ≥ 0}.

3. Stationary distribution

We consider again the Markov-modulated Brownian motion {Y (t), κ(t) : t ≥ 0}
described in Section 2, but with a reflection at level zero. The reflected process
is denoted as {Ŷ (t), κ(t) : t ≥ 0}, with

Ŷ (t) = Y (t)− inf
0≤v≤t

Y (v).

Furthermore, we define the reflected fluid process {L̂λ(t), βλ(t), ϕλ(t) : t ≥ 0},
where

L̂λ(t) = Lλ(t)− inf
0≤v≤t

Lλ(v).

For notational convenience, we define ε = 1/
√
λ. With this, the reflected

fluid processes is written as {L̂ε(t), βε(t), ϕε(t) : t ≥ 0} and our purpose is to
show that the stationary distribution of {Ŷ (t), κ(t)} is the limit, as ε → 0,
of the stationary distribution of the reflected fluid process {L̂ε(t), ϕε(t)}. We
emphasize that the processes {L̂λ(t), ϕλ(t)} and {L̂ε(t), ϕε(t)} are the same.
The change in subscripts only reflects the notational change in our perturbation
parameter.

Assumption 3.1. The mean drift αD1 is negative, so that all reflected pro-
cesses are positive recurrent.

Assumption 3.2. The variance σ2
i is positive for all i ∈ M. This assumption

ensures the existence of Θ−1, which we need later on.

The following result is a direct corollary of Theorem 2.8, by the Skorokhod
mapping theorem.

Corollary 3.3. The processes {L̂ε(t), ϕε(t) : t ≥ 0} weakly converge as ε → 0

to the reflected Markov-modulated Brownian motion {Ŷ (t), κ(t) : t ≥ 0}.

We denote the stationary distribution vector of {L̂ε(t), βε(t), ϕε(t)} by F ε(x)
and the associated stationary density vector by πε(x), with components

[Fε(x)]ki = lim
t→∞

P[L̂ε(t) ≤ x, βε(t) = k, ϕε(t) = i],
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and [πε(x)]ki = d/dx[Fε(x)]ki, for k ∈ {1, 2} and i ∈ M, and we partition the
generator and the fluid rate matrices as

Tε =

[
T++
ε T+−

ε

T−+
ε T−−

ε

]
and Cε =

[
C+

ε 0
0 C−

ε

]
,

where

T++
ε = T−−

ε = Q − (1/ε)2I, C+
ε = D + (1/ε)Θ,

T+−
ε = T−+

ε = (1/ε)2I, C−
ε = D − (1/ε)Θ.

We assume that ε is sufficiently small that the diagonal elements of C+
ε are all

positive, and those of C−
ε are all negative, and we write |C−

ε | for the matrix of
absolute values of the elements of C−

ε .
Let ξ+ε (x) = inf{t < ∞ : Lε(t) > x} and ξ−ε (x) = inf{t < ∞ : Lε(t) < x} be

the first passage times to the level x, respectively from below and from above,
of the unbounded process Lε. A key component of the stationary distribution
of {L̂ε(t), βε(t), ϕε(t)} is the matrix Ψε of first passage probability from above,
that is,

(Ψε)ij = P[ξ−ε (x) < ∞, βε(ξ
−
ε (x)) = 2, ϕε(ξ

+
ε (x)) = j

|Lε(0) = x, βε(0) = 1, ϕε(0) = i]

for i and j in M, and any level x. Similarly, Ψ∗
ε is the matrix of first passage

probabilities from below, from (x, 2, i) to (x, 1, j), for i and j in M.
The stationary distribution is given in the literature under various slightly

different forms; here, we use the one from Govorun et al. [14, Theorem 2.1]:

F ε(0) =
[
0 ζε

]
, (10)

πε(x) = ζεT
−+
ε eKεx

[
(C+

ε )−1 Ψε|C−
ε |−1

]
for x > 0, (11)

where
Kε = (C+

ε )−1T++
ε +Ψε|C−

ε |−1T−+
ε , (12)

and ζε is the unique solution of

ζε(T
−−
ε + T−+

ε Ψε) = 0, (13)

ζε1+ ζεT
−+
ε (−Kε)

−1{(C+
ε )−1

1+Ψε|C−
ε |−1

1} = 1. (14)

Probabilistically, ζε is up to a multiplicative constant the stationary distribution
of the process censored at level 0, and eKεx is the matrix of expected number
of crossings of level x in the various phases (1, i), starting from level 0, before
the first return to level 0.

In view of (11), we need to analyze Ψε, Kε and ζε as ε → 0, and it is obvious
from (12) and (13, 14) that we should focus on the matrix Ψε first. The next
lemma is the key to our analysis. One might expect (15, 16) to have a simple
proof but the one we have is lengthy and tedious. We place it in Appendix to
preserve the flow of the paper. Lemma 3.6 and Theorem 3.7 easily follow.
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Lemma 3.4. For ε ≥ 0,

Ψε = I + εΨ1 +O(ε2), (15)

Ψ∗
ε = I + εΨ∗

1 +O(ε2), (16)

where Θ−1Ψ1 and −Θ−1Ψ∗
1 are both solutions to

X2 + 2V −1DX + 2V −1Q = 0, (17)

and are irreducible. Furthermore, the roots θ1, θ2, . . . , θ2m of the polynomial

γ(z) = det(z2I + 2zV −1D + 2V −1Q)

associated to (17), numbered in increasing order of their real parts, satisfy the
inequalities

Re(θ1) ≤ · · · ≤ Re(θm−1) < θm = 0 < Re(θm+1) ≤ · · · ≤ Re(θ2m). (18)

Finally, Θ−1Ψ1 has one eigenvalue equal to zero and m − 1 eigenvalues with
strictly negative real parts, and it is the unique such solution; −Θ−1Ψ∗

1 has m
eigenvalues with strictly positive real parts, and is the unique such solution.

Remark 3.5. Let τ±x = inf{t < ∞ : ±Y (t) > x} be the first passage times
to the corresponding levels x and −x of the unbounded process Y (t). Under
Assumption 3.2 that σi > 0 for all i ∈ M, it is easy to confirm that Θ−1Ψ1 and
Θ−1Ψ∗

1 are the same as, respectively, the generators Λ− and Λ+ of the time-
changed processes κ(τ−x ) and κ(τ+x ) in Ivanovs [16], and Θ−1Ψ∗

1 is the same as
the matrix U(γ) for γ = 0 in Breuer [10].

By Lemma 3.4, the matrices Ψ1 and Ψ∗
1 are uniquely identified through (17).

We now turn to the matrix Kε, and, to complete the picture, to the matrix K∗
ε

defined as
K∗

ε = Ψ∗
ε(C

+
λ )−1T+−

λ + |C−1
λ |−1T−−

λ . (19)

Lemma 3.6. For ε ≥ 0,

Kε = K0 +O(ε), (20)

K∗
ε = K∗

0 +O(ε), (21)

where K0 = Ψ1Θ
−1 + 2V −1D and K∗

0 = Ψ∗
1Θ

−1 − 2V −1D. The matrices −K0

and K∗
0 are solutions of the equation

X2 + 2XV −1D + 2Θ−1QΘ−1 = 0, (22)

and are irreducible. Furthermore, K0 has m eigenvalues with strictly negative
real parts, and it is the unique such solution; K∗

0 has one eigenvalue equal to
zero and m − 1 eigenvalues with strictly negative real parts, and is the unique
such solution.
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Proof. We write (12) as

εKε = −(Θ + εD)−1(I − ε2Q) + Ψε(Θ− εD)−1

= −(Θ−1 − εV −1D +O(ε2))(I − ε2Q)

+ (I + εΨ1 +O(ε2))(Θ−1 + εV −1D +O(ε2))

by (40), (41) and (15),

= ε(2V −1D +Ψ1Θ
−1) +O(ε2),

which proves (20); equation (21) follows in a similar manner. It is easy to verify
that K0 and −K∗

0 both satisfy (22), of which the associated polynomial is

Ξ(z) = z2I + 2zV −1D + 2Θ−1QΘ−1

= Θ−1Γ(z)Θ−1 with Γ(z) defined in Proposition A.4

= (zI +K0)Θ(zI −Θ−1Ψ1)Θ
−1

by (52), after some simple manipulations. This, together with Lemma 3.4, shows
that the eigenvalues of −K0 are the roots θm+1, . . . , θ2m of γ(z) with strictly
positive real parts. Finally, using (53) we write

Ξ(z) = (zI −K∗
0 )Θ(zI +Θ−1Ψ∗

1)Θ
−1,

and conclude that the eigenvalues of K∗
0 are the roots θ1 to θm. Finally, as Ψ1

and Ψ∗
1 are irreducible, and Θ, V , and D are diagonal matrices, we conclude

that K0 and K∗
0 are irreducible, and this completes the proof.

The next theorem states that the limit, as λ → ∞, of the stationary distribu-
tions of the approximating fluid processes is indeed the stationary distribution of
the limiting process {Y (t), κ(t)}. We prove this result by showing that the lim-
iting distribution (23) coincides with the stationary distribution of {Y (t), κ(t)}
as obtained by Asmussen [4, Theorem 2.1 and Corollary 4.1].

Theorem 3.7. The limiting distribution of {L̂λ(t), ϕ̂λ(t)} converges, as λ goes
to infinity, to the stationary distribution of {Y (t), κ(t)}, and is given by

lim
ε→0

πε(x)(1⊗ I) = 2ζ1e
K0xΘ−1, (23)

lim
ε→0

F ε(0)(1⊗ I) = 0, (24)

where

ζ1Ψ1 = 0, (25)

2ζ1(−K0)
−1Θ−1

1 = 1. (26)
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Proof. The solution of (13) is of the form ζε = ζ0+εζ1+o(ε) ([18, Theorem 5.4])
and (14) becomes

{ζ0 + εζ1 + o(ε)}1
+ {ζ0 + εζ1 + o(ε)}(1/ε)(−Kε)

−1{(εD +Θ)−1 +Ψε(Θ− εD)−1}1 = 1. (27)

We equate the coefficients of 1/ε on both sides of (27), using (15, 20) and we
find that

−2ζ0K
−1
0 Θ−1

1 = 0.

Equation (10) implies that ζε ≥ 0 and, by continuity, ζ0 ≥ 0. Furthermore, Θ−1

is a diagonal matrix with strictly positive diagonal. Finally, K0 is irreducible
and has eigenvalues with strictly negative real part by Lemma 3.6, so that∫∞

0 eK0u du converges to −K−1
0 and is strictly positive. This implies that ζ0 = 0,

which proves (24). Using ζ0 = 0, and equating coefficients of ε on both sides of
(13) gives (25), while equating the coefficients of ε0 on both sides of (27) leads
to (26).

Gathering everything together, we obtain from (11)

πε(x) = (1/ε){εζ1 + o(ε)}eKεx
[
(εD +Θ)−1 Ψε(Θ− εD)−1

]
, (28)

from which (23) follows. Equation (24) is a direct consequence of (10).
To verify that the limiting distribution in Theorem 3.7 is the stationary

density vector g(x) of the Markov-modulated Brownian motion, we use As-
mussen [4]. By [4, Theorem 2.1 and Corollary 4.1],

g(x) = [eΛx(−Λ1)]T∆α, (29)

where α is the stationary distribution vector of Q, ∆α = diag(α), and Λ is a
defective generator matrix satisfying

(1/2)V Λ2 −DΛ +∆1/αQ
T∆α = 0. (30)

Define Z = ∆1/αΛ
T∆α and rewrite (29) as

g(x) = −1
T∆αZ∆1/αe

∆αZ∆1/αx∆α = −αZeZx. (31)

By (30), we find that
(1/2)Z2V − ZD +Q = 0

and that Θ−1ZΘ is a solution of (22). It is similar to Z and so to ΛT, therefore,
the eigenvalues of Θ−1ZΘ all have strictly negative real parts and we have

K0 = Θ−1ZΘ. (32)

Substituting (32) into (23) gives limε→0 πε(1 ⊗ I) = 2ζ1Θ
−1eZx. Finally, it is

straightforward to verify that ζ1 = −α(Θ−1D + (1/2)ΘΨ1Θ
−1), and conse-

quently

lim
ε→0

πε(1⊗ I) = g(x). (33)
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Remark 3.8. An alternative way to show that the stationary distribution
of the approximating fluid process {L̂λ(t), ϕ̂λ(t)} converges, as λ → ∞, to
the stationary distribution of the limiting Markov-modulated Brownian mo-
tion {Y (t), κ(t)} is via the maximum representation of the relevant processes.
Asmussen [4] derives the stationary distribution, both for fluid queues and for
the MMBM in this manner, linking these to the distribution of the maximum
of the time-reversed process. Following the arguments in Enikeeva et al. [13]
and in Stenflo [22], one might show that there is continuity of the maximum
distributions of the backward processes, as λ → ∞, and consequently obtain
the continuity of stationary distributions.

This would lead to a time reversal-based proof of convergence. As stated in
the introduction, we aim at following the forward-time approach and so obtain
a different representation of the stationary distribution. In addition, we obtain
limiting properties for key matrices, and these results will be proved useful in
future work.

4. Computational procedure

Theorem 3.7 indicates that the matrix Ψ1 is the central ingredient in evalu-
ating the stationary distribution of the Markov-modulated Brownian motion
{Y (t), ϕ(t)}. We describe here how to use the splitting property (18) in numer-
ically solving for Ψ1 and Ψ∗

1.
Bini and Gemignani [6] consider quadratic matrix equations C+AX+BX2 =

0 where the roots of the associated polynomial det(C + zA+ z2B) are split by
a circle in C, half being inside the disk and half outside. The problem in [6] is
to find the minimal solution, that is, the solution matrix with all eigenvalues
inside the disk.

In our case, the roots are split between the negative and the positive half-
planes and we need to apply some transformation, such as the one described in
Bini et al. [8] and based on the inverse Möbius mapping [3, Chapter 2.1]

w(z) =
z − 1

z + 1
. (34)

This inverse mapping applies the open unit disk |z| < 1 onto the negative half-
plane C

−
, the unit circle |z| = 1 minus the point z = −1 onto the imaginary axis

C0, the outside |z| > 1 of the closed unit disk onto the positive half-plane C+,
and the imaginary axis C0 onto the unit circle |w| = 1 minus the point w = 1.

Now, define W (Z) = (Z − I)(Z + I)−1. Instead of solving P (X) = X2 +
2V −1DX + 2V −1Q = 0 for Θ−1Ψ1, we solve H(Z) = 0, where

H(Z) = P (W (Z))(I + Z)2

= P ((Z − I)(Z + I)−1)(I + Z)2

= (I + 2V −1D + 2V −1Q)Z2 − 2(I − 2V −1Q)Z + I

− 2V −1D + 2V −1Q.
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The roots of det(H(z)) are given by ωi = w−1(τi) = (1 + τi)/(1 − τi) for
i = 1, . . . , 2m, and satisfy the splitting property

0 ≤ |ω1|, . . . , |ωm−1| < ωm = 1 < |ωm+1|, . . . , |ω2m|. (35)

We note that Bini and Geminiani [6] requires |ωi| > 0 for all i, but as seen in
[9, Section 8.3], the weak inequality suffices.

Define Z0 as the solution of H(Z) = 0 such that sp(Z0) ≤ 1. The matrix
W (Z0) = (Z0 − I)(Z0 + I)−1 is a solution of P (X) = 0 with all eigenvalues in
{Re(z) ≤ 0}, and so Θ−1Ψ1 = (Z0 − I)(Z0 + I)−1.

Several iterative algorithms to compute Z0 are discussed in [6]. Some have
superlinear convergence, such as Cyclic reduction [7], Logarithmic reduction [19,
Chapter 8], subspace iteration [2] or Graeffe iteration [7]. This means that the
approximation error at the ith iteration is O(σ2i ) with σ = 1/|ωm+1| < 1. These
algorithms are globally convergent but they are not self-correcting. Since the
coefficient matrices in P (X) are of mixed signs, one might prefer the algorithm
developed in [6]: it is self-correcting and the approximation error is O(σi2k ) for
arbitrary k, which makes it arbitrarily fast.

As for Ψ∗
1, if we define Z1 as the root of H(Z) such that all of its eigenvalues

are outside the closed unit disk, then W (Z1) has all its eigenvalues in the half-
plane C+, and Θ−1Ψ∗

1 = −W (Z1). The algorithms in [6], however, do not seem
to be well adapted to the computation of Z1, and we suggest to use a different
transformation, in order to bring the eigenvalues of −Θ−1Ψ∗

1 inside the unit
disk. This transformation is based on Möbius’ mapping [3, Chapter 2.1]

z(w) =
1 + w

1− w
. (36)

This mapping applies the open unit disk |w| < 1 onto the positive half-plane
C+, the unit circle |w| = 1 minus the point w = 1 onto the imaginary axis
C0 = {z : Re(z) = 0} and the outside |w| > 1 of the closed unit disk onto the
negative half-plane C

−
, finally, it applies the imaginary axis C0 onto the unit

circle |z| = 1 minus the point z = −1.
Now, define Z(W ) = (I + W )(I − W )−1. Instead of solving H(Z) = 0 we

solve Q(W ) = 0 for the matrix solution W1 with eigenvalues inside the unit
disk, where

Q(W ) = P (Z(W ))(I −W )2,

= (I − 2V −1D + 2V −1Q)W 2 + 2(I − 2V −1Q)W + I + 2V −1D + 2V −1Q,

and so Θ−1Ψ∗
1 = −(I +W1)(I −W1)

−1.

Appendix A: Proof of Lemma 3.4

The proof goes in four main steps. The matrix Ψε is the stochastic (or sub-
stochastic) solution of the Riccati equation

(C+
ε )−1T+−

ε + (C+
ε )−1T++

ε Ψε +Ψε|C−
ε |−1T−−

ε +Ψε|C−
ε |−1T−+

ε Ψε = 0
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(Rogers [25]), equation that we write as

(1/ε)(εD+Θ)−1 + (1/ε)(εD +Θ)−1(ε2Q− I)Ψε

+ (1/ε)Ψε|εD −Θ|−1(ε2Q− I) + (1/ε)Ψε|εD −Θ|−1Ψε = 0 (37)

Thus, Ψε is a solution of Fε(X) = 0, where

Fε(X) =(εD +Θ)−1 + (εD +Θ)−1(ε2Q− I)X

+X |εD−Θ|−1(ε2Q− I) +X |εD −Θ|−1X.

For ε = 0, we see that F0(I) = 0. It is tempting to invoke the Implicit Function
Theorem and claim that Ψε is an analytic function of ε in a neighborhood of
ε = 0. Unfortunately, the operator ∂/∂XFε(X) is singular at the point (ε =
0, X = I), the Implicit Function Theorem does not apply, and we follow a longer,
more tortuous path.

Proposition A.1. For ε ≥ 0,

Ψε = I +Φε where lim
ε→0

Φε = 0, (38)

Ψ∗
ε = I +Φ∗

ε where lim
ε→0

Φ∗
ε = 0. (39)

Proof. We note that

(εD +Θ)−1 = {I − εΘ−1(−D)}−1Θ−1

= {I − εΘ−1D + ε2(Θ−1D)2 +O(ε3)}Θ−1

= Θ−1 − εV −1D + ε2Θ−1V −1D2 +O(ε3), (40)

and similarly

|εD −Θ|−1 = Θ−1 + εV −1D + ε2Θ−1V −1D2 +O(ε3), (41)

for ε sufficiently small. Thus, (37) implies that

(1/ε){Θ−1 − εV −1D +O(ε2)}(I + ε2QΨε −Ψε)

+ (1/ε)Ψε{Θ−1 + εV −1D +O(ε2)}(ε2Q− I +Ψε) = 0, (42)

which can be reorganized as G(ε) +H(ε) = 0, where

G(ε) = (1/ε)(Θ−1 −Θ−1Ψε −ΨεΘ
−1 +ΨεΘ

−1Ψε) (43)

and

H(ε) = (1/ε){ε2Θ−1QΨε + (−εV −1D +O(ε2))(I + ε2QΨε −Ψε)

+ ε2ΨεΘ
−1Q+Ψε(εV

−1D +O(ε2))(ε2Q− I +Ψε)}. (44)

The matrix H(ε) is bounded and therefore G(ε) too remains bounded as ε → 0.
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Now, we observe that Ψε belongs to the compact set {M : M ≥ 0,M1 ≤ 1}
of (sub)stochastic matrices; therefore, for every sequence {Ψε}ε→0 there exist
subsequences that converge. Let Ψ̄ be the limit of one such convergent subse-
quence, and {εi}i=1,2,... be a sequence such that εi → 0 and Ψεi → Ψ̄ as i → ∞.
Since G(εi) remains bounded as i → ∞, necessarily

lim
i→∞

(Θ−1 −Θ−1Ψεi −ΨεiΘ
−1 +ΨεiΘ

−1Ψεi) = lim
i→∞

(I −Ψεi)Θ
−1(I −Ψεi)

= (I − Ψ̄)Θ−1(I − Ψ̄)

= 0,

and thus Ψ̄ = I. This follows from the facts that Θ−1(I−Ψ̄) is a nilpotent matrix,
that the trace of every nilpotent matrix is zero, and that Ψ̄ is a (sub)stochastic
matrix while Θ−1 is a strictly positive diagonal matrix.

All convergent subsequences having the same limit, the conclusion is that Ψε

converges to I as ε → 0, and (38) follows. The proof of (39) is by analogous
arguments.

Proposition A.2. For ε > 0, the matrices Φε and Φ∗
ε are irreducible with non-

negative off-diagonal elements, strictly negative diagonal elements, Φε1 ≤ 0 and
Φ∗

ε1 ≤ 0. In addition, under Assumption 3.1, Φε1 = 0 and Φ∗
ε1 < 0.

In short, Φε is an irreducible generator and Φ∗
ε is an irreducible subgenerator.

Proof. As we assume that the fluid queue is irreducible, Ψε is an irreducible
(sub)stochastic matrix for all ε ≥ 0. Thus, we conclude from (38) that Φε

is irreducible and that its off-diagonal elements are nonnegative. Furthermore,
since Ψε1 ≤ 1, this implies that Φε1 ≤ 0, so that its diagonal elements are
strictly negative and Φε is a generator. The same argument holds for Φ∗

ε.
Under Assumption 3.1, the matrix Ψε is stochastic and the matrix Ψ∗

ε is
strictly substochastic, and the last claim follows.

Proposition A.3. The matrices (1/ε)Φε and (1/ε)Φ∗
ε are bounded. Denoting

by Ψ̄1 and Ψ̄∗
1 the limits of any converging subsequences of (1/ε)Φε and (1/ε)Φ∗

ε

respectively, both Ψ̄1 and −Ψ̄∗
1 are solutions of the equation

(Θ−1Y )2 + 2V −1DΘ−1Y + 2V −1Q = 0, (45)

and are irreducible.

Proof. Substituting (38) into (43, 44) gives us

G(ε) = (1/ε){ΦεΘ
−1Φε}

H(ε) = εΘ−1Q(I +Φε) + [−V −1D +O(ε)](ε2Q+ ε2QΦε − Φε)

+ ε(I +Φε)Θ
−1Q+ (I +Φε)[V

−1D +O(ε)](ε2Q+Φε).

Clearly, limε→0 H(ε) = 0 and this implies that limε→0(1/ε){ΦεΘ
−1Φε} = 0

since G(ε) +H(ε) = 0. Divide both sides of that equation by ε and obtain

(1/ε)2ΦεΘ
−1Φε + 2Θ−1Q+R(ε) = 0 (46)
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where

R(ε) = Θ−1QΦε + [−V −1D +O(ε)](εQ + εQΦε − (1/ε)Φε)

+ ΦεΘ
−1Q+ (I +Φε)[V

−1D +O(ε)]{εQ+ (1/ε)Φε}. (47)

Now, there are three possible cases.

Case 1: (1/ε)Φε → 0 as ε → 0. Then, R(ε) → 0 and taking the limit of both
sides of (46) as ε → 0 leads to 2V −1Q = 0, which is not true.

Case 2: (1/ε)Φε is unbounded in any neighborhood of ε = 0. Then, there
exists a sequence {εk}k=1,2... such that εk → 0 and maxij |Φεk |ij/εk → ∞. In
this case, we may write (1/ε)Φε = uεBε, where uε is a scalar function such that
limk→∞ uεk = ∞ while Bεk remains bounded and does not converge to zero:
since Φε is an irreducible generator, its maximum element is on the diagonal
and we take uε = maxj |Φε|jj/ε, then Bε is an irreducible generator with at
least one diagonal element equal to −1, and with |Bij | ≤ 1 for all i and j.

Next, for ε in the sequence {εk}, we replace (1/ε)Φε in (46) by uεBε and
divide both sides of the equation by u2

ε to obtain

BεΘ
−1Bε + (2/u2

ε)Θ
−1Q+ (ε/uε)Θ

−1QBε

+[−V −1D +O(ε)](ε/u2
εQ+ ε2/uεQBε − (1/uε)Bε)

+((1/uε)I + εBε)[V
−1D +O(ε)]((ε/uε)Q+Bε) = 0, (48)

This implies that
lim
k→∞

BεkΘ
−1Bεk = 0, (49)

Now, take any converging subsequence of Bε and denote its limit as B. By
construction, the trace of Θ−1Bε is at most equal to minj(−σ−1

j ) < 0, indepen-
dently of ε. Thus, the trace of Θ−1B is strictly negative, the matrix Θ−1B is
not nilpotent, and Θ−1BΘ−1B 6= 0, which contradicts (49).

Case 3: (1/ε)Φε is bounded and does not converge to 0. Then, from (47)

R(ε) = (1/ε)2V −1DΦε +R∗(ε)

where R∗(ε) goes to 0 as ε goes to zero. This allows us to rewrite (46) as

(1/ε2)ΦεΘ
−1Φε + 2Θ−1Q+ (1/ε)2V −1DΦε +R∗(ε) = 0

and to conclude that

lim
ε→0

{(1/ε2)ΦεΘ
−1Φε + 2Θ−1Q+ (1/ε)2V −1DΦε +R∗(ε)} = 0. (50)

Since (1/ε)Φε is bounded, there exist subsequences {εk}k=1,2,... such that εk → 0
and such that (1/εk)Φεk → Ψ̄1. We take in (50) the limit along such a subse-
quence and conclude that Ψ̄1 is a solution of (45). The same approach is followed
for Φ∗

ε.
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Now, assume that Ψ̄1 is reducible. We may write

Θ−1Ψ̄1 =

[
MA 0
MAB MB

]
,

possibly after a permutation of rows and columns, where MA and MB are square
matrices. As Θ−1Ψ̄1 is a solution of (45), we are led to conclude that

Q =

[
QA 0
QAB QB

]

which contradicts our assumption that Q is irreducible. Thus, Ψ̄1 is irreducible,
and so is Ψ̄∗

1 by the same argument.

Proposition A.4. Consider the matrix equation

V X2 + 2DX + 2Q = 0 (51)

and its associated matrix polynomial Γ(z) = V z2 + 2Dz + 2Q.
Under Assumption 3.1, det Γ(z) has one root equal to zero, m− 1 roots with

strictly negative real parts, and m roots with strictly positive real parts.

Proof. Take {εk}k=1,2,... to be a subsequence such that εk → 0 and (1/εk)Φεk →
Ψ̄1. By Proposition A.3, Θ−1Ψ̄1 is an irreducible generator and a solution of
(51), and we write

Γ(z) = z2V + 2Dz + 2Q− V ((Θ−1Ψ̄1)
2 + 2V −1DΘ−1Ψ̄1 + 2V −1Q)

= (V z + VΘ−1Ψ̄1 + 2D)(zI −Θ−1Ψ̄1). (52)

We conclude that all eigenvalues of Θ−1Ψ̄1 are roots of det Γ(z). As we assume
that the fluid queue is positive recurrent, Φε1 = 0 for all ε by Proposition A.2
and so Θ−1Ψ̄11 = 0. Hence, det Γ(z) has at least one root equal to zero, and at
least m− 1 roots with strictly negative real parts.

In a similar manner, we take a subsequence {ε∗k}k=1,2,... such that ε∗k → 0
and (1/ε∗k)Φ

∗
ε∗k

→ Ψ̄∗
1, and we show that

Γ(z) = (V z − VΘ−1Ψ̄∗
1 + 2D)(zI +Θ−1Ψ̄∗

1). (53)

Therefore, all eigenvalues of −Θ−1Ψ̄∗
1 are roots of det Γ(z) and, since Ψ̄∗

11 < 0,
this shows that det Γ(z) has at least m roots with strictly positive real part.

The polynomial det Γ(z) has at most 2m roots, which concludes the proof.

Now we are ready to conclude. By the properties of the roots of det Γ(z) given
in Proposition A.4, (17) has one unique solution suitable for the role of Ψ̄1 and
another unique solution suitable for the role of Ψ̄∗

1. Consequently, all convergent
subsequences give the same limit Ψ1 for (1/εk)Φεk , and Ψ∗

1 for (1/εk)Φ
∗
εk

.
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