257 research outputs found

    Channel Estimation for Ambient Backscatter Communication Systems with Massive-Antenna Reader

    Get PDF
    Ambient backscatter, an emerging green communication technology, has aroused great interest from both academia and industry. One open problem for ambient backscatter communication (AmBC) systems is channel estimation for a massive-antenna reader. In this paper, we focus on channel estimation problem in AmBC systems with uniform linear array (ULA) at the reader which consists of large number of antennas. We first design a two-step method to jointly estimate channel gains and direction of arrivals (DoAs), and then refine the estimates through angular rotation. Additionally, Cramer-Rao lower bounds (CRLBs) are derived for both the modulus of the channel gain and the DoA estimates. Simulations are then provided to validate the analysis, and to show the efficiency of the proposed approach.Comment: 5 figures, submitted to IEEE Transactions on Vehicular Technology, 29 March, 201

    Optimal Channel Estimation for Reciprocity-Based Backscattering with a Full-Duplex MIMO Reader

    Full text link
    Backscatter communication (BSC) technology can enable ubiquitous deployment of low-cost sustainable wireless devices. In this work we investigate the efficacy of a full-duplex multiple-input-multiple-output (MIMO) reader for enhancing the limited communication range of monostatic BSC systems. As this performance is strongly influenced by the channel estimation (CE) quality, we first derive a novel least-squares estimator for the forward and backward links between the reader and the tag, assuming that reciprocity holds and K orthogonal pilots are transmitted from the first K antennas of an N antenna reader. We also obtain the corresponding linear minimum-mean square-error estimate for the backscattered channel. After defining the transceiver design at the reader using these estimates, we jointly optimize the number of orthogonal pilots and energy allocation for the CE and information decoding phases to maximize the average backscattered signal-to-noise ratio (SNR) for efficiently decoding the tag's messages. The unimodality of this SNR in optimization variables along with a tight analytical approximation for the jointly global optimal design is also discoursed. Lastly, the selected numerical results validate the proposed analysis, present key insights into the optimal resource utilization at reader, and quantify the achievable gains over the benchmark schemes.Comment: accepted for publication in IEEE Transactions on Signal Processing, 16 pages, 15 figures, 1 tabl

    Multi-BD Symbiotic Radio-Aided 6G IoT Network: Energy Consumption Optimization with QoS Constraint Approach

    Get PDF
    The commensal symbiotic radio (CSR) system is proposed as a novel solution for connecting systems through green communication networks. This system enables us to establish secure, ubiquitous, and unlimited connectivity, which is a goal of 6G. The base station uses MIMO antennas to transmit its signal. Passive IoT devices, called symbiotic backscatter devices (SBDs), receive the signal and use it to charge their power supply. When the SBDs have data to transmit, they modulate the information onto the received ambient RF signal and send it to the symbiotic user equipment, which is a typical active device. The main purpose is to enhance energy efficiency in this network by minimizing energy consumption (EC) while ensuring the minimum required throughput for SBDs. To achieve this, we propose a new scheduling scheme called Timing-SR that optimally allocates resources to SBDs. The main optimization problem involves non-convex objective functions and constraints. To solve this, we use mathematical techniques and introduce a new approach called sequential quadratic and conic quadratic representation to relax and discipline the problem, leading to reducing its complexity and convergence time. The simulation results demonstrate that the proposed approach outperforms other outlined schemes in reducing EC
    • …
    corecore