1,389 research outputs found

    Convolutional Deblurring for Natural Imaging

    Full text link
    In this paper, we propose a novel design of image deblurring in the form of one-shot convolution filtering that can directly convolve with naturally blurred images for restoration. The problem of optical blurring is a common disadvantage to many imaging applications that suffer from optical imperfections. Despite numerous deconvolution methods that blindly estimate blurring in either inclusive or exclusive forms, they are practically challenging due to high computational cost and low image reconstruction quality. Both conditions of high accuracy and high speed are prerequisites for high-throughput imaging platforms in digital archiving. In such platforms, deblurring is required after image acquisition before being stored, previewed, or processed for high-level interpretation. Therefore, on-the-fly correction of such images is important to avoid possible time delays, mitigate computational expenses, and increase image perception quality. We bridge this gap by synthesizing a deconvolution kernel as a linear combination of Finite Impulse Response (FIR) even-derivative filters that can be directly convolved with blurry input images to boost the frequency fall-off of the Point Spread Function (PSF) associated with the optical blur. We employ a Gaussian low-pass filter to decouple the image denoising problem for image edge deblurring. Furthermore, we propose a blind approach to estimate the PSF statistics for two Gaussian and Laplacian models that are common in many imaging pipelines. Thorough experiments are designed to test and validate the efficiency of the proposed method using 2054 naturally blurred images across six imaging applications and seven state-of-the-art deconvolution methods.Comment: 15 pages, for publication in IEEE Transaction Image Processin

    Nonparametric estimation of a point-spread function in multivariate problems

    Full text link
    The removal of blur from a signal, in the presence of noise, is readily accomplished if the blur can be described in precise mathematical terms. However, there is growing interest in problems where the extent of blur is known only approximately, for example in terms of a blur function which depends on unknown parameters that must be computed from data. More challenging still is the case where no parametric assumptions are made about the blur function. There has been a limited amount of work in this setting, but it invariably relies on iterative methods, sometimes under assumptions that are mathematically convenient but physically unrealistic (e.g., that the operator defined by the blur function has an integrable inverse). In this paper we suggest a direct, noniterative approach to nonparametric, blind restoration of a signal. Our method is based on a new, ridge-based method for deconvolution, and requires only mild restrictions on the blur function. We show that the convergence rate of the method is close to optimal, from some viewpoints, and demonstrate its practical performance by applying it to real images.Comment: Published in at http://dx.doi.org/10.1214/009053606000001442 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Restoration of Atmospheric Turbulence Degraded Video using Kurtosis Minimization and Motion Compensation

    Get PDF
    In this thesis work, the background of atmospheric turbulence degradation in imaging was reviewed and two aspects are highlighted: blurring and geometric distortion. The turbulence burring parameter is determined by the atmospheric turbulence condition that is often unknown; therefore, a blur identification technique was developed that is based on a higher order statistics (HOS). It was observed that the kurtosis generally increases as an image becomes blurred (smoothed). Such an observation was interpreted in the frequency domain in terms of phase correlation. Kurtosis minimization based blur identification is built upon this observation. It was shown that kurtosis minimization is effective in identifying the blurring parameter directly from the degraded image. Kurtosis minimization is a general method for blur identification. It has been tested on a variety of blurs such as Gaussian blur, out of focus blur as well as motion blur. To compensate for the geometric distortion, earlier work on the turbulent motion compensation was extended to deal with situations in which there is camera/object motion. Trajectory smoothing is used to suppress the turbulent motion while preserving the real motion. Though the scintillation effect of atmospheric turbulence is not considered separately, it can be handled the same way as multiple frame denoising while motion trajectories are built.Ph.D.Committee Chair: Mersereau, Russell; Committee Co-Chair: Smith, Mark; Committee Member: Lanterman, Aaron; Committee Member: Wang, May; Committee Member: Tannenbaum, Allen; Committee Member: Williams, Dougla

    A local Gaussian filter and adaptive morphology as tools for completing partially discontinuous curves

    Full text link
    This paper presents a method for extraction and analysis of curve--type structures which consist of disconnected components. Such structures are found in electron--microscopy (EM) images of metal nanograins, which are widely used in the field of nanosensor technology. The topography of metal nanograins in compound nanomaterials is crucial to nanosensor characteristics. The method of completing such templates consists of three steps. In the first step, a local Gaussian filter is used with different weights for each neighborhood. In the second step, an adaptive morphology operation is applied to detect the endpoints of curve segments and connect them. In the last step, pruning is employed to extract a curve which optimally fits the template

    Defocused Image Restoration with Local Polynomial Regression and IWF

    Get PDF

    Efficient methodologies for real-time image restoration

    No full text
    In this thesis we investigate the problem of image restoration. The main focus of our research is to come up with novel algorithms and enhance existing techniques in order to deliver efficient and effective methodologies, applicable in real-time image restoration scenarios. Our research starts with a literature review, which identifies the gaps in existing techniques and helps us to come up with a novel classification on image restoration, which integrates and discusses more recent developments in the area of image restoration. With this novel classification, we identified three major areas which need our attention. The first developments relate to non-blind image restoration. The two mostly used techniques, namely deterministic linear algorithms and stochastic nonlinear algorithms are compared and contrasted. Under deterministic linear algorithms, we develop a class of more effective novel quadratic linear regularization models, which outperform the existing linear regularization models. In addition, by looking in a new perspective, we evaluate and compare the performance of deterministic and stochastic restoration algorithms and explore the validity of the performance claims made so far on those algorithms. Further, we critically challenge the ne- cessity of some complex mechanisms in Maximum A Posteriori (MAP) technique under stochastic image deconvolution algorithms. The next developments are focussed in blind image restoration, which is claimed to be more challenging. Constant Modulus Algorithm (CMA) is one of the most popular, computationally simple, tested and best performing blind equalization algorithms in the signal processing domain. In our research, we extend the use of CMA in image restoration and develop a broad class of blind image deconvolution algorithms, in particular algorithms for blurring kernels with a separable property. These algorithms show significantly faster convergence than conventional algorithms. Although CMA method has a proven record in signal processing applications related to data communications systems, no research has been carried out to the investigation of the applicability of CMA for image restoration in practice. In filling this gap and taking into account the differences of signal processing in im- age processing and data communications contexts, we extend our research on the applicability of CMA deconvolution under the assumptions on the ground truth image properties. Through analyzing the main assumptions of ground truth image properties being zero-mean, independent and uniformly distributed, which char- acterize the convergence of CMA deconvolution, we develop a novel technique to overcome the effects of image source correlation based on segmentation and higher order moments of the source. Multichannel image restoration techniques recently gained much attention over the single channel image restoration due to the benefits of diversity and redundancy of the information between the channels. Exploiting these benefits in real time applications is often restricted due to the unavailability of multiple copies of the same image. In order to overcome this limitation, as the last area of our research, we develop a novel multichannel blind restoration model with a single image, which eliminates the constraint of the necessity of multiple copies of the blurred image. We consider this as a major contribution which could be extended to wider areas of research integrated with multiple disciplines such as demosaicing

    Self-correcting multi-channel Bussgang blind deconvolution using expectation maximization (EM) algorithm and feedback

    Get PDF
    A Bussgang based blind deconvolution algorithm called self-correcting multi-channel Bussgang (SCMB) blind deconvolution algorithm was proposed. Unlike the original Bussgang blind deconvolution algorithm where the probability density function (pdf) of the signal being recovered is assumed to be completely known, the proposed SCMB blind deconvolution algorithm relaxes this restriction by parameterized the pdf with a Gaussian mixture model and expectation maximization (EM) algorithm, an iterative maximum likelihood approach, is employed to estimate the parameter side by side with the estimation of the equalization filters of the original Bussgang blind deconvolution algorithm. A feedback loop is also designed to compensate the effect of the parameter estimation error on the estimation of the equalization filters. Application of the SCMB blind deconvolution framework for binary image restoration, multi-pass synthetic aperture radar (SAR) autofocus and inverse synthetic aperture radar (ISAR) autofocus are exploited with great results.Ph.D.Committee Chair: Dr. Russell Mersereau; Committee Member: Dr. Doug Willams; Committee Member: Dr. Mark Richards; Committee Member: Dr. Xiaoming Huo; Committee Member: Dr. Ye (Geoffrey) L

    Bayesian image restoration and bacteria detection in optical endomicroscopy

    Get PDF
    Optical microscopy systems can be used to obtain high-resolution microscopic images of tissue cultures and ex vivo tissue samples. This imaging technique can be translated for in vivo, in situ applications by using optical fibres and miniature optics. Fibred optical endomicroscopy (OEM) can enable optical biopsy in organs inaccessible by any other imaging systems, and hence can provide rapid and accurate diagnosis in a short time. The raw data the system produce is difficult to interpret as it is modulated by a fibre bundle pattern, producing what is called the “honeycomb effect”. Moreover, the data is further degraded due to the fibre core cross coupling problem. On the other hand, there is an unmet clinical need for automatic tools that can help the clinicians to detect fluorescently labelled bacteria in distal lung images. The aim of this thesis is to develop advanced image processing algorithms that can address the above mentioned problems. First, we provide a statistical model for the fibre core cross coupling problem and the sparse sampling by imaging fibre bundles (honeycomb artefact), which are formulated here as a restoration problem for the first time in the literature. We then introduce a non-linear interpolation method, based on Gaussian processes regression, in order to recover an interpretable scene from the deconvolved data. Second, we develop two bacteria detection algorithms, each of which provides different characteristics. The first approach considers joint formulation to the sparse coding and anomaly detection problems. The anomalies here are considered as candidate bacteria, which are annotated with the help of a trained clinician. Although this approach provides good detection performance and outperforms existing methods in the literature, the user has to carefully tune some crucial model parameters. Hence, we propose a more adaptive approach, for which a Bayesian framework is adopted. This approach not only outperforms the proposed supervised approach and existing methods in the literature but also provides computation time that competes with optimization-based methods
    corecore