47,639 research outputs found

    Monopoles and Solitons in Fuzzy Physics

    Full text link
    Monopoles and solitons have important topological aspects like quantized fluxes, winding numbers and curved target spaces. Naive discretizations which substitute a lattice of points for the underlying manifolds are incapable of retaining these features in a precise way. We study these problems of discrete physics and matrix models and discuss mathematically coherent discretizations of monopoles and solitons using fuzzy physics and noncommutative geometry. A fuzzy sigma-model action for the two-sphere fulfilling a fuzzy Belavin-Polyakov bound is also put forth.Comment: 17 pages, Latex. Uses amstex, amssymb.Spelling of the name of one Author corrected. To appear in Commun.Math.Phy

    A fuzzy multiobjective algorithm for multiproduct batch plant: Application to protein production

    Get PDF
    This paper addresses the problem of the optimal design of batch plants with imprecise demands and proposes an alternative treatment of the imprecision by using fuzzy concepts. For this purpose, we extended a multiobjective genetic algorithm (MOGA) developed in previousworks, taking into account simultaneously maximization of the net present value (NPV) and two other performance criteria, i.e. the production delay/advance and a flexibility criterion. The former is computed by comparing the fuzzy computed production time to a given fuzzy production time horizon and the latter is based on the additional fuzzy demand that the plant is able to produce. The methodology provides a set of scenarios that are helpful to the decision’s maker and constitutes a very promising framework for taken imprecision into account in new product development stage

    Laplacian Mixture Modeling for Network Analysis and Unsupervised Learning on Graphs

    Full text link
    Laplacian mixture models identify overlapping regions of influence in unlabeled graph and network data in a scalable and computationally efficient way, yielding useful low-dimensional representations. By combining Laplacian eigenspace and finite mixture modeling methods, they provide probabilistic or fuzzy dimensionality reductions or domain decompositions for a variety of input data types, including mixture distributions, feature vectors, and graphs or networks. Provable optimal recovery using the algorithm is analytically shown for a nontrivial class of cluster graphs. Heuristic approximations for scalable high-performance implementations are described and empirically tested. Connections to PageRank and community detection in network analysis demonstrate the wide applicability of this approach. The origins of fuzzy spectral methods, beginning with generalized heat or diffusion equations in physics, are reviewed and summarized. Comparisons to other dimensionality reduction and clustering methods for challenging unsupervised machine learning problems are also discussed.Comment: 13 figures, 35 reference

    A STOCHASTIC SIMULATION-BASED HYBRID INTERVAL FUZZY PROGRAMMING APPROACH FOR OPTIMIZING THE TREATMENT OF RECOVERED OILY WATER

    Get PDF
    In this paper, a stochastic simulation-based hybrid interval fuzzy programming (SHIFP) approach is developed to aid the decision-making process by solving fuzzy linear optimization problems. Fuzzy set theory, probability theory, and interval analysis are integrated to take into account the effect of imprecise information, subjective judgment, and variable environmental conditions. A case study related to oily water treatment during offshore oil spill clean-up operations is conducted to demonstrate the applicability of the proposed approach. The results suggest that producing a random sequence of triangular fuzzy numbers in a given interval is equivalent to a normal distribution when using the centroid defuzzification method. It also shows that the defuzzified optimal solutions follow the normal distribution and range from 3,000-3,700 tons, given the budget constraint (CAD 110,000-150,000). The normality seems to be able to propagate throughout the optimization process, yet this interesting finding deserves more in-depth study and needs more rigorous mathematical proof to validate its applicability and feasibility. In addition, the optimal decision variables can be categorized into several groups with different probability such that decision makers can wisely allocate limited resources with higher confidence in a short period of time. This study is expected to advise the industries and authorities on how to distribute resources and maximize the treatment efficiency of oily water in a short period of time, particularly in the context of harsh environments

    Fuzzy interval net present value

    Get PDF
    In this paper we conjugate the operative usability of the net present value with the capability of the fuzzy and the interval approaches to manage uncertainty. Our fuzzy interval net present value can be interpreted, besides the usual present value of an investment project, as the present value of a contract in which the buyer lets the counterpart the possibility to release goods/services for money amounts that can vary, at time instants that can also vary. The buyer can reduce the widths of these variations by paying a cost. So, it is "natural" to represent the good/service money amounts and the time instants by means of triangular fuzzy numbers, and the cost of the buyer as a strictly increasing function of the level a in [0, 1] associated to the generic cut of the fuzzy interval net present value. As usual, the buyer is characterized by a utility function, depending on a and on the cost, that he/she has to maximize. As far the interest rates regard, we assume that the economic operators are only able to specify a variability range for each of the considered period interest rate. So, we represent the interest rates by means of interval numbers. Besides proposing our model, we formulate and solve the programming problems which have to be coped with to determine the extremals of the cut of the fuzzy interval net present value, and we deal with some questions related to the utility function of the buyer.net present value, fuzzy set theory, interval number theory, alpha-cut, utility function

    Improved approximation of arbitrary shapes in dem simulations with multi-spheres

    Get PDF
    DEM simulations are originally made for spherical particles only. But most of real particles are anything but not spherical. Due to this problem, the multi-sphere method was invented. It provides the possibility to clump several spheres together to create complex shape structures. The proposed algorithm offers a novel method to create multi-sphere clumps for the given arbitrary shapes. Especially the use of modern clustering algorithms, from the field of computational intelligence, achieve satisfactory results. The clustering is embedded into an optimisation algorithm which uses a pre-defined criterion. A mostly unaided algorithm with only a few input and hyperparameters is able to approximate arbitrary shapes
    corecore