89 research outputs found

    Performance Evaluation of Power Efficient Mechanisms on Multimedia over LTE-A Networks

    Get PDF
    Power optimization is a critical challenge in multimedia services over cellular communication systems. Long Term Evolution-Advanced (LTE-A) has been developed for higher bandwidth access for accommodating today’s heavy data applications to provide better performance. Idle mode permits cellularstations to manipulate power and sources with the aid of limiting its activity for discrete periods and this eliminates the lively requirement for handover and other ordinary operations. Also, provides a periodical method for the cell station for pending downlink traffic directed to the cellularstation and as a result gets rid network handover traffic from basically inactive cellular stations. Discontinuous Reception (DRX) has been carried out to decrease the power intake of the consumer device, and transmission of big quantity of data. At data transfer, mobile device and the network phases negotiation occur. During other times, the device turns its receiver off and enters a low power state. Thereby similarly assisting numerous services and big quantities of information transmissions. This study prepossession of a massive quantity of data. Also proposes the two-power optimization modes idle mode and DRX mode parameters to achieve maximum possible power saving with the higher quality of multimedia services. Furthermore, the effectiveness of using DRX short cycles and DRX long cycles on multimedia services and the overall performance. Using OPNET Simulator 17.5, it concluded that DRX mechanism is preferred to operate compared with the Idle mechanism, also resulted that the DRX long cycles are a very good choice for all multimedia services and the overall network performance

    Non-stationary service curves : model and estimation method with application to cellular sleep scheduling

    Get PDF
    In today’s computer networks, short-lived flows are predominant. Consequently, transient start-up effects such as the connection establishment in cellular networks have a significant impact on the performance. Although various solutions are derived in the fields of queuing theory, available bandwidths, and network calculus, the focus is, e.g., about the mean wake-up times, estimates of the available bandwidth, which consist either out of a single value or a stationary function and steady-state solutions for backlog and delay. Contrary, the analysis during transient phases presents fundamental challenges that have only been partially solved and is therefore understood to a much lesser extent. To better comprehend systems with transient characteristics and to explain their behavior, this thesis contributes a concept of non-stationary service curves that belong to the framework of stochastic network calculus. Thereby, we derive models of sleep scheduling including time-variant performance bounds for backlog and delay. We investigate the impact of arrival rates and different duration of wake-up times, where the metrics of interest are the transient overshoot and relaxation time. We compare a time-variant and a time-invariant description of the service with an exact solution. To avoid probabilistic and maybe unpredictable effects from random services, we first choose a deterministic description of the service and present results that illustrate that only the time-variant service curve can follow the progression of the exact solution. In contrast, the time-invariant service curve remains in the worst-case value. Since in real cellular networks, it is well known that the service and sleep scheduling procedure is random, we extend the theory to the stochastic case and derive a model with a non-stationary service curve based on regenerative processes. Further, the estimation of cellular network’s capacity/ available bandwidth from measurements is an important topic that attracts research, and several works exist that obtain an estimate from measurements. Assuming a system without any knowledge about its internals, we investigate existing measurement methods such as the prevalent rate scanning and the burst response method. We find fundamental limitations to estimate the service accurately in a time-variant way, which can be explained by the non-convexity of transient services and their super-additive network processes. In order to overcome these limitations, we derive a novel two-phase probing technique. In the first step, the shape of a minimal probe is identified, which we then use to obtain an accurate estimate of the unknown service. To demonstrate the minimal probing method’s applicability, we perform a comprehensive measurement campaign in cellular networks with sleep scheduling (2G, 3G, and 4G). Here, we observe significant transient backlogs and delay overshoots that persist for long relaxation times by sending constant-bit-rate traffic, which matches the findings from our theoretical model. Contrary, the minimal probing method shows another strength: sending the minimal probe eliminates the transient overshoots and relaxation times

    On the Latency-Energy Performance of NB-IoT Systems in Providing Wide-Area IoT Connectivity

    Get PDF

    Radio Resource Management Optimization For Next Generation Wireless Networks

    Get PDF
    The prominent versatility of today’s mobile broadband services and the rapid advancements in the cellular phones industry have led to a tremendous expansion in the wireless market volume. Despite the continuous progress in the radio-access technologies to cope with that expansion, many challenges still remain that need to be addressed by both the research and industrial sectors. One of the many remaining challenges is the efficient allocation and management of wireless network resources when using the latest cellular radio technologies (e.g., 4G). The importance of the problem stems from the scarcity of the wireless spectral resources, the large number of users sharing these resources, the dynamic behavior of generated traffic, and the stochastic nature of wireless channels. These limitations are further tightened as the provider’s commitment to high quality-of-service (QoS) levels especially data rate, delay and delay jitter besides the system’s spectral and energy efficiencies. In this dissertation, we strive to solve this problem by presenting novel cross-layer resource allocation schemes to address the efficient utilization of available resources versus QoS challenges using various optimization techniques. The main objective of this dissertation is to propose a new predictive resource allocation methodology using an agile ray tracing (RT) channel prediction approach. It is divided into two parts. The first part deals with the theoretical and implementational aspects of the ray tracing prediction model, and its validation. In the second part, a novel RT-based scheduling system within the evolving cloud radio access network (C-RAN) architecture is proposed. The impact of the proposed model on addressing the long term evolution (LTE) network limitations is then rigorously investigated in the form of optimization problems. The main contributions of this dissertation encompass the design of several heuristic solutions based on our novel RT-based scheduling model, developed to meet the aforementioned objectives while considering the co-existing limitations in the context of LTE networks. Both analytical and numerical methods are used within this thesis framework. Theoretical results are validated with numerical simulations. The obtained results demonstrate the effectiveness of our proposed solutions to meet the objectives subject to limitations and constraints compared to other published works

    Performance and Power Characterization of Cellular Networks and Mobile Application Optimizations.

    Full text link
    Smartphones with cellular data access have become increasingly popular with the wide variety of mobile applications. However, the performance and power footprint of these mobile applications are not well-understood, and due to the unawareness of the cellular specific characteristics, many of these applications are causing inefficient radio resource and device energy usage. In this dissertation, we aim at providing a suite of systematic methodology and tools to better understand the performance and power characteristics of cellular networks (3G and the new LTE 4G networks) and the mobile applications relying upon, and to optimize the mobile application design based on this understanding. We have built the MobiPerf tool to understand the characteristics of cellular networks. With this knowledge, we make detailed analysis on smartphone application performance via controlled experiments and via a large-scale data set from one major U.S. cellular carrier. To understand the power footprint of mobile applications, we have derived comprehensive power models for different network types and characterize radio energy usage of various smartphone applications via both controlled experiments and 7-month-long traces collected from 20 real users. Specifically, we characterize the radio and energy impact of the network traffic generated when the phone screen is off and propose the screen-aware traffic optimization. In addition to shedding light to the mobile application design throughout our characterization analysis, we further design and implement a real optimization system RadioProphet, which uses historical traffic features to make predictions and intelligently deallocate radio resource for improved radio and energy efficiency.PhDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99905/1/hjx_1.pd

    A Multi-Service Adaptive Semi-Persistent LTE Uplink Scheduler for Low Power M2M Devices

    Get PDF
    The prominence of Machine-to-Machine (M2M) communications in the future wide area communication networks place various challenges to the cellular technologies such as the Long Term Evolution (LTE) standard, owing to the large number of M2M devices generating small bursts of infrequent data packets with a wide range of delay requirements. The channel structure and Quality of Service (QoS) framework of LTE networks fail to support M2M traffic with multiple burst sizes and QoS requirements while a bottleneck often arises from the limited control resources to communicate future uplink resource allocations to the M2M devices. Moreover, many of the M2M devices are battery-powered and require a low-power consuming wide area technology for wide-spread deployments. To alleviate these issues, in this article we propose an adaptive semipersistent scheduling (SPS) scheme for the LTE uplink which caters for multi-service M2M traffic classes with variable burst sizes and delay tolerances. Instead of adhering to the rigid LTE QoS framework, the proposed algorithm supports variation of uplink allocation sizes based on queued data length yet does not require control signaling to inform those allocations to the respective devices. Both the eNodeB and the M2M devices can determine the precise uplink resource allocation related parameters based on their mutual knowledge, thus omitting the burden of regular control signaling exchanges. Based on a control parameter, the algorithm can offer different capacities and levels of QoS satisfaction to different traffic classes. We also introduce a pre-emptive feature by which the algorithm can prioritize new traffic with low delay tolerance over ongoing delay-tolerant traffic. We also build a model for incorporating the Discontinuous Reception (DRX) mechanism in synchronization with the adaptive SPS transmissions so that the UE power consumption can be significantly lowered, thereby extending their battery lives. The simulation and performance analysis of the proposed scheme shows significant improvement over the traditional LTE scheduler in terms of QoS satisfaction, channel utilization and low power requirements of multi-service M2M traffic

    Modeling and Analysis of Channel Holding Time and Handoff Rate for Packet Sessions in All-IP Cellular Networks

    Get PDF
    It is essential to model channel holding time (CHT), cell residence time (CRT), and handoff rate for performance analysis and algorithm evaluation in mobile cellular networks. The problem has been extensively studied in the past for circuit-switched (CS) cellular networks. However, little research has been done on packet-switched (PS) cellular networks. Unlike that a call occupies a dedicated channel during its whole lifetime in CS networks, an active session in PS networks occupies and releases channels iteratively due to discontinuous reception (DRX) mechanism. In this paper, we investigate the key quantities in PS cellular networks. We present a set of comprehensive new models to characterize the quantities and their relationship in PS networks. The models shed light on the relationship between CHT and CRT and handoff rate. The analytical results enable wide applicability in various scenarios and therefore have important theoretical significance. Moreover, the analytical results provide a quick way to evaluate traffic performance and system design in PS cellular networks without wide deployment, which can save cost and time
    • …
    corecore