164 research outputs found

    Recursive circulants and their embeddings among hypercubes

    Get PDF
    AbstractWe propose an interconnection structure for multicomputer networks, called recursive circulant. Recursive circulant G(N,d) is defined to be a circulant graph with N nodes and jumps of powers of d. G(N,d) is node symmetric, and has some strong hamiltonian properties. G(N,d) has a recursive structure when N=cdm, 1⩽c<d. We develop a shortest-path routing algorithm in G(cdm,d), and analyze various network metrics of G(cdm,d) such as connectivity, diameter, mean internode distance, and visit ratio. G(2m,4), whose degree is m, compares favorably to the hypercube Qm. G(2m,4) has the maximum possible connectivity, and its diameter is ⌈(3m−1)/4⌉. Recursive circulants have interesting relationship with hypercubes in terms of embedding. We present expansion one embeddings among recursive circulants and hypercubes, and analyze the costs associated with each embedding. The earlier version of this paper appeared in Park and Chwa (Proc. Internat. Symp. Parallel Architectures, Algorithms and Networks ISPAN’94, Kanazawa, Japan, December 1994, pp. 73–80)

    Check-hybrid GLDPC Codes: Systematic Elimination of Trapping Sets and Guaranteed Error Correction Capability

    Full text link
    In this paper, we propose a new approach to construct a class of check-hybrid generalized low-density parity-check (CH-GLDPC) codes which are free of small trapping sets. The approach is based on converting some selected check nodes involving a trapping set into super checks corresponding to a 2-error correcting component code. Specifically, we follow two main purposes to construct the check-hybrid codes; first, based on the knowledge of the trapping sets of the global LDPC code, single parity checks are replaced by super checks to disable the trapping sets. We show that by converting specified single check nodes, denoted as critical checks, to super checks in a trapping set, the parallel bit flipping (PBF) decoder corrects the errors on a trapping set and hence eliminates the trapping set. The second purpose is to minimize the rate loss caused by replacing the super checks through finding the minimum number of such critical checks. We also present an algorithm to find critical checks in a trapping set of column-weight 3 LDPC code and then provide upper bounds on the minimum number of such critical checks such that the decoder corrects all error patterns on elementary trapping sets. Moreover, we provide a fixed set for a class of constructed check-hybrid codes. The guaranteed error correction capability of the CH-GLDPC codes is also studied. We show that a CH-GLDPC code in which each variable node is connected to 2 super checks corresponding to a 2-error correcting component code corrects up to 5 errors. The results are also extended to column-weight 4 LDPC codes. Finally, we investigate the eliminating of trapping sets of a column-weight 3 LDPC code using the Gallager B decoding algorithm and generalize the results obtained for the PBF for the Gallager B decoding algorithm

    Construction of Near-Optimum Burst Erasure Correcting Low-Density Parity-Check Codes

    Full text link
    In this paper, a simple, general-purpose and effective tool for the design of low-density parity-check (LDPC) codes for iterative correction of bursts of erasures is presented. The design method consists in starting from the parity-check matrix of an LDPC code and developing an optimized parity-check matrix, with the same performance on the memory-less erasure channel, and suitable also for the iterative correction of single bursts of erasures. The parity-check matrix optimization is performed by an algorithm called pivot searching and swapping (PSS) algorithm, which executes permutations of carefully chosen columns of the parity-check matrix, after a local analysis of particular variable nodes called stopping set pivots. This algorithm can be in principle applied to any LDPC code. If the input parity-check matrix is designed for achieving good performance on the memory-less erasure channel, then the code obtained after the application of the PSS algorithm provides good joint correction of independent erasures and single erasure bursts. Numerical results are provided in order to show the effectiveness of the PSS algorithm when applied to different categories of LDPC codes.Comment: 15 pages, 4 figures. IEEE Trans. on Communications, accepted (submitted in Feb. 2007
    • …
    corecore