708 research outputs found

    A Variant of the Maximum Weight Independent Set Problem

    Full text link
    We study a natural extension of the Maximum Weight Independent Set Problem (MWIS), one of the most studied optimization problems in Graph algorithms. We are given a graph G=(V,E)G=(V,E), a weight function w:V→R+w: V \rightarrow \mathbb{R^+}, a budget function b:V→Z+b: V \rightarrow \mathbb{Z^+}, and a positive integer BB. The weight (resp. budget) of a subset of vertices is the sum of weights (resp. budgets) of the vertices in the subset. A kk-budgeted independent set in GG is a subset of vertices, such that no pair of vertices in that subset are adjacent, and the budget of the subset is at most kk. The goal is to find a BB-budgeted independent set in GG such that its weight is maximum among all the BB-budgeted independent sets in GG. We refer to this problem as MWBIS. Being a generalization of MWIS, MWBIS also has several applications in Scheduling, Wireless networks and so on. Due to the hardness results implied from MWIS, we study the MWBIS problem in several special classes of graphs. We design exact algorithms for trees, forests, cycle graphs, and interval graphs. In unweighted case we design an approximation algorithm for d+1d+1-claw free graphs whose approximation ratio (dd) is competitive with the approximation ratio (d2\frac{d}{2}) of MWIS (unweighted). Furthermore, we extend Baker's technique \cite{Baker83} to get a PTAS for MWBIS in planar graphs.Comment: 18 page

    When Maximum Stable Set Can Be Solved in FPT Time

    Get PDF
    Maximum Independent Set (MIS for short) is in general graphs the paradigmatic W[1]-hard problem. In stark contrast, polynomial-time algorithms are known when the inputs are restricted to structured graph classes such as, for instance, perfect graphs (which includes bipartite graphs, chordal graphs, co-graphs, etc.) or claw-free graphs. In this paper, we introduce some variants of co-graphs with parameterized noise, that is, graphs that can be made into disjoint unions or complete sums by the removal of a certain number of vertices and the addition/deletion of a certain number of edges per incident vertex, both controlled by the parameter. We give a series of FPT Turing-reductions on these classes and use them to make some progress on the parameterized complexity of MIS in H-free graphs. We show that for every fixed t >=slant 1, MIS is FPT in P(1,t,t,t)-free graphs, where P(1,t,t,t) is the graph obtained by substituting all the vertices of a four-vertex path but one end of the path by cliques of size t. We also provide randomized FPT algorithms in dart-free graphs and in cricket-free graphs. This settles the FPT/W[1]-hard dichotomy for five-vertex graphs H

    The world of hereditary graph classes viewed through Truemper configurations

    Get PDF
    In 1982 Truemper gave a theorem that characterizes graphs whose edges can be labeled so that all chordless cycles have prescribed parities. The characterization states that this can be done for a graph G if and only if it can be done for all induced subgraphs of G that are of few speci c types, that we will call Truemper con gurations. Truemper was originally motivated by the problem of obtaining a co-NP characterization of bipartite graphs that are signable to be balanced (i.e. bipartite graphs whose node-node incidence matrices are balanceable matrices). The con gurations that Truemper identi ed in his theorem ended up playing a key role in understanding the structure of several seemingly diverse classes of objects, such as regular matroids, balanceable matrices and perfect graphs. In this survey we view all these classes, and more, through the excluded Truemper con gurations, focusing on the algorithmic consequences, trying to understand what structurally enables e cient recognition and optimization algorithms
    • …
    corecore