927 research outputs found

    Spectral Bounds for the Connectivity of Regular Graphs with Given Order

    Get PDF
    The second-largest eigenvalue and second-smallest Laplacian eigenvalue of a graph are measures of its connectivity. These eigenvalues can be used to analyze the robustness, resilience, and synchronizability of networks, and are related to connectivity attributes such as the vertex- and edge-connectivity, isoperimetric number, and characteristic path length. In this paper, we present two upper bounds for the second-largest eigenvalues of regular graphs and multigraphs of a given order which guarantee a desired vertex- or edge-connectivity. The given bounds are in terms of the order and degree of the graphs, and hold with equality for infinite families of graphs. These results answer a question of Mohar.Comment: 24 page

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Lombardi Drawings of Graphs

    Full text link
    We introduce the notion of Lombardi graph drawings, named after the American abstract artist Mark Lombardi. In these drawings, edges are represented as circular arcs rather than as line segments or polylines, and the vertices have perfect angular resolution: the edges are equally spaced around each vertex. We describe algorithms for finding Lombardi drawings of regular graphs, graphs of bounded degeneracy, and certain families of planar graphs.Comment: Expanded version of paper appearing in the 18th International Symposium on Graph Drawing (GD 2010). 13 pages, 7 figure

    On the expected number of perfect matchings in cubic planar graphs

    Get PDF
    A well-known conjecture by Lov\'asz and Plummer from the 1970s asserted that a bridgeless cubic graph has exponentially many perfect matchings. It was solved in the affirmative by Esperet et al. (Adv. Math. 2011). On the other hand, Chudnovsky and Seymour (Combinatorica 2012) proved the conjecture in the special case of cubic planar graphs. In our work we consider random bridgeless cubic planar graphs with the uniform distribution on graphs with nn vertices. Under this model we show that the expected number of perfect matchings in labeled bridgeless cubic planar graphs is asymptotically cγnc\gamma^n, where c>0c>0 and γ1.14196\gamma \sim 1.14196 is an explicit algebraic number. We also compute the expected number of perfect matchings in (non necessarily bridgeless) cubic planar graphs and provide lower bounds for unlabeled graphs. Our starting point is a correspondence between counting perfect matchings in rooted cubic planar maps and the partition function of the Ising model in rooted triangulations.Comment: 19 pages, 4 figure

    Solving weighted and counting variants of connectivity problems parameterized by treewidth deterministically in single exponential time

    Full text link
    It is well known that many local graph problems, like Vertex Cover and Dominating Set, can be solved in 2^{O(tw)}|V|^{O(1)} time for graphs G=(V,E) with a given tree decomposition of width tw. However, for nonlocal problems, like the fundamental class of connectivity problems, for a long time we did not know how to do this faster than tw^{O(tw)}|V|^{O(1)}. Recently, Cygan et al. (FOCS 2011) presented Monte Carlo algorithms for a wide range of connectivity problems running in time $c^{tw}|V|^{O(1)} for a small constant c, e.g., for Hamiltonian Cycle and Steiner tree. Naturally, this raises the question whether randomization is necessary to achieve this runtime; furthermore, it is desirable to also solve counting and weighted versions (the latter without incurring a pseudo-polynomial cost in terms of the weights). We present two new approaches rooted in linear algebra, based on matrix rank and determinants, which provide deterministic c^{tw}|V|^{O(1)} time algorithms, also for weighted and counting versions. For example, in this time we can solve the traveling salesman problem or count the number of Hamiltonian cycles. The rank-based ideas provide a rather general approach for speeding up even straightforward dynamic programming formulations by identifying "small" sets of representative partial solutions; we focus on the case of expressing connectivity via sets of partitions, but the essential ideas should have further applications. The determinant-based approach uses the matrix tree theorem for deriving closed formulas for counting versions of connectivity problems; we show how to evaluate those formulas via dynamic programming.Comment: 36 page

    Decomposition theorem on matchable distributive lattices

    Full text link
    A distributive lattice structure M(G){\mathbf M}(G) has been established on the set of perfect matchings of a plane bipartite graph GG. We call a lattice {\em matchable distributive lattice} (simply MDL) if it is isomorphic to such a distributive lattice. It is natural to ask which lattices are MDLs. We show that if a plane bipartite graph GG is elementary, then M(G){\mathbf M}(G) is irreducible. Based on this result, a decomposition theorem on MDLs is obtained: a finite distributive lattice L\mathbf{L} is an MDL if and only if each factor in any cartesian product decomposition of L\mathbf{L} is an MDL. Two types of MDLs are presented: J(m×n)J(\mathbf{m}\times \mathbf{n}) and J(T)J(\mathbf{T}), where m×n\mathbf{m}\times \mathbf{n} denotes the cartesian product between mm-element chain and nn-element chain, and T\mathbf{T} is a poset implied by any orientation of a tree.Comment: 19 pages, 7 figure
    corecore