5 research outputs found

    A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning

    Get PDF
    A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection

    A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning

    Get PDF
    A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.Facultad de Ingenierí

    A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning

    Get PDF
    A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.Facultad de Ingenierí

    A Bayesian Technique for Real and Integer Parameters Estimation in Linear Models and its Application to GNSS High Precision Positioning

    Get PDF
    A novel Bayesian technique for the joint estimation of real and integer parameters in a linear measurement model is presented. The integer parameters take values on a finite set, and the real ones are assumed to be a Gaussian random vector. The posterior distribution of these parameters is sequentially determined as new measurements are incorporated. This is a mixed distribution with a Gaussian continuous part and a discrete one. Estimators for the integer and real parameters are derived from this posterior distribution. A Maximum A Posteriori (MAP) estimator modified with the addition of a confidence threshold is used for the integer part and a Minimum Mean Squared Error (MMSE) is used for the real parameters. Two different cases are addressed: i) both real and integer parameters are time invariant and ii) the integer parameters are time invariant but the real ones are time varying. Our technique is applied to the GNSS carrier phase ambiguity resolution problem, that is key for high precision positioning applications. The good performance of the proposed technique is illustrated through simulations in different scenarios where different kind of measurements as well as different satellite visibility conditions are considered. Comparisons with state-of-the-art ambiguity solving algorithms confirm performance improvement. The new method is shown to be useful not only in the estimation stage but also for validating the estimates ensuring a predefined success rate through proper threshold selection.Facultad de Ingenierí

    Adquisición y seguimiento en tiempo real para receptores GNSS multiantena

    Get PDF
    El presente trabajo consiste en el desarrollo y la implementación de los algoritmos de adquisición y seguimiento de señales para un receptor GNSS GPS/GLONASS con múltiples antenas de entrada apto para ser integrado como instrumento de a bordo de un vehículo de tipo cohete como los utilizados para realizar la puesta en órbita de cargas satelitales. Son cuatro los requerimientos más importantes que deben satisfacer los algoritmos diseñados. El primero es la capacidad de operar correctamente bajo las condiciones dinámicas dominantes durante la misión de un vehículo de esta categoría. El segundo es la capacidad de procesar de forma simultánea y coordinada las señales recibidas a través de un sistema de cuatro antenas distribuidas en la periferia del cuerpo del vehículo, y ser capaz de mantener el sincronismo con las señales incluso cuando cambios en la orientación del vehículo modifiquen las condiciones de visibilidad del conjunto de antenas. En tercer lugar, el receptor debe poder procesar las señales civiles transmitidas por los satélites de los dos sistemas de posicionamiento operativos en la actualidad, el estadounidense GPS y el ruso GLONASS. Por último, todo el procesamiento debe realizarse en un sistema embebido y en tiempo real. Estos algoritmos, serán implementados sobre la base de un prototipo del hardware y software del receptor GPS/GLONASS multiantena y serán ensayados para verificar su correcto funcionamiento en una serie de condiciones tanto dinámicas como estáticas.Facultad de Ingenierí
    corecore