10 research outputs found

    Inverse Reinforcement Learning in a Continuous State Space with Formal Guarantees

    Full text link
    Inverse Reinforcement Learning (IRL) is the problem of finding a reward function which describes observed/known expert behavior. The IRL setting is remarkably useful for automated control, in situations where the reward function is difficult to specify manually or as a means to extract agent preference. In this work, we provide a new IRL algorithm for the continuous state space setting with unknown transition dynamics by modeling the system using a basis of orthonormal functions. Moreover, we provide a proof of correctness and formal guarantees on the sample and time complexity of our algorithm. Finally, we present synthetic experiments to corroborate our theoretical guarantees

    Asymptotically Optimal Motion Planning for Learned Tasks Using Time-Dependent Cost Maps

    Get PDF
    In unstructured environments in people’s homes and workspaces, robots executing a task may need to avoid obstacles while satisfying task motion constraints, e.g., keeping a plate of food level to avoid spills or properly orienting a finger to push a button. We introduce a sampling-based method for computing motion plans that are collision-free and minimize a cost metric that encodes task motion constraints. Our time-dependent cost metric, learned from a set of demonstrations, encodes features of a task’s motion that are consistent across the demonstrations and, hence, are likely required to successfully execute the task. Our sampling-based motion planner uses the learned cost metric to compute plans that simultaneously avoid obstacles and satisfy task constraints. The motion planner is asymptotically optimal and minimizes the Mahalanobis distance between the planned trajectory and the distribution of demonstrations in a feature space parameterized by the locations of task-relevant objects. The motion planner also leverages the distribution of the demonstrations to significantly reduce plan computation time. We demonstrate the method’s effectiveness and speed using a small humanoid robot performing tasks requiring both obstacle avoidance and satisfaction of learned task constraints

    Robots that Learn and Plan — Unifying Robot Learning and Motion Planning for Generalized Task Execution

    Get PDF
    Robots have the potential to assist people with a variety of everyday tasks, but to achieve that potential robots require software capable of planning and executing motions in cluttered environments. To address this, over the past few decades, roboticists have developed numerous methods for planning motions to avoid obstacles with increasingly stronger guarantees, from probabilistic completeness to asymptotic optimality. Some of these methods have even considered the types of constraints that must be satisfied to perform useful tasks, but these constraints must generally be manually specified. In recent years, there has been a resurgence of methods for automatic learning of tasks from human-provided demonstrations. Unfortunately, these two fields, task learning and motion planning, have evolved largely separate from one another, and the learned models are often not usable by motion planners. In this thesis, we aim to bridge the gap between robot task learning and motion planning by employing a learned task model that can subsequently be leveraged by an asymptotically-optimal motion planner to autonomously execute the task. First, we show that application of a motion planner enables task performance while avoiding novel obstacles and extend this to dynamic environments by replanning at reactive rates. Second, we generalize the method to accommodate time-invariant model parameters, allowing more information to be gleaned from the demonstrations. Third, we describe a more principled approach to temporal registration for such learning methods that mirrors the ultimate integration with a motion planner and often reduces the number of demonstrations required. Finally, we extend this framework to the domain of mobile manipulation. We empirically evaluate each of these contributions on multiple household tasks using the Aldebaran Nao, Rethink Robotics Baxter, and Fetch mobile manipulator robots to show that these approaches improve task execution success rates and reduce the amount of human-provided information required.Doctor of Philosoph

    Generative Models for Learning Robot Manipulation Skills from Humans

    Get PDF
    A long standing goal in artificial intelligence is to make robots seamlessly interact with humans in performing everyday manipulation skills. Learning from demonstrations or imitation learning provides a promising route to bridge this gap. In contrast to direct trajectory learning from demonstrations, many problems arise in interactive robotic applications that require higher contextual level understanding of the environment. This requires learning invariant mappings in the demonstrations that can generalize across different environmental situations such as size, position, orientation of objects, viewpoint of the observer, etc. In this thesis, we address this challenge by encapsulating invariant patterns in the demonstrations using probabilistic learning models for acquiring dexterous manipulation skills. We learn the joint probability density function of the demonstrations with a hidden semi-Markov model, and smoothly follow the generated sequence of states with a linear quadratic tracking controller. The model exploits the invariant segments (also termed as sub-goals, options or actions) in the demonstrations and adapts the movement in accordance with the external environmental situations such as size, position and orientation of the objects in the environment using a task-parameterized formulation. We incorporate high-dimensional sensory data for skill acquisition by parsimoniously representing the demonstrations using statistical subspace clustering methods and exploit the coordination patterns in latent space. To adapt the models on the fly and/or teach new manipulation skills online with the streaming data, we formulate a non-parametric scalable online sequence clustering algorithm with Bayesian non-parametric mixture models to avoid the model selection problem while ensuring tractability under small variance asymptotics. We exploit the developed generative models to perform manipulation skills with remotely operated vehicles over satellite communication in the presence of communication delays and limited bandwidth. A set of task-parameterized generative models are learned from the demonstrations of different manipulation skills provided by the teleoperator. The model captures the intention of teleoperator on one hand and provides assistance in performing remote manipulation tasks on the other hand under varying environmental situations. The assistance is formulated under time-independent shared control, where the model continuously corrects the remote arm movement based on the current state of the teleoperator; and/or time-dependent autonomous control, where the model synthesizes the movement of the remote arm for autonomous skill execution. Using the proposed methodology with the two-armed Baxter robot as a mock-up for semi-autonomous teleoperation, we are able to learn manipulation skills such as opening a valve, pick-and-place an object by obstacle avoidance, hot-stabbing (a specialized underwater task akin to peg-in-a-hole task), screw-driver target snapping, and tracking a carabiner in as few as 4 - 8 demonstrations. Our study shows that the proposed manipulation assistance formulations improve the performance of the teleoperator by reducing the task errors and the execution time, while catering for the environmental differences in performing remote manipulation tasks with limited bandwidth and communication delays

    Combining Model-Based with Learning-Based Approaches for Autonomous Manipulation

    Get PDF
    Kollaboration zwischen Menschen und Robotern gewinnt zunehmend an Bedeutung in der Industrie und Forschung. Manipulation ist eine Grundvoraussetzung für eine erfolgreiche Kollaboration und deshalb eine grundlegende Forschungsfrage in der Robotik. Bei der Manipulation von Objekten, zum Beispiel beim Greifen eines Bohrers, müssen Roboter mit einer dynamischen Umgebungen, partieller Wahrnehmung, Model- und Ausführungsunsicherheit zurechtkommen. In dieser Arbeit identifizieren wir Einschränkungen von modellbasierten Ansätzen des gegenwärtigen Standes der Technik für Manipulationsaufgaben und untersuchen wie man diese mit Lernverfahren kombinieren und verbessern kann, um autonome Manipulation zu ermöglichen. Maschinelle Lernverfahren wie neuronale Netze\textit{neuronale Netze}, die mithilfe von großen Datenmengen ein gutes Modell lernen, sind sehr geeignet für die Robotik, da Roboter ihre Umgebung mithilfe von einer Vielzahl an Sensoren wahrnehmen und dadurch eine Fülle von Daten erzeugen. Im Gegensatz zu anderen Forschungsgebieten, wie zum Beispiel Sprach- und Bildverarbeitung, interagieren Roboter mit ihrer Umgebung, sodass Vorhersagen einen physikalischen Einfluss auf die Umgebung haben. Aufgrund der Interaktion mit der Umgebung und der kontinuierlichen Wahrnehmung ergibt sich eine Rückkopplungsschleife die neue Herangehensweisen erfordert um Sicherheitsbedenken und Geschwindigkeitsanforderungen zu erfüllen. Das Ziel dieser Dissertation ist es zu untersuchen, wie man bestehende modellbasierte\textit{modellbasierte} Robotersysteme mithilfe von Lernverfahren\textit{Lernverfahren} verbessern kann. Dabei ist es wichtig das vorhandene domänenspezifische Wissen nicht zu vernachlässigen, sondern in die Lernverfahren\textit{Lernverfahren} zu integrieren. Die Ergebnisse dieser Arbeit zeigen, dass lernbasierte\textit{lernbasierte} Ansätze modellbasierte\textit{modellbasierte} Methoden sehr gut ergänzen und es ermöglichen Probleme, die ansonsten unlösbar wären, zu lösen. Wir zeigen, wie man bestehende Modelle zum Trainieren von Lernverfahren verwenden kann. Dadurch wird problemspezifisches Expertenwissen in den Datengenerierungsprozess integriert und somit an das gelernte Modell weitergegeben. Wir entwickeln außerdem ein neues Optimierungsverfahren, das während der Optimierung etwas über den Vorgang an sich lernt. Ein solches Verfahren ist sehr relevant für eine Vielzahl von Problemen in der Robotik, da autonome\textit{autonome} Manipulationssysteme kontinuierlich neue Aufgaben lösen müssen. Im Folgenden stellen wir die Hauptbeiträge dieser Dissertation vor, eingebettet in den Kontext von Manipulationsaufgaben. Visuelle Wahrnehmung in Echtzeit trifft auf reaktive Bewegungsplanung\textbf{Visuelle Wahrnehmung in Echtzeit trifft auf reaktive Bewegungsplanung} Der Hauptbeitrag dieser Arbeit ist ein voll integriertes Manipulationssystem das erste einheitliche Experimente und dadurch empirische Ergebnisse ermöglicht. Diese zeigen eindeutig, dass kontinuierliche, zeitnahe Wahrnehmung und die Integration mit schnellen Verfahren zur Erzeugung von reaktiven Bewegungen essenziell für erfolgreiche Manipulation in dynamischen Szenarien ist. Wir vergleichen drei verschiedene Systeme, welche die gängigsten Architekturen im Bereich Robotik für Manipulation repräsentieren: (i) Ein traditioneller Sense-Plan-Act\textit{Sense-Plan-Act} Ansatz (aktuell am weitesten verbreitet), (ii) einen myopischen Regelungsansatz, der nur auf lokale Veränderungen reagiert und (iii) ein reaktives Planungsverfahren, das auf Änderungen der Umgebung reagiert diese in die Bewegungsplanung einbezieht und den aktuellen Plan transparent an einen schnelleres lokales Regelungsverfahren übergibt. Unser Gesamtsystem ist rein modellbasiert\textit{modellbasiert} und umfangreich auf einer realen Roboterplattform in vier Szenarien empirisch evaluiert worden. Unsere experimentellen Szenarien beinhalten anspruchsvolle Geometrien im Arbeitsraum des Roboters, dynamische Umgebungen und Objekte mit denen der Roboter interagieren muss. Diese Arbeit zeigt den aktuellen Stand der Forschung, der mit einem \textit{modellbasierten} Manipulationssystem im Bereich der Robotik unter Verwendung von schnellen Rückkopplungen und langsamerer reaktiver Planung möglich ist. Angesichts des Interesses in der Robotikforschung modellbasierte\textit{modellbasierte} Systeme mit Ende-zu-Ende Lernansa¨tzen\textit{Ende-zu-Ende Lernansätzen} ganzheitlich zu ersetzen, ist es wichtig ein performantes modellbasiertes\textit{modellbasiertes} Referenzsystem zu haben um neue Methoden qualitativ in Hinblick auf ihre Fähigkeiten und ihre Generalisierbarkeit zu vergleichen. Weiterhin erlaubt ein solches System Probleme mit modellbasierten\textit{modellbasierten} Ansätzen zu identifizieren und diese mithilfe von learnbasierten\textit{learnbasierten} Methoden zu verbessern. Online Entscheidungsfindung fu¨r Manipulation\textbf{Online Entscheidungsfindung für Manipulation} Die meisten Robotermanipulationssysteme verfügen über viele Sensoren mit unterschiedlichen Modalitäten und Rauschverhalten. Die Entwicklung von Modellen\textit{Modellen} für alle Sensoren ist nicht trivial und die resultierende Modelle zu komplex für Echtzeitverarbeitung in modellbasierten\textit{modellbasierten} Manipulationssystem. Planen mit vielen Sensormodalitäten ist besonders komplex aufgrund der vielen Modellunsicherheiten. Dies ist besonders ausgeprägt für Manipulationsaufgaben bei denen Kontakte zwischen Roboter und Objekten von Bedeutung sind. Eine der Hauptherausforderung für autonome Manipulation ist daher die Erzeugung geeigneter multimodaler Referenztrajektorien, die es ermöglichen Steuerbefehle für Regelungssysteme zu berechnen die nicht modellierte Störungen kompensieren und damit die Erfüllung der gestellten Manipulationsaufgabe ermöglichen. In dieser Arbeit stellen wir einen lernbasierten\textit{lernbasierten} Ansatz zur inkrementellen Erfassung von Referenzsignalen vor, der in Echtzeit entscheidet wann\textit{wann} ein Verhalten abgebrochen und zu welchem\textit{welchem} Verhalten gewechselt werden sollte, um eine erfolgreiche Ausführung zu gewährleisten. Wir formulieren dieses Online-Entscheidungsproblem als zwei miteinander verbundene Klassifikationsprobleme. Beide verarbeiten die aktuellen Sensormesswerte, zusammengesetzt aus mehreren Sensormodalitäten, in Echtzeit (in 30 Hz). Dieser Ansatz basiert auf unserem domänenspezifischen Problemverständnis, dass stereotypische Bewegungsgenerierung ähnliche Sensordaten erzeugt. Unsere Experimente zeigen, dass dieser Ansatz es ermöglicht schwierige kontextbasierte Aufgaben zu erlernen, die präzise Manipulation von relativ kleinen Objekten voraussetzen. Um eine solche Aufgabe zu erlernen, benötigt ein Benutzer unseres Systems kein Expertenwissen. Das System benötigt nur kinästhetische Demonstrationen und Unterbrechungen in Fehlersituationen. Die gelernte Aufgabenausführung ist robust gegen Störeinflüsse und Sensorrauschen, da unsere Methode online entscheidet, ob sie aufgrund von unerwarteter sensorischer Signale zu einer anderen Ausführung wechseln sollte oder nicht. Big-Data Greifen\textbf{Big-Data Greifen} Greifen ist ein wichtiges Forschungsproblem in der Robotik, da es eine Grundvoraussetzung für Manipulation darstellt. In dieser Arbeit konzentrieren wir uns auf das Problem der Vorhersage von Position und Orientierung bevor ein Kontakt zwischen Objekt und Endeffektor eintritt. Für diesen grundlegenden Schritt um “erfolgreich zu greifen” stehen nur visuelle Sensordaten wie 2D-Bilder und/oder 3D-Punktwolken zur Verfügung. Die Verwendung von modellbasierten\textit{modellbasierten} Greifplanern ist in solchen Situationen nicht optimal, da präzise Simulationen zu rechenintensiv sind und alle Objekte bekannt, erkannt und visuell verfolgt werden müssen. Lernbasierte\textit{Lernbasierte} Verfahren die direkt von visuellen Sensordaten stabile Griffe vorhersagen sind sehr effizient in der Auswertung jedoch benötigen die aktuell vielversprechendsten Verfahren, neuronale Netze, eine Vielzahl von annotierten Beispielen um diese Abbildung zu lernen. Im Rahmen dieser Arbeit stellen wir eine umfangreichen Datenbank mit einer Vielzahl von Objekten aus sehr unterschiedlichen Kategorien vor. Auf Basis dieser Datenbank analysieren wir drei Aspekte: (i) Eine Crowdsourcing Studie zeigt, dass unsere neu vorgestellte Metrik auf Basis einer physikalischen Simulation ein besserer Indikator für Greiferfolg im Vergleich zu der bestehenden Standard ϵ-Metrik ist. Darüber hinaus deutet unsere Studie darauf hin, dass unsere Datengenerierung keine manuelle Datenannotation benötigt. (ii) Die daraus resultierende Datenbank ermöglicht die Optimierung von parametrischen Lernverfahren wie neuronale Netze. Dadurch, dass wir eine Abbildung von Sensordaten zu möglichen Griffen lernen, muss das Objekt, seine Position und Orientierung nicht bekannt sein. Darüber hinaus zeigen wir, dass einfachere Methoden wie logistische Regression nicht die Kapazität haben um die Komplexität unserer Daten zu erfassen. (iii) Roboter nehmen ein Szenario typischerweise aus einem Blickwinkel wahr und versuchen ein Objekt mit dem ersten Versuch zu greifen. Klassifikationsverfahren sind nicht speziell für diese Verwendung optimiert, weshalb wir eine neue Formulierung erarbeiten, welche die beste, top-1\textit{top-1} Hypothese aus den jeweiligen Teilmengen auswählt. Diese neuartige Optimierungszielsetzung ermöglicht dies selbst auf unserem binären Datensatz, da das Lernverfahren selbst die Daten ordnet und somit einfach zu erkennende Griffe selbst auswählen kann. Lernen von inversen Dynamikmodellen fu¨r Manipulationsaufgaben\textbf{Lernen von inversen Dynamikmodellen für Manipulationsaufgaben} Sichere Bewegungsausführung auf Basis von Regelungskreisen sind entscheidend für Roboter die mit Menschen kollaborativ Manipulationsaufgaben lösen. Daher werden neue Methoden benötigt, die es ermöglichen inversen Dynamikmodelle zu lernen und bestehende Modelle zu verbessern, um Verstärkungsgrößen in Regelungskreisen zu minimieren. Dies ist besonders wichtig, wenn Objekte manipuliert werden, da sich das bekannte inverse Dynamikmodell dadurch verändert. Aktuelle Verfahren, welche Fehlermodelle zu bestehenden modellbasierten\textit{modellbasierten} Regler für die inverse Dynamik zu lernen, werden auf Basis der erzielten Beschleunigungen und Drehmomenten optimiert. Da die tatsächlich realisierten Beschleunigungen, eine indirekte Datenquelle, jedoch nicht die gewünschten Beschleunigungen darstellen, werden hohe Verstärkungen im Regelkreis benötigt, um relevantere Daten zu erhalten die es erlauben ein gutes Modell zu lernen. Hohe Verstärkung im Regelkreis ist wiederum schlecht für die Sicherheit. In dieser Arbeit leiten wir ein zusätzliches Trainingssignal her, das auf der gewünschten Beschleunigungen basiert und von dem Rückkopplungssignal abgeleitet werden kann. Wir analysieren die Nutzung beider Datenquellen in Simulation und demonstrieren ihre Wirksamkeit auf einer realen Roboterplattform. Wir zeigen, dass das System das gelernte inverse Dynamikmodell inkrementell verbessert. Durch die Kombination beider Datenquellen kann ein neues Modell konsistenter und schneller gelernt werden und zusätzlich werden keine hohen Verstärkungen im Regelungskreis benötigt. Lernen wie man lernt, wa¨hrend man lernt\textbf{Lernen wie man lernt, während man lernt} Menschen sind bemerkenswert gut darin, neue oder angepasste Fähigkeiten schnell zu erlernen. Dies ist darauf zurückzuführen, dass wir nicht jede neue Fähigkeit von Grund auf neu erlernen, sondern stattdessen auf den bereits gewonnenen Fertigkeiten aufbauen. Die meisten robotergestützten Lernaufgaben würden davon profitieren, wenn sie ein solches abstraktes Meta-Lernverfahren zur Verfügung hätten. Ein solcher Ansatz ist von großer Bedeutung für die Robotik, da autonomes Lernen ein inhärent inkrementelles Problem ist. In dieser Arbeit stellen wir einen neuen Meta-Lernansatz\textit{Meta-Lernansatz} vor, der es erstmals ermöglicht die Roboterdynamik online zu erlernen und auf neue Probleme zu übertragen. Während der Optimierung lernt unser Verfahren die Struktur der Optimierungsprobleme, welche für neue Aufgaben verwendet werden kann, was zu einer schnelleren Konvergenz führt. Das vorgeschlagene Meta-Lernverfahren\textit{Meta-Lernverfahren} kann zudem mit jedem beliebigen gradientenbasierten Optimierungsansatz verwendet werden. Wir zeigen, dass unser Ansatz die Dateneffizienz für inkrementelles Lernen erhöht. Weiterhin ist unser Verfahren für das online Lernen\textit{online Lernen} mit korrelierten Daten geeignet, zum Beispiel für inverse Dynamikmodelle. Der vorgestellte Ansatz eröffnet zusätzlich völlig neue Wege um in Simulation gewonnene Erfahrungen in die reale Welt zu transferieren. Dadurch kann möglicherweise bestehendes Domänenwissen in Form von modellbasierter\textit{modellbasierter} Simulation auf völlig neue Weise verwendet werden
    corecore