
Theoretical Computer Science 244 (2000) 35–62
www.elsevier.com/locate/tcs

Fundamental Study

Recursive circulants and their embeddings
among hypercubes(

Jung-Heum Parka ;∗, Kyung-Yong Chwab

aSchool of Computer Science and Engineering, The Catholic University of Korea, Yokkok 2-dong 43-1,
Wonmi-gu, Puchon 420-743, South Korea

bDepartment of Computer Science, Korea Advanced Institute of Science and Technology,
Kusong-dong 373-1, Yusong-gu, Taejon 305-701, South Korea

Received 11 April 1998; revised 19 January 2000; accepted 29 February 2000

Abstract

We propose an interconnection structure for multicomputer networks, called recursive circu-
lant. Recursive circulant G(N; d) is de�ned to be a circulant graph with N nodes and jumps of
powers of d. G(N; d) is node symmetric, and has some strong hamiltonian properties. G(N; d) has
a recursive structure when N = cdm, 16c¡d. We develop a shortest-path routing
algorithm in G(cdm; d), and analyze various network metrics of G(cdm; d) such as connec-
tivity, diameter, mean internode distance, and visit ratio. G(2m; 4), whose degree is m, compares
favorably to the hypercube Qm. G(2m; 4) has the maximum possible connectivity, and its di-
ameter is d(3m − 1)=4e. Recursive circulants have interesting relationship with hypercubes in
terms of embedding. We present expansion one embeddings among recursive circulants and hy-
percubes, and analyze the costs associated with each embedding. The earlier version of this
paper appeared in Park and Chwa (Proc. Internat. Symp. Parallel Architectures, Algorithms and
Networks ISPAN’94, Kanazawa, Japan, December 1994, pp. 73–80). c© 2000 Elsevier Science
B.V. All rights reserved.

Keywords: Circulant graph; Connectivity; Diameter; Embedding; Hamiltonian property; Inter-
connection structure; Multicomputer network; Routing algorithm

1. Introduction

Need for high computing power has continued to drive the high-speed computer
design. One of the most straightforward and the least expensive means of achieving
this end is to construct multicomputer networks that consist of nodes with local memory

(This work was partially supported by the Korean Ministry of Science and Technology under Contract
No. NN09020 and NN10730.

∗ Corresponding author. Tel.: +82-32-340-3366; fax: +82-32-340-3777.
E-mail addresses: jhpark@tcs.cuk.ac.kr (J.-H. Park), kychwa@jupiter.kaist.ac.kr (K.Y. Chwa).

0304-3975/00/$ - see front matter c© 2000 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(00)00176 -6

36 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

Fig. 1. Examples of G(N; d).

(no shared memory) and a communication controller, where each node is connected
by communication links to a number of other nodes [23]. Whenever a node wants
to communicate with another node, it communicates through other nodes unless there
exists a direct communication link between the two.
The interconnection structure for a multicomputer network plays a central role in

determining the overall performance of the system [14, 23]. Since the 1960s, many
authors have been concerned with the problems associated with the design and analysis
of interconnection structures [1, 2, 7, 10, 21, 23]. One of the most popular interconnec-
tion structures being used is a hypercube [9, 25].
We propose an interconnection structure for multicomputer networks, called recursive

circulant. The recursive circulant G(N; d), d¿2, is de�ned as follows: the node set
V = {0; 1; 2; : : : ; N − 1}, and the edge set E= {(v; w) | ∃i, 06i6dlogd Ne − 1, such
that v+ di ≡w (modN)}. Here each di is called a jump. G(N; d) also can be de�ned
as a circulant graph with jumps of powers of d, d0; d1; : : : ; ddlogd Ne−1. Examples of
recursive circulants are shown in Fig. 1.
Recursive circulant is a Cayley graph over an abelian group, in more precise words,

the Cayley graph of the cyclic group ZN with the generating set {d0; d1; : : : ; ddlogd Ne−1}.
Recursive circulant is node symmetric, and thus regular. Recursive circulant is not edge
symmetric. For example, G(8; 4) has one cycle of length 4 passing through the edge
(0; 1), and has two distinct cycles of length 4 passing through the edge (0; 4). However,
two edges (v; v + di) and (w; w + di) are similar, that is, there is an automorphism g
of G(N; d) such that g(v)=w and g(v+ di)=w + di.
Recursive circulant G(N; d) has a recursive structure when N = cdm, 16c¡d. In

other words, G(cdm; d) can be de�ned recursively by utilizing the following property.

Property 1. Let Vi be a subset of nodes in G(cdm; d) such that Vi= {v | v≡ i (mod d)};
m¿1. For 06i¡d; the subgraph of G(cdm; d) induced by Vi is isomorphic to
G(cdm−1; d).

G(cdm; d), m¿1, can be de�ned recursively on d copies of G(cdm−1; d) as follows.
Let Gi(Vi; Ei), 06i¡d, be a copy of G(cdm−1; d). We assume that Vi= {vi0; vi1; : : : ;

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 37

Fig. 2. Construction of G(32; 4) on four copies of G(8; 4).

vicdm−1−1}, and Gi is isomorphic to G(cdm−1; d) for the isomorphism mapping vij to j
for all 06j¡cdm−1. We relabel vij by jd+i. The node set V of G(cdm; d) is

⋃
06i¡d Vi,

and its edge set E is
⋃
06i¡d Ei ∪X , where X = {(v; w) | v + 1≡w (mod cdm)}. The

construction of G(32; 4) on four copies of G(8; 4) is illustrated in Fig. 2.
When c¿3, G(cd0; d) and G(cd1; d) are isomorphic to the cycle graph of length

c and the c×d double loop network, respectively. We denote by �m the degree of
G(cdm; d). Then, �m= �m−1 + 2, m¿1. �m in a closed-form is shown below:

�m =

2m− 1 if c = 1 and d = 2;

2m if c = 1 and d 6= 2;
2m+ 1 if c = 2;

2m+ 2 if c ¿ 2:

Depending on the restriction on N and d, we have interesting classes of recursive
circulants. Their inclusion relationships are shown in Fig. 3. Among them, G(2m; 2) is
a supergraph of an m-dimensional hypercube Qm, and G(2m; 4) has the same number
of nodes and edges as Qm. G(2m; 4) with m¿3 is not isomorphic to Qm since G(2m; 4)
has a cycle of odd length. In fact, G(2m; 2k) with 26k¡m is known to be a tripartite
graph.
Recursive circulants have some interesting hamiltonian properties. Obviously, G(N; d)

has a hamiltonian cycle unless N62. Recursive circulant G(cdm; d) is hamiltonian

38 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

Fig. 3. Classes of recursive circulants.

decomposable [11, 19, 20], that is, G(cdm; d) has b�m=2c edge-disjoint hamiltonian
cycles. Hamiltonian decomposability of G(N; d) remains open. In Section 2, we show
that G(N; d) with degree three or more is either hamiltonian connected or bipartite and
bihamiltonian connected.
Network metrics provide a framework for comparing various networks systematically.

They include not only node symmetry, edge symmetry, and hamiltonian property, but
also connectivity, diameter, mean internode distance, and visit ratio. We develop a
shortest-path routing algorithm in G(cdm; d) in Section 3, and analyze network metrics
of G(cdm; d) in Section 4.
Compared with Qm, G(2m; 4) achieves noticeable improvements in diameter, mean

internode distance, and node visit ratio. The diameter, mean internode distance, and
node visit ratio of G(2m; 4) are d(3m−1)=4e, approximately (

9
20

)
m, and approximately((

9
20

)
m+ 1

)
=2m, while those of Qm are m, approximately

(
1
2

)
m, and approximately((

1
2

)
m+ 1

)
=2m, respectively.

The connectivity and edge connectivity of G(2m; 4) are m, which is the best possible.
The edge visit ratio of G(2m; 4) is 1=(2m−1), which is equal to that of Qm. G(2m; 4) has
a simple shortest-path routing algorithm without routing table and a simple recursive
broadcasting algorithm [21]. Moreover, G(2m; 4) is known to be a minimum broadcast
(and gossip) graph, that is, G(2m; 4) is a graph with the minimum number of edges
such that a broadcast (and gossip) from any node can be performed in minimum time.
Understanding relationships among di�erent interconnection structures plays an

important role in parallel processing [8, 24]. We investigate relationships among
recursive circulants and hypercubes in terms of embedding. Many problems of interest
can be modeled by embedding such as VLSI circuit layout, simulating one intercon-
nection structure by another, and simulating one data structure by another [3].

G(2m; 4) contains as subgraphs cycles of any length strictly greater than three, bi-
nomial trees with 2m nodes, and full binary trees with no more than 2m nodes [18].
Pyramid of level m is known to be embedded into recursive circulant G(22m−1; 4) with
dilation two, congestion two, and the optimal expansion [17]. Many of the embedding
problems into recursive circulants remain unsolved.
In Section 5, we present expansion one embeddings among recursive circulants

G(2m; 2k) and hypercubes Qm. The embedding of G(2m; 2k) into Qm is based on the
binary reected Gray code and has dilation two and congestion four. The dilation is the
best possible when k¡m. For the reverse, we can always embed Qm into G(2m; 2k)

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 39

with the same embedding costs as the embedding of Qk into a path graph with 2k

vertices. Embedding of a graph into a path graph is known as a linear arrangement.
Employing the linear arrangements of hypercubes [12, 13], we can achieve embeddings
of Qm into G(2m; 2k) with either dilation 2k−1 and congestion b2k+1=3c or dilation∑k−1

i=0

(
i

bi=2c
)
and congestion dk=2e

(
k

bk=2c
)
.

2. Hamiltonian property of G(N; d)

A graph is hamiltonian connected if there is a hamiltonian path joining every pair of
vertices. Hamiltonian connectedness as well as hamiltonian decomposition is an inter-
esting strong hamiltonicity, that is, a hamiltonian property which implies the existence
of a hamiltonian cycle. Necessarily, a hamiltonian connected graph is not bipartite.
In this section, we show that recursive circulant G(N; d) with degree three or more is
either hamiltonian connected or bipartite and bihamiltonian connected. A bipartite graph
is bihamiltonian connected if between every pair of vertices with colors di�erent from
each other, there is a hamiltonian path. Each vertex in a bipartite graph has one of the
two colors, say red and blue, in such a way that no two adjacent vertices are of the
same color.
We employ a theorem in [6] on hamiltonian connectedness of a Cayley graph over

an abelian group.

Theorem 1. A Cayley graph over a �nite abelian group is hamiltonian connected if
and only if it is neither a cycle graph nor a bipartite graph.

Corollary 1. Every recursive circulant G(N; d) with degree three or more is hamilto-
nian connected if it is not bipartite.

Now, let us concentrate on bipartite recursive circulant G(N; d).

Lemma 1. G(N; d) with degree three or more is bipartite if and only if N is even
and d is odd.

Proof. G(N; d) has a hamiltonian cycle of length N , and has a cycle (0; 1; : : : ; d) of
length d+ 1. Thus, we have the necessity. For the su�ciency, we observe that every
jump di (including jump d0) in G(N; d) joins a pair of an even vertex and an odd
vertex. This completes the proof.

Again, we employ a lemma in [6]. A p× q rectangular grid is a product of two path
graphs with p and q vertices, respectively. A rectangular grid is bipartite. We call a
vertex in a rectangular grid a corner vertex if it is of degree two.

Lemma 2. Let G be a p× q rectangular grid with p; q¿2.

40 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

Fig. 4. Illustration of the proof of Theorem 2.

(a) If pq is even; then G has a hamiltonian path from any corner vertex v to any
other vertex with color di�erent from v.
(b) If pq is odd; then G has a hamiltonian path from any corner vertex v to any

other vertex with the same color as v.

Theorem 2. Every bipartite recursive circulant G(N; d) with degree three or more is
bihamiltonian connected.

Proof. A circulant graph CN (1; d), the Cayley graph of a cyclic group ZN with the
generating set {1; d}, is a spanning subgraph of G(N; d). We are su�cient to show that
CN (1; d) with N even and d odd (d 6=1; N − 1) is bihamiltonian connected. We can
assume that d6N=2 since CN (1; d) is isomorphic to CN (1; N − d). We let n= bN=dc
and d′=N mod d, that is, N = nd+d′, 06d′¡d. We have that d¿3 by Lemma 1 and
n¿2. A spanning subgraph of CN (1; d) is shown in Fig. 4 depending on the parity of
n. We denote by G′ the subgraph of CN (1; d) induced by vertices {0; 1; 2; : : : ; nd− 1}.
G′ contains a d× n rectangular grid as a spanning subgraph. It is su�cient to show
that CN (1; d) has a hamiltonian path joining an odd vertex N−1 and every even vertex
since CN (1; d) is node symmetric.
Case 1: n is even.
When d′=0, N − 1 is a corner vertex of G′, and thus, by Lemma 2(a), there is

a hamiltonian path joining N − 1 and every even vertex. We let d′¿0. Note that nd
is even and (n − 1)d is an odd corner vertex. For even vertex v such that v¡nd,
we construct a hamiltonian path P=N − 1; N − 2; : : : ; nd; (n − 1)d; P1; v, where P1 is
a hamiltonian path in G′ joining (n − 1)d and v due to Lemma 2(a). For v such
that v¿nd, we have a hamiltonian path P=N − 1; N − 2; : : : ; v + 1, 1; v − d + 1; P2;
(n− 1)d; nd; nd+1; : : : ; v, where P2 is a hamiltonian path in G′ between v−d+1 and
(n− 1)d.
Case 2: n is odd.

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 41

In this case, nd is odd and (n − 1)d is an even corner vertex. For an even vertex
v such that v¡nd and v 6= (n− 1)d, we construct a hamiltonian path P=N − 1; N −
2; : : : ; nd; (n− 1)d; P3; v, where P3 is a hamiltonian path in G′ joining (n− 1)d and v
due to Lemma 2(b). For v=(n − 1)d, we utilize another even corner vertex nd − 1
and construct a hamiltonian path P=N − 1; N − 2; : : : ; nd; nd− 1; P4; (n− 1)d, where
P4 is a hamiltonian path in G′ between nd − 1 and (n − 1)d. For v¿nd, there is a
hamiltonian path P=N − 1; N − 2; : : : ; v + 1; v − d + 1; P5; (n − 1)d; nd; nd + 1; : : : ; v,
where P5 is a hamiltonian path in G′ between v− d+1 and (n− 1)d. This completes
the proof.

3. Routing algorithm in G(cdm; d)

In this section, we develop a shortest-path routing algorithm in G(cdm; d). From now
on, all arithmetics are done modulo cdm using the appropriate residues. We describe
our routing algorithm briey as follows. When a node v of G(cdm; d) has a message
to w; v sends it along edges of jump d0 to one of the two nodes x and y such that
x ≡ y ≡ w (mod d); x¡v¡y; v − x¡d, and y − v¡d, if v 6≡ w (mod d); otherwise,
v does nothing. Then routing in the subgraph of G(cdm; d) induced by Vw = {z | z ≡
w (mod d)} is performed recursively. Note that the induced subgraph is isomorphic to
G(cdm−1; d). The routing algorithm is based on the properties of a shortest- path from
node 0 to node v.
A path from node 0 to v is a sequence of nodes v0 = 0; v1; v2; : : : ; vt = v. It also can be

represented by a1; a2; : : : ; at , where ai= vi−vi−1; 16i6t. The ith node vi is
∑

16j6i aj.
Here ai is either +dj or −dj for some j, that is, a jump with direction either + or −.
For example, the path 0; 4; 5; 6; 10; 9; 8 of G(16; 4) in Fig. 1(b) can be represented by
+4;+1;+1;+4;−1;−1. We will represent a path from node 0 by a sequence of jumps
with directions. The destination node v of a path P= a1; a2; : : : ; at , from node 0 is∑

16j6t aj. Note that an arbitrary permutation of P represents a path (may have a
cycle) to the same destination of the same length.

Lemma 3. Let P= a1; a2; : : : ; at ; be a shortest-path from 0 to v.
(a) P has no pair of +dj and −dj for any j.
(b) P has less than d “ + dj’s” and has less than d “− dj’s” for any j.

Proof. Suppose P has a pair of +dj and −dj for some j, we can construct another
path P′ from 0 to v shorter than P by removing the pair of +dj and −dj in P. This
is contradiction to the fact that P is a shortest-path. Suppose P has d or more “+dj’s”
(resp. “−dj’s”). The d “+dj’s” (resp. “−dj’s”) can be replaced by one “+dj+1” (resp.
“−dj+1”), resulting in a path shorter than P by d−1, if +dj is not a jump of maximum
size. If +dj is a jump of maximum size, the sum of d or less (d if c=1; c otherwise)
+dj’s (resp. −dj’s) is zero, thus they can be removed to get a shorter path than P.
This completes the proof.

42 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

A node v is called a town if v is a multiple of d; otherwise, v is called a village.
For a village v, there exists a unique i such that di¡v¡d(i+1). Here, di and d(i+1)
are called near towns of v. Every village has two near towns.

Lemma 4. (a) No shortest-path from 0 to a town passes through villages.
(b) There is a shortest-path from 0 to a village v passing through one of the near

towns of v.

Proof. Let P= a1; a2; : : : ; at , be a shortest-path from 0 to v. To prove (a), we assume
that v is a town. Suppose P passes through some villages, then P has either +d0 or
−d0. By Lemma 3(a) and (b), v=

∑
16i6t ai 6≡ 0 (mod d), which is a contradiction

to the fact that v is a town. To prove (b), we assume that v is a village such that
di¡v¡d(i+1) for some i. By Lemma 3(a) and (b), we can see that P has either v−di
“+d0’s” or d(i+1)− v “−d0’s”. When P has v−di “+d0’s”, we let P′= a′1; a

′
2; : : : ; a

′
t

be a permutation of P such that a′j = +d0 for all j; t− (v−di)¡j6t. P′ is a shortest-
path from 0 to v, and passes through di since

∑
16j6t−(v−di) a

′
j =di. When P has

d(i+ 1)− v “−d0’s”, in a similar way, we let P′′= a′′1 ; a
′′
2 ; : : : ; a

′′
t be a permutation of

P such that a′′j = − d0 for all j; t − (d(i + 1) − v)¡j6t. P” is a shortest-path from
0 to v passing through d(i + 1). This completes the proof.

Lemma 4(a) implies that a shortest-path from 0 to a town can be found in the sub-
graph of G(cdm; d) induced by all towns. Note that the subgraph induced by all towns
is isomorphic to G(cdm−1; d) by Property 1. We denote by distm(v) the length of a
shortest-path from 0 to v in G(cdm; d). The length of a shortest-path from 0 to a village
v such that di¡v¡d(i+1) is, by Lemma 4(b), min{(v−di)+distm(di); (d(i+1)−v)+
distm(d(i+1))}. Observe that distm(di)= distm−1(i) and distm(d(i+1))= distm−1(i+1).
A near town di (resp. d(i + 1)) of v is called the nearest town of v if v − di¡d

(i + 1) − v (resp. d(i + 1) − v¡v − di). When d is odd, every village has a unique
nearest town. When d is even, every village other than di + d=2 has a nearest town;
the node di + d=2 has no nearest town.

Lemma 5. If a village v has a nearest town; there is a shortest-path from 0 to v
passing through the nearest town.

Proof. If di is the nearest town, we have distm(v)= min{(v − di) + distm(di); (d(i +
1) − v) + distm(d(i + 1))}=(v − di) + distm(di). Note that the di�erence between
distm(di) and distm(d(i+1)) is at most 1 since di and d(i+1) are adjacent. If d(i+1)
is the nearest town, we can see that distm(v)= (d(i + 1)− v) + distm(d(i + 1)). Thus,
we have the lemma.

Lemma 6. (a) For odd d; distm(di)¡distm(di + 1)¡ · · ·¡distm(di + bd=2c); and
distm(di+dd=2e)¿distm(di+(dd=2e+1))¿ · · ·¿distm(di+d). (b) For even d; distm
(di)¡distm(di+1)¡ · · ·¡distm(di+(d=2−1))6distm(di+d=2); and distm(di+d=2)
¿distm(di + (d=2 + 1))¿distm(di + (d=2 + 2))¿ · · ·¿distm(di + d).

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 43

Proof. It is su�cient to show, by Lemmas 3 and 5, that the two inequalities distm(di+
(d=2−1))6distm(di+d=2) and distm(di+d=2)¿distm(di+(d=2+1)) hold for even d.
For the �rst inequality, by Lemmas 3–5, we have distm(di+d=2)=d=2+ min{distm(di);
distm(d(i+1))}¿d=2+ (distm(di)−1)= (d=2−1)+ distm(di)= distm(di + (d=2−1)).
We show the other inequality in a similar way that distm(di+d=2)¿d=2+(distm(d(i+
1)) − 1)= (d=2 − 1) + distm(d(i + 1))=d(i + 1) − (di + (d=2 + 1)) + distm(d(i +
1))= distm(di + (d=2 + 1)). Thus, we have the lemma.

For a village v without a nearest town (d is even and v=di + d=2), we know that
there is a shortest-path from 0 to v passing through di if distm(di)6distm(d(i+1)) and
one passing through d(i+1) if distm(d(i+1))6distm(di). Let us consider the question
of determining whether distm(di)6distm(d(i+1)) or distm(d(i+1))6distm(di). Since
distm(di)= distm−1(i) and distm(d(i+1))= distm−1(i+1), it is su�cient to determine
whether distm−1(i)6distm−1(i+1) or distm−1(i+1)6distm−1(i). A simple solution for
our question is given in the following lemma.

Lemma 7. Let d be even.
(a) When m=1; distm−1(i)6distm−1(i + 1) if i¡c=2; otherwise; distm−1(i + 1)

6distm−1(i).
(b) When m¿2; distm−1(i)6distm−1(i+1) if i (mod d)¡d=2; otherwise; distm−1(i+

1)6distm−1(i).

Proof. When m=1, the subgraph of G(cd1; d) induced by the towns is a cycle of
length c (degenerated or not). For the case where i¡c=2 (or equivalently i6(c−1)=2),
distm−1(i+1)= min{i+1; c−(i+1)}=(c−1)=2 if i=(c−1)=2; otherwise (or equiva-
lently i6c=2−1), distm−1(i+1)= i+1. Thus, we have distm−1(i+1)¿i= distm−1(i).
For the other case where i¿c=2; distm−1(i + 1)= c − (i + 1), which is less than
distm−1(i)= c − i. This proves (a). When m¿2, there exists i′ such that di′6i¡d
(i′ + 1). Now di′ and d(i′ + 1) are towns in G(cdm−1; d). Statement (b) is immediate
from Lemma 6(b), which says that distm−1(di′)¡distm−1(di′+1)¡ · · ·¡distm−1(di′+
(d=2 − 1))6distm−1(di′ + d=2), and that distm−1(di′ + d=2)¿distm−1(di′ + (d=2 +
1))¿distm−1(di′ + (d=2 + 2))¿ · · ·¿distm−1(di′ + d).

Now, we are ready to give our routing algorithm in G(cdm; d). A message in a node
v of G(cdm; d) to node 0 is delivered along a shortest-path from 0 to v in a reverse
order. When v is a village of G(cdm; d); v sends it to one of the near towns of v via
edges of either a jump +d0 or −d0. Between the near towns, v prefers the nearest
town, if any; otherwise, v chooses one according to Lemma 7. When v is a town, v
does nothing. Then, routing in G(cdm−1; d) is performed recursively. For the base case
of m=0, routing in G(cd0; d) is performed according to the following lemma.

Lemma 8. For v in G(cd0; d); dist0(v)6dist0(v + 1) if v¡c=2; otherwise; dist0(v +
1)6dist0(v).

44 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

Proof. The lemma is a restatement of Lemma 7(a).

The routing from v to w can be achieved easily from the routing from v − w to
0, since a shortest-path from v to w when it is represented by a sequence of jumps
with directions is a shortest-path from v−w to 0. The routing algorithm in G(cdm; d)
shown below sends a message in a current node to one of its neighbor nodes. Re-
peating this process, the message eventually reaches the destination. We denote by v
and w the current and destination node, respectively. We assume that v is di�erent
from w.

Shortest-Path Routing Algorithm in G(cdm; d)
v′ := (v− w)mod cdm;
Let bm · · · b1b0 be the d-ary number representation of v′;
r := the least signi�cant non-zero digit number of v′;
=* Now, we perform routing in G(cdm−r ; d) *=
if r¡m then =* r is not the most signi�cant digit number *=

case br of
br¡d/2 : forward the message to v− dr; =* by Lemmas 5 and 6 *=
br¿d/2 : forward the message to v+ dr; =* by Lemmas 5 and 6 *=
br =d/2 : =* d even *=

if r=m− 1 then =* by Lemma 7(a) *=
if br+1¡c=2 then forward the message to v− dr

else forward the message to v+ dr;
else =* by Lemma 7(b) *=

if br+1¡d=2 then forward the message to v− dr

else forward the message to v+ dr;
end;

else =* r=m and c 6= 1; by Lemma 8 *=
if bm¡c=2 then forward the message to v− dr

else forward the message to v+ dr;

Theorem 3. The shortest-path routing algorithm in G(cdm; d) is correct.

Proof. The algorithm is performed on G(cdm−r ; d), the subgraph of G(cdm; d) induced
by all multiple of dr nodes. Let v′′ be bm · · · br+1br in the d-ary number representation.
Now v′′ is a village of G(cdm−r ; d). When r=m, routing is performed according to
Lemma 8. When r¡m; v′′ �nds its nearest town, if any. If v′′ has no nearest town,
v′′ chooses one between its near towns di and d(i + 1) according to Lemma 7. Note
that the d-ary representation of di is bm · · · br+10, and that br+1 = i for r=m− 1, and
br+1 = i (mod d) for r¡m− 1. The theorem is immediate from Lemmas 3–8.

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 45

4. Network metrics of G(cdm; d)

4.1. Connectivity and edge connectivity

Connectivity measures the resiliency of a network and its ability to continue operation
despite faulty nodes and communication links. Connectivity (resp. edge-connectivity)
is the minimum number of nodes (resp. communication links) that must fail to par-
tition the network into two or more disjoint subnetworks. We denote by �(G) and
�(G) the connectivity and edge-connectivity of a graph G, respectively. It holds that
�(G)6�(G)6�(G) for every graph G.
By employing a su�cient condition in [5] for a circulant graph to have the maxi-

mum possible connectivity, we can show that �m= �m= �m, where �m and �m are the
connectivity and edge connectivity of G(cdm; d), respectively.

Theorem 4. A circulant graph G with n nodes and k jumps a1; a2; : : : ; ak such that
a1¡a2¡ · · ·¡ak6n=2 has �(G)= �(G) if a1 = 1 and ai+1 − ai6ai+2 − ai+1 for all
i; 16i6k − 2.

Corollary 2. �m= �m= �m.

Connectivity problems of recursive circulants were considered in [15]. It was shown
that G(N; d) also has the maximum possible connectivity, and that G(cdm; d) is super-�
and -� if it is not isomorphic to Cn, a cycle graph of length n. Here, a graph G is
called super-� if every vertex cut of size �(G) is the set of vertices adjacent to a single
vertex. A graph is super-� if every edge cut of size �(G) is the set of edges incident
to a single vertex.

4.2. Diameter

The diameter of a network is the maximum number of communication links that
must be traversed to transmit a message from a node to another node along a shortest-
path between them. Since G(cdm; d) is node symmetric, the diameter diam of G(cdm; d)
is the maximum of distm(v) over all nodes v, that is, diam= max06v¡cdm{distm(v)}.
We know that dia0 = bc=2c. For m¿1; v can be rewritten as di + j for some i
and j; 06i¡cdm−1; 06j¡d. Thus, we have that diam= max06i¡cdm−1 max06j¡d

{distm(di + j)}. We let Ti= max06j¡d{distm(di + j)}. To calculate Ti, we employ
Lemma 6. There are two cases depending on the parity of d.
Case A: d is odd. We have that Ti= max{distm(di + bd=2c); distm(di + dd=2e)}

by Lemma 6(a). It holds that distm(di + bd=2c)= distm(di) + bd=2c and distm(di +
dd=2e)= distm(d(i+1))+bd=2c by Lemma 5. Combining them with distm(di)= distm−1
(i) and distm(d(i+1))= distm−1(i+1), we have that Ti= max{distm−1(i); distm−1(i+
1)}+bd=2c. Thus, we have that diam= max06i¡cdm−1 Ti= max06i¡cdm−1{max{distm−1
(i); distm−1(i + 1)}} + bd=2c. The max-of-max term in the equation is equal to

46 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

max06i¡cdm−1{distm−1(i)}, which is equal to diam−1. At last we get a recursive formula
for diam: dia0 = bc=2c; diam= diam−1 + bd=2c; m¿1.

Theorem 5. For odd d; diam= bd=2cm+ bc=2c.

Proof. We prove the theorem by induction on m. For m¿1, we have that diam=
diam−1 + bd=2c= bd=2c(m− 1) + bc=2c+ bd=2c= bd=2cm+ bc=2c. This completes the
proof.

Case B: d is even. By Lemma 6(b), we have that Ti= distm(di + d=2). Since
the node di + d=2 has no nearest town, by Lemma 4(b), we have that distm(di +
d=2)= min{distm(di); distm(d(i + 1))} + d=2= min{distm−1(i); distm−1(i + 1)} + d=2.
Thus, we have that diam= max06i¡cdm−1 Ti= max06i¡cdm−1 min{distm−1(i); distm−1(i+
1)} + d=2. Let Sm−1 be the max-of-min term in the last equation, that is, Sm−1 =
max06i¡cdm−1 min{distm−1(i); distm−1(i + 1)}.

Lemma 9. Sm−1 = diam−1 − �m−1; where

�m=

0; if G(cdm; d) has a node pair (i; i + 1) such that distm(i)

= distm(i + 1)= diam;

1; otherwise:

Proof. We know that Sm−16diam−1. We have that Sm−1¿diam−1− 1 since the di�er-
ence between distm−1(i) and distm−1(i + 1) is at most one for all i, 06i¡cdm−1. If
�m−1 = 0, there exists a vertex v such that min{distm−1(v); distm−1(v + 1)}= diam−1;
otherwise, for every vertex i, min{distm−1(i); distm−1(i + 1)}6diam−1 − 1. Thus, we
have the lemma.

Now, we have a recursive formula for diam: dia0 = bc=2c; diam= diam−1 + d=2 −
�m−1; m¿1. The term �m−1 depends only on the parity of c and d as shown in the
following lemma.

Lemma 10. �m=1 if and only if both c and m are either odd or even.

Proof. �0 = 0 if c is odd; otherwise, �0 = 1. It is su�cient to show that �m=1− �m−1
for all m¿1. Firstly, we assume that �m−1 = 0 and show that �m=1. For every vertex
v=di + j such that 06i¡cdm−1, 06j 6= d=2¡d, we have that distm(v)= min{distm
(di) + j; distm(d(i + 1)) + (d − j)}6diam−1 + min{j; d − j}¡diam−1 + d=2= diam.
Thus, there is no vertex v such that distm(v)= distm(v + 1)= diam, and we have
�m=1. Secondly, we assume that �m−1 = 1 and show that �m=0. There is i such that
distm−1(i)= diam−1. We know that distm−1(i+1)= diam−1−1. We show that distm(di+
d=2−1)= distm(di+d=2)= diam. We have that distm(di+d=2−1)= distm(di)+d=2−
1= diam−1+d=2−1= diam, and that distm(di+d=2)= distm(d(i+1))+d=2= diam−1−
1 + d=2= diam. Thus, �m=0. We have the lemma.

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 47

Theorem 6. For even d;

diam =

{ bd−1
2 mc+ bc=2c if c is even;

dd−1
2 me+ bc=2c if c is odd:

Proof. The proof is done by induction on m for cases depending on the parities of c
and m. We know that diam= diam−1 + d=2− �m−1 for m¿1.
Case 1: both c and m are even. We have that diam= diam−1+d=2= b[(d−1)=2](m−

1)c+ bc=2c+ d=2= b[(d− 1)=2](m− 1) + d=2c+ bc=2c= b[(d− 1)=2]mc+ bc=2c.
Case 2: c is even and m is odd. We have that diam= diam−1+d=2−1= b[(d−1)=2]

(m−1)c+bc=2c+d=2−1= b[(d−1)=2](m−1)+d=2−1c+bc=2c= b[(d−1)=2]mc+bc=2c.
Case 3: both c and m are odd. We have that diam= diam−1+d=2= d[(d−1)=2](m−

1)e+ bc=2c+ d=2= d[(d− 1)=2](m− 1) + d=2e+ bc=2c= d[(d− 1)=2]me+ bc=2c.
Case 4: c is odd and m is even. We have that diam= diam−1 + d=2 − 1= d[(d −

1)=2](m−1)e+bc=2c+d=2−1= d[(d−1)=2](m−1)+d=2−1e+bc=2c= d[(d−1)=2]me+
bc=2c.

Fault diameter of a graph G is the maximum diameter of any graph obtained from
G by removing �(G) − 1 or less vertices. It was shown that the fault diameter of
G(2m; 2k) with k¿2 (resp. with k =1) is no more than the diameter of G(2m; 2k) plus
2k−1 (resp. 2) [22], and that the fault diameter of G(2m; 4) is no more than the diameter
of G(2m; 4) plus 1 for m¿5 [16]. The fault diameter of G(cdm; d) is not known in the
literature.

4.3. Mean internode distance

Mean internode distance is the average distance between two distinct nodes, which
is an indicator of average message delay under the uniform message distribution.
The total distance tdm from node 0 to all other nodes in G(cdm; d) is de�ned to be∑

06v¡cdm distm(v). The mean internode distance midm of G(cdm; d) is tdm=(cdm − 1)
since G(cdm; d) is node symmetric. The rest of this section is devoted to calculating tdm.

Lemma 11. td0 = bc2=4c.

Proof. Let tdk
0 be the total distance when c= k. It holds that td10 = 0 and td20 = 1. Let

�= tdk
0 − tdk−2

0 for k¿3. We have that �=(k − 1)=2 + (k − 1)=2= k − 1 for odd k,
and that �= k=2+(k−2)=2= k−1 for even k. Thus, tdk

0 = tdk−2
0 +�= b(k−2)2=4c+

(k − 1)= bk2=4c.

For m¿1, we have that tdm=
∑

06v¡cdm distm(v)=
∑

06i¡cdm−1

∑
06j¡d distm(di+

j)=
∑

06j¡d

∑
06i¡cdm−1 distm(di + j). Let Uj =

∑
06i¡cdm−1 distm(di + j); and thus

tdm=
∑

06j¡d Uj. We have two cases depending on the parity of d.

48 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

Case A: d is odd. By Lemma 5, it holds that Uj =
∑

06i¡cdm−1{distm−1(i) + j}=
tdm−1+j·cdm−1 for 06j6bd=2c, and that Uj =

∑
06i¡cdm−1{distm−1(i+1)+(d−j)}=

tdm−1 + (d − j) · cdm−1 for dd=2e6j¡d. Thus, the total distance tdm can be ex-
pressed in a recursive formula: tdm=

∑
06j¡d Uj =

∑
06j6bd=2c Uj+

∑
dd=2e6j¡d Uj =

{(bd=2c+1) · tdm−1 + cdm−1∑
06j6bd=2c j}+ {(d−dd=2e) · tdm−1 + cdm−1∑

dd=2e6j¡d

(d− j)}=d · tdm−1 + 2cdm−1∑
16j6bd=2c j=d · tdm−1 + [(d2 − 1)=4]cdm−1.

Theorem 7. For odd d; tdm= cdm([(d2 − 1)=4d]m+ bc2=4c=c).

Proof. We prove the theorem by induction on m. By Lemma 11, td0 = bc2=4c. For
m¿1, tdm=d · tdm−1+[(d2−1)=4]cdm−1 =d{cdm−1([(d2−1)=4d](m−1)+bc2=4c=c)}+
[(d2 − 1)=4]cdm−1 = cdm([(d2 − 1)=4d]m+ bc2=4c=c).

Case B: d is even. We analyze Uj based on Lemmas 4(b) and 5. Note that node
di+j has a nearest town except only when j=d=2. Thus, we have that Uj=

∑
06i¡cdm−1

{distm−1(i)+j}= tdm−1+jcdm−1 for 06j6d=2−1, and that Uj =
∑

06i¡cdm−1{distm−1
(i + 1) + (d − j)}= tdm−1 + (d − j)cdm−1 for d=2 − 16j¡d. When j=d=2, Uj =∑

06i¡cdm−1{min{distm−1(i); distm−1(i + 1)} + d=2}= ∑
06i¡cdm−1 min{distm−1(i);

distm−1(i + 1)} + (d=2)cdm−1. Let S ′
m−1 be the sum-of-min term in the last equation,

that is, S ′
m−1 =

∑
06i¡cdm−1 min{distm−1(i); distm−1(i + 1)}.

We introduce �m which is the number of node pairs (v; v+1) in G(cdm; d) such that
distm(v)= distm(v + 1), and discuss relationship between S ′

m−1 and �m later. We can
see, by Lemmas 5 and 6(b), that the equality distm(di + (d=2− 1))= distm(di + d=2)
holds only when distm(di) + 1= distm(d(i+1)), and that distm(di+ d=2)= distm(di+
(d=2 + 1)) only when distm(di)= distm(d(i + 1)) + 1. That is, a pair of towns di and
d(i + 1) such that distm(di) 6= distm(d(i + 1)) contributes one to �m. Thus, we have
that �m= cdm−1 − �m−1 for m¿1; �0 = 0 for even c, and �0 = 1 for odd c.

Lemma 12. S ′
m−1 = tdm−1 − �m=2.

Proof. We let S ′′
m−1 =

∑
06i¡cdm−1 max{distm−1(i); distm−1(i+1)}. To the sum S ′

m−1+
S ′′
m−1, i and i+1 contribute distm−1(i) and distm−1(i+1), for all i, 06i¡cdm−1. Thus,
we have that S ′

m−1 +S ′′
m−1 =

∑
06i¡cdm−1{distm−1(i)+distm−1(i+1)}=2tdm−1. To the

di�erence S ′′
m−1−S ′

m−1, i and i+1 contribute one only when distm−1(i) 6= distm−1(i+1).
Thus, S ′′

m−1 − S ′
m−1 = cdm−1 − �m−1, which is equal to �m. Combining them, we have

that S ′
m−1 = tdm−1 − �m=2.

Lemma 13. �m= [1=(d+ 1)]cdm − (−1)m(c=(d+ 1)− �0).

Proof. By induction on m. The equation holds for m=0. Since �m= cdm−1 − �m−1
for m¿1, we have that �m= cdm−1 − {[1=(d + 1)]cdm−1 − (−1)m−1(c=(d + 1) −
�0)}=(1 − [1=(d + 1)])cdm−1 + (−1)m−1(c=(d + 1) − �0)= [1=(d + 1)]cdm − (−1)m
(c=(d+ 1)− �0).

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 49

We return to the total distance tdm. We have that tdm=
∑

06j¡d Uj =
∑

06j6d=2−1
Uj +

∑
d=2+16j¡d Uj + Ud=2 =

∑
06j6d=2−1{tdm−1 + jcdm−1} +∑

d=2+16j¡d{tdm−1 +
(d − j)cdm−1} + {S ′

m−1 + (d=2)cd
m−1}=d · tdm−1 + (2

∑
16j6d=2−1 j + d=2)cdm−1 −

�m=2=d · tdm−1 + (d2=4)cdm−1 − �m=2. Thus, we get a recursive formula for tdm:
tdm=d · tdm−1 + (d2=4)cdm−1 − 1

2{[1=(d + 1)]cdm − (−1)m(c=(d + 1) − �0)}=
d · tdm−1 + dm(c=2)(d=2− 1=(d+ 1)) + (−1)m 12 (c=(d+ 1)− �0).

Theorem 8. For even d;

tdm = dm{(c=2)(d=2− 1=(d+ 1))m
+bc2=4c − [1=2(d+ 1)](c=(d+ 1)− �0)}
+(−1)m[1=2(d+ 1)](c=(d+ 1)− �0):

Proof. The proof is by induction on m. td0 = bc2=4c as we want. For m¿1, we have
that

tdm = d · tdm−1 + dm c
2

(
d
2
− 1

d+ 1

)
+ (−1)m 1

2

(
c

d+ 1
− �0

)

= d
[
dm−1

{
c
2

(
d
2
− 1

d+ 1

)
(m− 1) + bc2=4c − 1

2(d+ 1)

(
c

d+ 1
− �0

)}

+(−1)m−1 1
2(d+ 1)

(
c

d+ 1
− �0

)]

+dm c
2

(
d
2
− 1

d+ 1

)
+ (−1)m 1

2

(
c

d+ 1
− �0

)

= dm
{

c
2

(
d
2
− 1

d+ 1

)
m+ bc2=4c − 1

2(d+ 1)

(
c

d+ 1
− �0

)}

+(−1)m−1 d
2(d+ 1)

(
c

d+ 1
− �0

)
+ (−1)m 1

2

(
c

d+ 1
− �0

)

= dm
{

c
2

(
d
2
− 1

d+ 1

)
m+ bc2=4c − 1

2(d+ 1)

(
c

d+ 1
− �0

)}

+(−1)m
(

c
d+ 1

− �0

)(
1
2
− d
2(d+ 1)

)

= dm
{

c
2

(
d
2
− 1

d+ 1

)
m+ bc2=4c − 1

2(d+ 1)

(
c

d+ 1
− �0

)}

+(−1)m 1
2(d+ 1)

(
c

d+ 1
− �0

)
:

This completes the proof.

4.4. Node visit ratio and edge visit ratio

Each time a node sends a message to another node in a network, the message must
cross some communication links and pass through intermediate nodes before reaching

50 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

its destination. If the probability that all possible source–destination pairs exchange
messages is known, the number of visits to each node and communication link by an
average message can be calculated. The number of visits to a node (resp. an edge) by
an average message is called visit ratio of the node (resp. the edge). Node visit ratio
(resp. edge visit ratio) is the maximum of the visit ratios over all nodes (resp. edges)
in the network, and can be used to locate the bottleneck nodes (resp. edges) that limit
the performance of the network. Under the uniform message distribution, we analyze
node visit ratio nvrm and edge visit ratio evrm of the shortest-path routing algorithm in
G(cdm; d) presented in Section 3.
Node visit ratio nvrm can be calculated easily using the fact that G(cdm; d) is node

symmetric. A message from v to w contributes one to the visit count of each node
in the path between v and w (including v and w), and thus we have that nvrm is
(midm + 1)=cdm.

Theorem 9. nvrm= {tdm=(cdm − 1) + 1}=cdm.

Now, we consider edge visit ratio evrm. We denote by tvm(e) the number of messages
visiting the edge e among cdm − 1 messages to 0 from all nodes other than 0, and by
tvm(di) the sum of tvm(e) for every edge e of jump di. Employing the fact that every
edge pair (v; v+ di) and (w; w + di) is similar, we can see that evrm is the maximum
of tvm(di)=(cdm − 1), where tvm(di) is the average number of messages crossing edge
e of jump di, that is, tvm(di)= tvm(di)=Ei, where Ei is the number of edges of jump
di. Ei= cdm=2 if and only if di= cdm=2.

Ei =

0 if c = 1 and i = m;

cdm=2 if either c = 1; d = 2; and i = m− 1 or c = 2 and i = m;

cdm otherwise:

To analyze tvm(di), we assume that every node (including node 0) has one message
to 0 in G(cdm; d). The message on 0 does not a�ect the edge visit ratio. Remember that
the routing algorithm sends messages along the smallest jump �rst. Consider the situa-
tion that every message is sent via all edges of jump dj such that 06j¡i, and waits for
delivery in a node which is a multiple of di. We denote by �(kdi; i−1) the number of
messages waiting for delivery in node kdi, 06k¡cdm−i. Here,

∑
06k¡cdm−i �(kdi; i−1)

is always cdm. We consider �(kdi; i − 1), and then discuss tvm(di). By assumption,
�(kd0;−1)=1 for all 06k¡cdm. To compute �(kdi; i − 1), routing is considered on
the subgraph induced by the multiples of di−1 which is isomorphic to G(cdm−(i−1); d).

Lemma 14. For odd d; �(kdi; i − 1)=di for all 06i6m; 06k¡cdm−i.

Proof. We show the lemma by induction on i. For i=0, �(kd0;−1)=d0. The
node kdi receives messages from (kd + j)di−1 for all −bd=2c6j6bd=2c. Thus, we
have that �(kdi; i − 1)=

∑
−bd=2c6j6bd=2c �((kd + j)di−1; i − 2)=

∑
−bd=2c6j6bd=2c

di−1 =di.

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 51

Lemma 15. For even d and 06i¡m;

�(kdi; i − 1) =

di + Di−1 if k mod d = 0;

di − Di−1 if k mod d = d=2;

di otherwise:

where Dj =dj − Dj−1; D−1 = 0.

Proof. Dj can be rewritten as dj −dj−1 +dj−2 · · ·+(−1) jd0. We prove the lemma by
induction on i. For i=0, �(kd0;−1)=d0. The node kdi receivesmessages from (kd+
j)di−1 for all −(d=2−1)6j6d=2−1. kdi may receive messages from (kd−d=2)di−1

or (kd+ d=2)di−1 according to Lemma 7(b). We have the following:

�(kdi; i − 1)

=

∑
−d=26j6d=2

�((kd+ j)di−1; i − 2) if k mod d = 0;

∑
−d=2¡j¡d=2

�((kd+ j)di−1; i − 2) if k mod d = d=2;

∑
−d=2¡j6d=2

�((kd+ j)di−1; i − 2) if 16k mod d6d=2− 1;
∑

−d=26j¡d=2
�((kd+ j)di−1; i − 2) if d=2 + 16k mod d6d− 1:

When k mod d=0, we have that �(kdi; i−1)= ∑
−d=26j6d=2 �(jd

i−1; i−2)=d ·di−1+
(di−1−Di−2)=di+Di−1. For k =d=2, �(kdi; i−1)=d ·di−1−(di−1−Di−2)=di−Di−1.
When k 6= 0; d=2, we have that �(kdi; i − 1)=di. Thus, we have the theorem.

Lemma 16. For even d; �(kdm; m− 1)=dm if c=1. When c¿2;

�(kdm; m− 1) =

dm + Dm−1 if k = 0;

dm − Dm−1 if k = dc=2e;
dm otherwise:

Proof. When c=1; k must be 0 and �(kdm; m − 1)=dm. For c¿2, we have the
following based on Lemma 7(a). Here, we have no assumption on the parity of c.

�(kdm; m− 1)

=

∑
−d=26j6d=2

�((kd+ j)dm−1; m− 2) if k = 0;

∑
−d=2¡j¡d=2

�((kd+ j)dm−1; m− 2) if k = dc=2e;
∑

−d=2¡j6d=2
�((kd+ j)dm−1; m− 2) if 16k6dc=2e − 1;

∑
−d=26j¡d=2

�((kd+ j)dm−1; m− 2) if dc=2e+ 16k6c − 1:

52 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

For k =0, �(kdm; m−1)= ∑
−d=26j6d=2 �(jd

m−1; m−2)=d ·dm−1+(dm−1−Dm−2)=
dm + Dm−1 by Lemma 15. For k = dc=2e, we have that �(kdm; m − 1)=d ·dm−1 −
(dm−1−Dm−2)=dm−Dm−1. For the rest cases, �(kdm; m−1)=dm. This completes the
proof.

Let us consider tvm(di). Note that tvm(dm) is not de�ned when c=1, since there is
no edge of jump dm. It holds that 0¡Dj=dj61 and Dj=dj =d=(d+1){1− (−1=d) j+1}
for all j¿0.

Lemma 17.

tvm(di) =

bc2=4c if i = 0 and m = 0;

cdm−1bd2=4c if i = 0 and m¿1;

cdm−1bd2=4c if 16i ¡ m and d odd;

cdm−1{bd2=4c − (1=2)Di−1=di−1} if 16i ¡ m and d even;

dmbc2=4c if i = m and d odd;

dmbc2=4c − bc=2cDm−1 if i = m and d even:

Proof. We have that tv0(d0)=
∑

0¡j¡cmin{j; c− j}. It holds that ∑0¡j¡cmin{j; c−
j}=2∑16j6(c−1)=2 j= bc2=4c for odd c, and that

∑
0¡j¡c min{j; c − j}=2∑

16j6(c=2−1) j + c=2= bc2=4c for even c. Thus, tv0(d0)= bc2=4c. For m¿1, we have
that tdm(d0)=

∑
06k¡cdm−1

∑
0¡j¡d �((kd+j);−1)min{j; d−j}= cdm−1∑

0¡j¡d min
{j; d−j}= cdm−1bd2=4c. Now, we consider the case of 16i¡m. We have that tdm(di)
=

∑
06k¡cdm−i−1

∑
0¡j¡d �((kd + j)di; i − 1)min{j; d − j}= cdm−i−1∑

0¡j¡d �(jd
i;

i−1)min{j; d−j}. For odd d, by Lemma 14, we have that tdm(di)= cdm−i−1∑
0¡j¡d d

i

min{j; d−j}= cdm−1bd2=4c. For even d, by Lemma 15, we have that tvm(di)= cdm−i−1

{2∑16j6d=2−1 d
ij + (di − Di−1)d=2}= cdm−1{bd2=4c − (1=2)Di−1=di−1}. For the last

case of i=m(c¿2), we have that tvm(dm)=
∑

0¡k¡c �(kd
m; m − 1) min{k; c − k}.

For odd d, by Lemma 14, tvm(dm)=
∑

0¡k¡c d
m min{k; c − k}=dmbc2=4c. For even

d, by Lemma 16, tvm(dm)=
∑

0¡k¡c; k 6=dc=2e d
m min{j; c − j} + (dm − Dm−1)bc=2c

=dmbc2=4c − bc=2cDm−1.

Lemma 18. (a) For 16i¡m; tvm(di)6tvm(d0).
(b) For m¿1 and c¿2; tvm(dm)6tvm(d0).
(c) For even d and 16i¡m; tvm(di)− tvm(di−1)= (−1)icdm−i=2.

Proof. A proof of (a) is immediate from Lemma 17 since Di−1=di−1 is always positive.
We have that tdm(d0)−tdm(dm)=dm−1{cbd2=4c−dbc2=4c}¿0 for odd d and tdm(d0)−
tdm(dm)=dm−1{cbd2=4c − dbc2=4c} + bc=2cDm−1¿0 for even d, since cbd2=4c −
dbc2=4c¿c(d2 − 1)=4 − d(c2=4)= {cd(d − c) − c}=4¿(cd − c)=4¿0. For (c), we

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 53

have that tvm(di)− tvm(di−1)= − (12)cdm−1(Di−1=di−1−Di−2=di−2). Here, Di−1=di−1−
Di−2=di−2 = (Di−1 − dDi−2)=di−1 = (−1)i−1=di−1. This completes the proof.

By using Lemmas 17 and 18, we can calculate edge visit ratio evrm.

Theorem 10.

evrm =

{bc2=4c=c}=(cdm − 1) if m = 0;

1
3{2 + (−

1
2
)m−1}=(cdm − 1) if c = 1; d = 2; and m¿2;

1=(cdm − 1) if either c = 1; d = 2; and m = 1

or c = 2 and d = 3;

{bd2=4c=d}=(cdm − 1) otherwise:

Proof. Let T be the maximum of tvm(di)= tvm(di)=Ei over all possible i. Then we
have that evrm=T=(cdm − 1). When m=0, we have that T = tvm(d0)=cd0 = bc2=4c=c.
We assume that m¿1. Note that Ei=0 if c=1 and i=m; Ei= cdm=2 if either c=1,
d=2, and i=m− 1 or c=2 and i=m; otherwise, Ei= cdm.
Case 1: c=1. We have no edge of jump dm.
Case 1.1: d odd. By Lemma 18(a), T = max06i6m−1 tvm(di)=cdm= tvm(d0)=cdm

= cdm−1bd2=4c=cdm= bd2=4c=d.
Case 1.2: d even.
Case 1.2.1: d=2: Em−1 = cdm=2.
When m=1; T = tvm(d0)=E0 = cdm−1bd2=4c=(cdm=2)=1. For m¿2, we have that

max06i6m−2 tvm(di)=cdm= tvm(d0)=cdm= bd2=4c=d= 1
2 , and that tvm(dm−1)=Em−1 =

cdm−1{bd2=4c − (12)Dm−2=dm−2}=(cdm=2)=1 − (12)Dm−2=dm−2¿ 1
2 since it holds that

06Dm−2=dm−261. Thus, we have that T =1 − (12)Dm−2=dm−2 and can show that
T = {2 + (− 1

2)
m−1}=3.

Case 1.2.2: d 6=2.
We have that T = max06i6m−1 tvm(di)=cdm= tvm(d0)=cdm= bd2=4c=d.
Case 2: c=2: Em= cdm=2.
Case 2.1: d odd. We have that max06i6m−1 tvm(di)=cdm= tvm(d0)=cdm= bd2=4c=d,

and that tvm(dm)=(cdm=2)=dmbc2=4c=(cdm=2)=(2=c)bc2=4c=1. Thus, T=max{bd2=4c=
d; 1}. T =1 if d=3; otherwise, T = bd2=4c=d.
Case 2.2: d even. We have that max06i6m−1 tvm(di)=cdm= tvm(d0)=cdm= bd2=4c=d,

and that tvm(dm)=(cdm=2)= {dmbc2=4c − bc=2cDm−1}=(cdm=2)= (2=c)bc2=4c − (2=cd)
bc=2cDm−1=dm−1 = 1− (1=d)Dm−1=dm−1. We can see that bd2=4c=d=d=4¿1, and that
1−(1=d)Dm−1=dm−1 = 1−[1=(d+1)]{1−(−1=d)m}61−1=d since 0¡1−(−1=d)m6(d+
1)=d for all m¿1. Thus, we have that T = max{bd2=4c=d; 1 − (1=d)Dm−1=dm−1}
= bd2=4c=d.
Case 3: c¿3.
We have that T = max06i6m tvm(di)=cdm= tvm(d0)=cdm= bd2=4c=d. This completes

the proof.

54 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

5. Embeddings among G(2m; 2k) and Qm

An embedding of a (guest) graph G into a (host) graph H is a one-to-one mapping
� of the vertices of G into the vertices of H , combined with a mapping of an edge
e=(v; w) of G to a path �(e) of H between �(v) and �(w). The cost of an embedding
� is measured in terms of dilation, congestion, and expansion. The dilation of an edge
e in G under the embedding � is the length of the path �(e), and the dilation of �
is the maximum dilation over all edges in G. The congestion of an edge e′ in H is
the number of edges e in G with �(e) including e′, and the congestion of � is the
maximum congestion over all edges in H . The expansion of � is the ratio of the size
of G to the size of H .

5.1. Embedding of G(2m; 2k) into Qm

We present an expansion one embedding �m of recursive circulant G(2m; 2k) into
hypercube Qm. The embedding �m is simple and recursively de�ned. The node �m(v)
of Qm to which a node v of G(2m; 2k) is mapped is a vth m-bit binary reected Gray
code, which is de�ned as follows: �1(0)= 0 and �1(1)= 1; �m(v)=�m−1(bv=2c)b,
where b=0 if vmod 4 is either 0 or 3, b=1 otherwise. The sequence of �3(v)’s, for
example, is (000; 001; 011; 010; 110; 111; 101; 100). The sequence of �m(v)’s forms a
hamiltonian cycle of Qm, and we call it the canonical cycle of Qm.
Let us restrict our attention to the embedding of G(2m; 2) into Qm. The embedding

of G(2m; 2k) into Qm can be obtained directly from the embedding of G(2m; 2) into Qm

with the same embedding costs since G(2m; 2k) is a subgraph of G(2m; 2). To de�ne
the path �m(e) of Qm for an edge e of G(2m; 2), it is convenient to represent the
embedding �m in a graphical way.
In the graphical representation of �m, Qm is drawn in a usual way (see Fig. 5(a) and

(b)): small circles for vertices and solid lines for edges of Qm. A node v of G(2m; 2)
mapped to the node �m(v) of Qm is parenthesized and shown next to �m(v). An edge
e=(v; w) of G(2m; 2) mapped to the path �m(e) of Qm is drawn in dotted line between
�m(v) and �m(w).
The embedding �m of G(2m; 2) into Qm can be constructed recursively (see also

Fig. 5). We denote by �′
m the embedding �m excluding all the dotted paths mapped

from the edges of jump one. That is, �′
m is an embedding of G(2m; 2) without edges

of jump one into Qm. We make two copies �′
m−1 and concatenate “0” and “1” at

the end of vertices in the �rst and second copy of Qm−1, respectively. Now they are
the vertices of Qm. Join by a solid edge between nodes di�ering only in the last bit
position, and rename the parenthesized nodes of G(2m; 2) according to �m(v).
Observe that the dotted path mapped from an edge of jump 2j (j¿1) in �m−1 is

now the path for an edge of jump 2j+1 in �m. The dotted paths �m(e) for edges of
jump one are drawn on the canonical cycle of Qm, and the dotted paths �m(e) for
edges of jump two are drawn in such a way that the congestions of edges on the
canonical cycle of each Qm−1 are increased by no more than two and the congestions
of edges joining nodes di�ering in the last bit position are three.

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 55

Fig. 5. Graphical representation of �m.

We are ready to de�ne the path �m(e) of Qm to which an edge e=(v; w) of G(2m; 2)
is mapped. The path is represented by a sequence of vertices. Assume v + 2i ≡
w (mod 2m).
Case 1: i¿2. �m(e) is obtained by concatenating b at the end of each vertex in the

path �m−1(e′) of Qm−1, where e′=(bv=2c; bw=2c); b=0 if vmod 4 is either 0 or 3,
and b=1 otherwise.
Case 2: i=1. �m(e) is the path of length two passing through the vertex �m((v +

3)mod 2m) if vmod 4 is either 0 or 2, and passing through the vertex �m((v−1)mod 2m)
otherwise.
Case 3: i=0. �m(e) is the path �m(v); �m(w) of length one.

56 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

Now, we consider the costs, dilation and congestion, of the embedding �m of
G(2m; 2) into Qm. To analyze the costs, we consider the costs of �′

m �rst.

Lemma 19. The embedding �′
m satis�es the two conditions for all m.

(a) The dilation of an edge of jump greater than one is two.
(b) The congestion of an edge on the canonical cycle of Qm is no more than two;

and the congestions of the other edges are no more than four.

Proof. We prove the lemma by induction on m. Observe that two conditions (a) and
(b) hold for m=2; 3 as shown in Fig. 5. Assume that the embedding �′

m−1 satis�es the
conditions. The dilation of an edge of jump two is two by the de�nition of �m. The
dilation of an edge of jump greater than two in �′

m is equal to that of an edge of half
jump in �′

m−1, thus two. Thus, we have (a). An edge on the canonical cycle of Qm is
either an edge joining nodes di�ering in the last bit position (we call it type A edge)
or on an canonical cycle of Qm−1 (we call it type B edge). The congestion of type A
edge is two by the construction of �m, and the congestion of type B edge remains two
since every dotted path from an edge of jump two passes through no type B edge. The
congestion of an edge not on the canonical cycle of Qm; but on an canonical cycle of
Qm−1 is increased by two, still no more than four. The congestions of the other edges
remain unchanged. This completes the proof.

Theorem 11. G(2m; 2) can be embedded into Qm with dilation two and congestion
four.

Proof. The dotted paths �m(e) for edges of jump one are of length one and drawn on
the canonical cycle of Qm. The dilation of an edge of jump one in G(2m; 2) is one,
and the congestion of an edge on the canonical cycle is increased by one. Thus, by
Lemma 19, �m is an embedding with dilation two and congestion four.

Corollary 3. G(2m; 2k) can be embedded into Qm with dilation two and congestion
four.

Dilation of the embedding is the best possible for k¡m, since G(2m; 2k) is not a
subgraph of Qm. G(2m; 2k) has a cycle 0; 1; : : : ; 2k of length 2k + 1, while Qm has no
odd length cycle.

5.2. Embedding of Qm into G(2m; 2k)

We present the embeddings of Qm into G(2m; 2k) based on the embeddings of Qk

into a path graph P2k , which has vertices {0; 1; : : : ; 2k − 1} and edges {(v; w) | v +
1=w}. One of the embeddings of Qm into G(2m; 2k), denoted by k

m, is an identity
mapping. Recall that Qm and G(2m; 2k) have the same vertex set. We also employ
graphical representations for embedding k

m. Here small circles and solid lines are used
for representing vertices and edges of G(2m; 2k), and dotted lines for paths of G(2m; 2k)
mapped from edges of Qm. For example, see Fig. 6.

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 57

Fig. 6. Graphical representation of 2m.

Under the embedding k
m, the vertices of Qm with the same least signi�cant k bits

are mapped to the vertices of G(2m; 2k) with the same remainder when divided by 2k .
The dotted path k

m(e) in G(2m; 2k) for an edge e=(v; w) is drawn on the line between
 k
m(v) and k

m(w) if v and w di�er in one of the least signi�cant k bits; otherwise, the
path k

m(e) comes from the path k
m−k(e

′) in G(2m−k ; 2k), where e′=(bv=2kc; bw=2kc).
The path k

m(e) of G(2m; 2k) for an edge e=(v; w) of Qm is de�ned in the follow-
ing. We assume that v= bm−1 · · · bi+10bi−1 · · · b0 and w= bm−1 · · · bi+11bi−1 · · · b0; bj ∈
{0; 1}. The path is represented by a sequence of vertices.
Case 1: 06i6k−1. k

m(e) is the dotted path k
m(v);

k
m(v+1); : : : ;

k
m(w) of length 2

i.
Case 2: k + 16i6m. k

m(e) is the path obtained by multiplying 2
k and adding

 k
m(v)mod 2

k for each vertex in the path k
m−k(e

′), where e′=(v′; w′), and v′ and w′

are m− k bit binary numbers obtained by deleting the least signi�cant k bits of v and
w, respectively.

Let us consider the costs of embedding k
m. The identity embedding of Qk into P2k

was studied in [12]. It was proved that the embedding has dilation 2k−1 and congestion
b2k+1=3c, and that both congestion and the sum 22k−1−2k−1 of dilations over all edges
are the minimum possible.

Lemma 20. The identity embedding of Qk into P2k has dilation 2k−1 and congestion
b2k+1=3c.

58 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

Theorem 12. Qm can be embedded into G(2m; 2k) with dilation 2k−1 and congestion
b2k+1=3c.

Proof. The dilation (resp. congestion) of k
m is the maximum of the dilation (resp.

congestion) of k
m−k and the dilation (resp. congestion) of identity embedding of Qk

into P2k . For m′6k, both dilation and congestion of k
m′ are less than or equal to

those of the identity embedding of Qk into P2k , respectively. Thus, the dilation and
congestion of k

m are equal to those of the identity embedding of Qk into P2k , respec-
tively.

Insisting on embeddings of Qm into G(2m; 2k) such that vertices of Qm with the
same last k bits are mapped to vertices of G(2m; 2k) with the same remainder when
divided by 2k , we can reduce dilation of the embedding by employing the optimal
dilation embedding of Qk into P2k in [13]. We can de�ne another embedding ′k

m of
Qm into G(2m; 2k) in a very similar way to k

m. An edge (v; w) is mapped to the path
 ′k
m (e) according to the embedding of Qk into P2k if v and w di�er in one of the
least signi�cant k bits; otherwise, the path ′k

m (e) comes from the path ′k
m−k(e

′) in
G(2m−k ; 2k), where e′=(bv=2kc; bw=2kc). Detailed description of the embedding ′k

m is
omitted.

Lemma 21. Qk can be embedded into P2k with dilation
∑k−1

i=0

(i
bi=2c

)
and congestion

dk=2e(k
bk=2c

)
.

Proof. We employ the algorithm in [13] for embedding Qk into P2k with the optimal di-
lation

∑k−1
i=0

(i
bi=2c

)
to analyze the congestion of the embedding. The algorithm chooses

any vertex and maps it to 0; having l vertices mapped to {0; 1; : : : ; l− 1}, it maps to l
from any vertex adjacent to the earliest mapped vertex as possible. For our purpose, we
assume that in the �rst step, the algorithm chooses the vertex 0 in Qk . We denote by
Wi the subset of vertices in Qk , whose binary representation has i 1’s. We observe that
every vertex in Wi is chosen before any vertex in Wi+1, and that the vertices in Wi are
mapped to W ′

i = {vi; vi+1; : : : ; vi+|Wi|−1} where vi=
∑

06j¡i |Wj|. Among k edges in-
cident to a vertex mapped to vi+j; i edges have endvertices in Wi−1 and the remaining
k− i edges have endvertices in Wi+1. Thus, the congestion of the edge (vi+j−1; vi+j)
is equal to i(|Wi| − j) + (k − i)j. The maximum congestion Ci over all edges incident
to a vertex in W ′

i is max06j6|Wi|{i(|Wi| − j)+ (k − i)j}= max{i; k − i}|Wi|. Note that
Ci= max{i; k − i}(ki)=Ck−i. The congestion of the embedding is Cmax = max06i6k

Ci= max06i6bk=2c Ci. We claim that Cmax=Cbk=2c=dk=2e(k
bk=2c

)
. For every i6bk=2c−1,

it holds that Ci+1=Ci=(k−(i+1))=(i+1)¿1 since max{i+1; k−(i+1)}= k−(i+1),
max{i; k − i}= k − i, and

(k
i+1

)
=
(k
i

)
=(k − i)=(i + 1). Thus, we have the claim. This

completes the proof.

Theorem 13. Qm can be embedded into G(2m; 2k) with dilation
∑k−1

i=0

(i
bi=2c

)
and con-

gestion dk=2e(k
bk=2c

)
.

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 59

Fig. 7. Relationship among G(2m; 2), G(2m; 4), and Qm in their embeddings.

Proof. We can observe that the dilation (resp. congestion) of ′k
m is the maximum

of the dilation (resp. congestion) of ′k
m−k and the dilation (resp. congestion) of the

embedding of Qk into P2k , and thus we have the theorem by Lemma 21.

5.3. Embedding of G(2m; 2) into G(2m; 2k)

We present an embedding of G(2m; 2) into G(2m; 2k). The embedding is an identity
mapping, that is, a vertex v of G(2m; 2) is mapped to the same vertex v of G(2m; 2k).
An edge e=(v; w) of G(2m; 2) satisfying v+2i ≡w (mod ; 2m) is mapped to the dotted
path v; v+1; v+2; : : : ; w between v and w on the hamiltonian cycle consisting of edges
of jump one if i ¡ k. Here, the additions are performed modulo 2m. Otherwise, the
path comes from the embedding of G(2m−k ; 2) into G(2m−k ; 2k). Detailed description
of the embedding is omitted.

Theorem 14. G(2m; 2) can be embedded into G(2m; 2k) with dilation 2k−1 and con-
gestion 2k − 1.

Proof. Let us consider the embedding of all edges of jump less than 2k into the
hamiltonian cycle of length 2m. The dilation of the embedding is obviously 2k−1. All
edges of jump 2i contribute 2i to the congestion of an edge, and thus the congestion
of the embedding is

∑
06j6k−1 2

j =2k − 1. We can observe that the dilation (resp.
congestion) of the embedding of G(2m; 2) into G(2m; 2k) is the maximum of 2k−1

(resp. 2k − 1) and the dilation (resp. congestion) of the embedding of G(2m−k ; 2) into
G(2m−k ; 2k). Combining this with the fact that the dilation (resp. congestion) of the
embedding of G(2m

′
; 2) into G(2m

′
; 2k) with m′6k is less than or equal to 2k−1 (resp.

2k − 1), we can prove the theorem.

5.4. Relationship among G(2m; 2), G(2m; 4), and Qm

Let us discuss some interesting relationships between recursive circulants and hyper-
cubes, especially among G(2m; 2), G(2m; 4), and Qm. The relationships are presented in
Fig. 7. Here an arrow with weights from a graph G to H is an embedding of G into H
and their associated costs: dilation and congestion in sequence. Both G(2m; 4) and Qm

are subgraphs of G(2m; 2). G(2m; 2) can be embedded into Qm with dilation two and
congestion four by Theorem 11. G(2m; 4) also can be embedded into Qm with the same

60 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

costs. And Qm can be embedded into G(2m; 4) with dilation two and congestion two
by Theorem 12. The embedding of G(2m; 2) into G(2m; 4) is due to the Theorem 14.
Now, let us consider optimality of the embedding costs given in Fig. 7. It is easy

to check that dilations of all the given embeddings are optimal. Congestion of the
embedding of Qm into G(2m; 4) is optimal for m¿3 since they are non-isomorphic
graphs with the same number of vertices and edges.
Optimality of congestion of the embedding of G(2m; 2) into G(2m; 4) can be shown

by a simple counting argument. Among (2m−1)2m−1 edges of G(2m; 2), at most m2m−1
edges are mapped to dotted paths of length one and at least (m − 1)2m−1 edges are
mapped to paths of length two or more. The sum of lengths of the dotted paths is
at least (3m − 2)2m−1. Even though they are distributed over all edges of G(2m; 4),
congestion of the embedding is at least d(3m− 2)2m−1=m2m−1e= d(3m− 2)=me, which
is greater than or equal to three for all m¿3. Thus, the embedding of G(2m; 2) into
G(2m; 4) has an optimal congestion for m¿3.
It is not known whether or not congestions of the embedding of G(2m; 2) and

G(2m; 4) into Qm are optimal. If we insist on embeddings by the binary reected
Gray code, congestion four is not avoidable by a counting argument.

6. Concluding remarks

In this paper, recursive circulants were proposed as an interconnection structure
for multicomputer networks. Recursive circulants are node symmetric and have some
strong hamiltonian properties: G(N; d) is either hamiltonian connected or bipartite and
bihamiltonian connected, and G(cdm; d) is hamiltonian decomposable. We developed a
shortest-path routing algorithm without routing table in G(cdm; d), and analyzed several
important network metrics of G(cdm; d) such as connectivity, diameter, mean internode
distance, and visit ratio (under the uniform message distribution). As shown in Table 1,
G(2m; 4) achieves noticeable improvements compared with hypercube Qm in diameter,
mean internode distance, and node visit ratio. Connectivity and edge connectivity, edge
visit ratio of G(2m; 4) are equal to those of Qm, respectively. G(2m; 4) has a simple
shortest-path routing algorithm and a simple recursive broadcasting algorithm.
We presented an embedding of G(2m; 2k) into Qm based on the binary reected

Gray code with dilation two and congestion four, and also gave embeddings of Qm into
G(2m; 2k) based on embeddings of Qk into P2k with either dilation 2k−1 and congestion
b2k+1=3c or dilation ∑k−1

i=0

(i
bi=2c

)
and congestion dk=2e(k

bk=2c
)
. All of the embeddings

presented in this paper have an optimal expansion. To study embeddings into Qm

and G(2m; 2k), it is worthwhile investigating embeddings into G(2m; 2). Embedding of
an arbitrary binary tree into Qm with dilation two is one of the long-standing open
questions [4, 26, 27]. Related to the open question, we pose an open problem whether
or not every binary tree with 2m nodes or less is a subtree of G(2m; 2). If our open
problem has a positive answer, the question also has a positive one, but the converse
is not true in general.

J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62 61

Table 1
Comparison of G(2m; 4) with Qm

G(2m; 4) Qm

Number of nodes 2m 2m

Degree m m
Symmetry Node- Yes Yes

Edge- No Yes
Hamiltonicity Hamiltonian connected Yes Bihamiltonian connected

Hamiltonian decomposition Yes Yes
Connectivity Node- m m

Edge- m m
Distance Diameter d(3m − 1)=4e m

Mean internode distance Approx.
(
9
20

)
m Approx.

(
1
2

)
m

Visit ratio Node- Approx.
{(

9
20

)
m + 1

}
=2m Approx.

{(
1
2

)
m + 1

}
=2m

Edge- 1=(2m − 1) 1=(2m − 1)
Subgraph Cycle of length l Every l¿4 Every even l¿4

Complete binary tree Yes No
Binomial tree Yes Yes

Graph invariant Chromatic number, m¿3 3 2

Independence number, m¿3
(
3
8

)
2m

(
1
2

)
2m

Acknowledgements

Prof. D. F. Hsu in Fordham University suggested the term “recursive circulant”. The
authors would like to thank profs. Hee-Chul Kim, Sung Kwon Kim, and Hyeong-Seok
Lim for their help and the anonymous referee for improving the presentation of this
paper.

References

[1] S.B. Akers, B. Krishnamurthy, On group graphs and their fault tolerance, IEEE Trans. Comput. 36
(1987) 885–888.

[2] B.W. Arden, H. Lee, Analysis of chordal ring network, IEEE Trans. Computers 30 (1981) 291–295.
[3] L. Banachowski, A. Kreczmar, W. Rytter, Analysis of Algorithms and Data Structures, Addison-Wesley

Publishing Company, Seoul, 1991, pp. 143–162.
[4] S.N. Bhatt, F.R.K. Chung, F.T. Leighton, A.L. Rosenberg, E�cient embeddings of trees in hypercubes,

SIAM J. Comput. 21 (1992) 151–162.
[5] F. Boesch, A. Felzer, A general class of invulnerable graphs, Networks 2 (1972) 261–283.
[6] C.C. Chen, N.F. Quimpo, On strongly hamiltonian abelian group graphs, Australian Conference on

Combinatorial Mathematics, Lecture Notes in Mathematics, vol. 884, Springer, Berlin, 1980, pp. 23–34.
[7] D.Z. Du, F.K. Hwang, Generalized de Bruijn digraphs, Networks 18 (1988) 27–38.
[8] J.A. Ellis, Embedding rectangular grids into square grids, IEEE Trans. Comput. 40 (1991) 46–52.
[9] A.-H. Esfahanian, L.M. Ni, B.E. Sagan, The twisted N-cube with application to multiprocessing, IEEE

Trans. Comput. 40 (1) (1991) 88–93.
[10] A.M. Farley, Minimal broadcast networks, Networks 9 (1979) 313–332.
[11] G. Gauyacq, C. Micheneau, A. Raspaud, Routing in recursive circulants: edge forwarding index and

hamiltonian decomposition, Proc. 24th Internat. Workshop on Graph-Theoretic Concepts in Computer

62 J.-H. Park, K.Y. Chwa / Theoretical Computer Science 244 (2000) 35–62

Science WG’98, Smolenice Castle, Slovak, Lecture Notes in Computer Science, vol. 1517, Springer,
Berlin, 1998, pp. 227–241.

[12] L.H. Harper, Optimal assignments of numbers to vertices, J. Soc. Ind. Appl. Math. 12 (1964) 131–135.
[13] L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Combin. Theory 1 (1996)

385–393.
[14] K. Hwang, F.A. Briggs, Computer Architecture and Parallel Processing, 4th printing, McGraw-Hill

International Editions, New York, 1988.
[15] S.-W. Jung, S.-Y. Kim, J.-H. Park, K.Y. Chwa, Connectivities of recursive circulant graphs, Proc. 19th

KISS Spring Conf., 1992, pp. 591–594 (in Korean).
[16] H.-C. Kim, S.-B. Kim, K.Y. Chwa, Fault diameter of recursive circulants, Proc. 21th KISS Fall Conf.,

1994, pp. 663–666 (in Korean).
[17] S.-Y. Kim, S.-O. Sul, K.Y. Chwa, Embeddings of pyramids into recursive circulants, J. Korea Inform.

Sci. Soc. 24 (1997) 232–239 (in Korean).
[18] H.-S. Lim, J.-H. Park, K.Y. Chwa, Embedding trees in recursive circulants, Discrete Appl. Math. 69

(1996) 83–93.
[19] C. Micheneau, Graphes R�ecursifs Circulants, Communication Vagabondes et Simulation, Ph.D. Thesis,

LaBRI, Universit�e Bordeaux I, France, 1996.
[20] J.-H. Park, Hamiltonian decomposition of recursive circulants, Proc. 9th Internat. Symp. on Algorithms

and Computation ISAAC’98, Taejon, Korea, Lecture Notes in Computer Science, vol. 1533, Springer,
Berlin, 1998, pp. 297–306.

[21] J.-H. Park, K.Y. Chwa, Recursive circulant: a new topology for multicomputer networks (extended
abstract), Proc. Internat. Symp. Parallel Architectures, Algorithms and Networks ISPAN’94, Kanazawa,
Japan, December 1994, pp. 73–80.

[22] J.-H. Park, K.Y. Chwa, Disjoint paths of bounded length in recursive circulants G(2m; 2k), Proc. 25th
KISS Spring Conf., 1998, pp. 685–687 (in Korean).

[23] D.A. Reed, R.M. Fujimoto, Multicomputer Networks: Message-Based Parallel Processing, The MIT
Press, Cambridge, MA, 1987.

[24] A.L. Rosenberg, Issues in the Study of Graph Embeddings, Lecture Notes in Computer Science, vol.
100, Springer, New York, 1981, pp. 150–176.

[25] N.-F. Tzeng, S. Wei, Enhanced hypercubes, IEEE Trans. Comput. 40 (1991) 284–294.
[26] A. Wagner, Embedding arbitrary binary trees in a hypercube, J. Parallel Distributed Comput. 7 (1989)

503–520.
[27] A.Y. Wu, Embedding of tree networks into hypercubes, J. Parallel Distributed Comput. 2 (1985)

238–249.

