23 research outputs found

    Bicircular Matroids with Circuits of at Most Two Sizes

    Get PDF
    Young in his paper titled, Matroid Designs in 1973, reports that Murty in his paper titled, Equicardinal Matroids and Finite Geometries in 1968, was the first to study matroids with all hyperplanes having the same size. Murty called such a matroid an ``Equicardinal Matroid\u27\u27. Young renamed such a matroid a ``Matroid Design\u27\u27. Further work on determining properties of these matroids was done by Edmonds, Murty, and Young in their papers published in 1972, 1973, and 1970 respectively. These authors were able to connect the problem of determining the matroid designs with specified parameters with results on balanced incomplete block designs. The dual of a matroid design is one in which all circuits have the same size. In 1971, Murty restricted his attention to binary matroids and was able to characterize all connected binary matroids having circuits of a single size. Lemos, Reid, and Wu in 2010, provided partial information on the class of connected binary matroids having circuits of two different sizes. They also shothat there are many such matroids. In general, there are not many results that specify the matroids with circuits of just a few different sizes. Cordovil, Junior, and Lemos provided such results on matroids with small circumference. Here we determine the connected bicircular matroids with all circuits having the same size. We also provide structural information on the connected bicircular matroids with circuits of two different sizes. The bicircular matroids considered are in general non-binary. Hence these results are a start on extending Murty\u27s characterization of binary matroid designs to non-binary matroids

    Induced Binary Submatroids

    Get PDF
    The notion of induced subgraphs is extensively studied in graph theory. An example is the famous Gy\'{a}rf\'{a}s-Sumner conjecture, which asserts that given a tree TT and a clique KK, there exists a constant cc such that the graphs that omit both TT and KK as induced subgraphs have chromatic number at most cc. This thesis aims to prove natural matroidal analogues of such graph-theoretic problems

    Free Resolutions Associated to Representable Matroids

    Get PDF
    As a matroid is naturally a simplicial complex, one can study its combinatorial properties via the associated Stanley-Reisner ideal and its corresponding free resolution. Using results by Johnsen and Verdure, we prove that a matroid is the dual to a perfect matroid design if and only if its corresponding Stanley-Reisner ideal has a pure free resolution, and, motivated by applications to their generalized Hamming weights, characterize free resolutions corresponding to the vector matroids of the parity check matrices of Reed-Solomon codes and certain BCH codes. Furthermore, using an inductive mapping cone argument, we construct a cellular resolution for the matroid duals to finite projective geometries and discuss consequences for finite affine geometries. Finally, we provide algorithms for computing such cellular resolutions explicitly

    On network coding capacity : matroidal networks and network capacity regions

    Get PDF
    Thesis (M. Eng.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 68-70).One fundamental problem in the field of network coding is to determine the network coding capacity of networks under various network coding schemes. In this thesis, we address the problem with two approaches: matroidal networks and capacity regions. In our matroidal approach, we prove the converse of the theorem which states that, if a network is scalar-linearly solvable then it is a matroidal network associated with a representable matroid over a finite field. As a consequence, we obtain a correspondence between scalar-linearly solvable networks and representable matroids over finite fields in the framework of matroidal networks. We prove a theorem about the scalar-linear solvability of networks and field characteristics. We provide a method for generating scalar-linearly solvable networks that are potentially different from the networks that we already know are scalar-linearly solvable. In our capacity region approach, we define a multi-dimensional object, called the network capacity region, associated with networks that is analogous to the rate regions in information theory. For the network routing capacity region, we show that the region is a computable rational polytope and provide exact algorithms and approximation heuristics for computing the region. For the network linear coding capacity region, we construct a computable rational polytope, with respect to a given finite field, that inner bounds the linear coding capacity region and provide exact algorithms and approximation heuristics for computing the polytope. The exact algorithms and approximation heuristics we present are not polynomial time schemes and may depend on the output size.by Anthony Eli Kim.M.Eng

    Discrete Mathematics and Symmetry

    Get PDF
    Some of the most beautiful studies in Mathematics are related to Symmetry and Geometry. For this reason, we select here some contributions about such aspects and Discrete Geometry. As we know, Symmetry in a system means invariance of its elements under conditions of transformations. When we consider network structures, symmetry means invariance of adjacency of nodes under the permutations of node set. The graph isomorphism is an equivalence relation on the set of graphs. Therefore, it partitions the class of all graphs into equivalence classes. The underlying idea of isomorphism is that some objects have the same structure if we omit the individual character of their components. A set of graphs isomorphic to each other is denominated as an isomorphism class of graphs. The automorphism of a graph will be an isomorphism from G onto itself. The family of all automorphisms of a graph G is a permutation group

    Topics in Boolean Representable Simplicial Complexes

    Full text link
    We study a number of topics in the theory of Boolean Representable Simplicial Complexes (BRSC). These include various operators on BRSC. We look at shellability in higher dimensions and propose a number of new conjectures
    corecore