50,793 research outputs found

    Maximum Likelihood for Matrices with Rank Constraints

    Full text link
    Maximum likelihood estimation is a fundamental optimization problem in statistics. We study this problem on manifolds of matrices with bounded rank. These represent mixtures of distributions of two independent discrete random variables. We determine the maximum likelihood degree for a range of determinantal varieties, and we apply numerical algebraic geometry to compute all critical points of their likelihood functions. This led to the discovery of maximum likelihood duality between matrices of complementary ranks, a result proved subsequently by Draisma and Rodriguez.Comment: 22 pages, 1 figur

    On the regularity of the covariance matrix of a discretized scalar field on the sphere

    Full text link
    We present a comprehensive study of the regularity of the covariance matrix of a discretized field on the sphere. In a particular situation, the rank of the matrix depends on the number of pixels, the number of spherical harmonics, the symmetries of the pixelization scheme and the presence of a mask. Taking into account the above mentioned components, we provide analytical expressions that constrain the rank of the matrix. They are obtained by expanding the determinant of the covariance matrix as a sum of determinants of matrices made up of spherical harmonics. We investigate these constraints for five different pixelizations that have been used in the context of Cosmic Microwave Background (CMB) data analysis: Cube, Icosahedron, Igloo, GLESP and HEALPix, finding that, at least in the considered cases, the HEALPix pixelization tends to provide a covariance matrix with a rank closer to the maximum expected theoretical value than the other pixelizations. The effect of the propagation of numerical errors in the regularity of the covariance matrix is also studied for different computational precisions, as well as the effect of adding a certain level of noise in order to regularize the matrix. In addition, we investigate the application of the previous results to a particular example that requires the inversion of the covariance matrix: the estimation of the CMB temperature power spectrum through the Quadratic Maximum Likelihood algorithm. Finally, some general considerations in order to achieve a regular covariance matrix are also presented.Comment: 36 pages, 12 figures; minor changes in the text, matches published versio

    Fixed points of the EM algorithm and nonnegative rank boundaries

    Get PDF
    Mixtures of rr independent distributions for two discrete random variables can be represented by matrices of nonnegative rank rr. Likelihood inference for the model of such joint distributions leads to problems in real algebraic geometry that are addressed here for the first time. We characterize the set of fixed points of the Expectation-Maximization algorithm, and we study the boundary of the space of matrices with nonnegative rank at most 33. Both of these sets correspond to algebraic varieties with many irreducible components.Comment: Published in at http://dx.doi.org/10.1214/14-AOS1282 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Maximum Likelihood Duality for Determinantal Varieties

    Full text link
    In a recent paper, Hauenstein, Sturmfels, and the second author discovered a conjectural bijection between critical points of the likelihood function on the complex variety of matrices of rank r and critical points on the complex variety of matrices of co-rank r-1. In this paper, we prove that conjecture for rectangular matrices and for symmetric matrices, as well as a variant for skew-symmetric matrices. To appear in International Mathematics Research Notices

    Bayesian Matrix Completion via Adaptive Relaxed Spectral Regularization

    Full text link
    Bayesian matrix completion has been studied based on a low-rank matrix factorization formulation with promising results. However, little work has been done on Bayesian matrix completion based on the more direct spectral regularization formulation. We fill this gap by presenting a novel Bayesian matrix completion method based on spectral regularization. In order to circumvent the difficulties of dealing with the orthonormality constraints of singular vectors, we derive a new equivalent form with relaxed constraints, which then leads us to design an adaptive version of spectral regularization feasible for Bayesian inference. Our Bayesian method requires no parameter tuning and can infer the number of latent factors automatically. Experiments on synthetic and real datasets demonstrate encouraging results on rank recovery and collaborative filtering, with notably good results for very sparse matrices.Comment: Accepted to AAAI 201
    • …
    corecore