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Abstract

Young [19] reports that Murty [11] was the first to study matroids with all hyper-

planes having the same size. Murty called such a matroid an “Equicardinal Matroid”.

Young renamed such a matroid a “Matroid Design”. Further work on determining

properties of these matroids was done by Edmonds, Murty, and Young [12, 20, 21].

These authors were able to connect the problem of determining the matroid designs

with specified parameters with results on balanced incomplete block designs. The

dual of a matroid design is one in which all circuits have the same size. Murty [12]

restricted his attention to binary matroids and was able to characterize all connected

binary matroids having circuits of a single size. Lemos, Reid, and Wu [8] provided

partial information on the class of connected binary matroids having circuits of two

different sizes. They also showed that there are many such matroids. In general,

there are not many results that specify the matroids with circuits of just a few dif-

ferent sizes. Cordovil, Junior, and Lemos [2, 9] provided such results on matroids

with small circumference . Here we determine the connected bicircular matroids with

all circuits having the same size. We also provide structural information on the con-

nected bicircular matroids with circuits of two different sizes. The bicircular matroids

considered are in general non-binary. Hence these results are a start on extending

Murty’s characterization of binary matroid designs to non-binary matroids.
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CHAPTER 1

Introduction

This dissertation continues a research program started in 1969 by U.S.R. Murty [11].

He was the first to investigate matroids in which the hyperplanes all have the same

size. These matroids were first called equicardinal matroids by Murty but were later

called matroid designs by Young [19]. Edmonds, Murty, and Young [12, 20, 21]

viewed such matroids in terms of their relationships to balanced incomplete block

designs. The dual of a matroid with all hyperplanes having the same size is a ma-

troid with all circuits having the same size. We call such a matroid a dual matroid

design. In 1971 Murty [12] characterized the connected binary matroids with all

circuits having the same size. Hence Murty characterized the connected binary dual

matroid designs. In 2010 Lemos, Reid, and Wu [8] characterized the connected bi-

nary matroids with circuits of two different sizes, where the largest circuit size is

odd. The circuit-spectrum of a matroid M , denoted by spec(M), is the set of circuit

sizes of the matroid. Hence the above results are concerned with matroids with a

circuit-spectrum of size at most two. Other results determining the matroids with

circuit-spectrum set of small cardinality were given by Maia [9], who constructed all

matroids M with spec(M) ⊆ {1, 2, 3, 4, 5} and by Cordovil, Lemos, and Maia [2],

who constructed all 3-connected binary matroids M with spec(M) ⊆ {3, 4, 5, 6, 7}. It

is natural to extend the results of Murty, Lemos, Reid, and Wu to different classes of
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matroids. This dissertation will focus on the class of connected bicircular matroids

having at most two different circuit sizes. These matroids are for the most part non-

binary, whereas the matroids considered by Murty and by Lemos, Reid, and Wu were

binary.

In Chapter 1 of the dissertation we introduce the matroid concepts related to this

work. In Chapter 2 of the dissertation we give results from literature on matroids with

a small circuit-spectrum. In Chapter 3 of the dissertation we discuss the matroids

considered here, the bicircular matroids. Finally, the results of the dissertation are

given in Chapter 4.

1. Matroid Concepts

What is a matroid? This is a mathematical structure first introduced by Hassler

Whitney in 1935 [18] to abstractly capture the notion of dependence that is common

to many mathematical fields such as projective geometry and graph theory. Whit-

ney’s definition embraces a surprising diversity of combinatorial structures. More-

over, matroids arise naturally in combinatorial optimization since they are precisely

the independence structures to which the greedy algorithm can be applied to find a

maximal independent set of maximum weight. An introduction to Matroid Theory

can be found in the textbook of Oxley entitled “Matroid Theory” [14]. Below is the

definition of a matroid.

Definition 1.1. A matroid M is an ordered pair (E, I) consisting of a finite set

E and a collection I of subsets of E satisfying the following three conditions:
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(I1) ∅ ∈ I.

(I2) If I ∈ I and I ′ ⊆ I, then I ′ ∈ I.

(I3) If I1 and I2 are in I and |I1| < |I2|, then there is an element e of I2 − I1

such that I1 ∪ e ∈ I.

The members of I are called the independent sets of M and E is called the ground

set of M . It is also common to write I(M) for I and to write E(M) for E. Any

subset of E that is not independent is called dependent. A minimal dependent set

is a dependent set with all proper subsets being independent. A matroid M can also

be defined by its set of minimal dependent sets called circuits. The set of circuits of

M is denoted by C or C(M).

Theorem 1.2. A set of subsets C of a non-empty finite set E is the set of circuits

of a matroid if and only if C satisfies the following three conditions.

(C1) ∅ /∈ C.

(C2) If C1 and C2 are members of C and C1 ⊆ C2, then C1 = C2.

(C3) If C1 and C2 are distinct members of C and e ∈ C1 ∩ C2, then there is a

member C3 of C such that C3 ⊆ (C1 ∪ C2) − e. (Circuit Elimination

Axiom)

We have introduced two fundamental types of subsets of a matroid, the inde-

pendent sets and the minimal dependent sets. The maximal independent sets in a

matroid also obey certain axioms. A maximal independent set of a matroid M is

called a basis of M .
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Theorem 1.3. Let B be a set of subsets of a non-empty set E. Then B is the

collection of bases of a matroid on E if and only if it satisfies the following conditions.

(B1) B is non-empty.

(B2) If B1 and B2 are members of B and x ∈ B1 − B2, then there is an element

y of B2 −B1 such that (B1 − x) ∪ y ∈ B. (Basis Exchange Axiom)

The members of B are equicardinal. In fact, if X is any subset of the ground set

of a matroid M , then the maximal independent subsets of X are equicardinal. This

common cardinality is called called the rank of X. We denote this number by r(X)

and let r(M) = r(E(M)). The following theorem characterizes precisely when certain

functions can be the rank function of a matroid.

Theorem 1.4. Let E be a set. A function r : 2E → Z+∪{0} is the rank function

of a matroid on E if and only if r satisfies the following conditions:

(R1) If X ⊆ E, then 0 ≤ r(X) ≤ |X|.

(R2) If X ⊆ Y ⊆ E, then r(X) ≤ r(Y ).

(R3) If X and Y are subsets of E, then r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Let M be a matroid on E and X ⊆ E. Then cl(X) = {x ∈ E : r(X∪x) = r(X)}.

A set X ⊆ E is a flat of M if cl(X) = X. A flat is sometimes called a closed set. A

flat of M of rank r(M)− 1 is called a hyperplane.

Throughout this research we examine several classes of matroids and their struc-

ture. Thus it’s imperative to understand when two matroids are the same (isomor-

phic). The matroids M1 and M2 are isomorphic, denoted by M1
∼= M2, if there is a
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bijection ψ from E(M1) to E(M2) such that, for all X ⊆ E(M1), ψ(X) is independent

in M2 if and only if X is independent in M1.

2. Classes of Matroids

In this section of the dissertation we discuss several different classes of matroids

that are pertinent to this research. Two common ways to represent a matroid are by

matrices and graphs. We next discuss such representations. Any matrix gives rise to

a matroid as stated in the following well-known result (see Proposition 1.1.1 of [14]).

Proposition 1.5. Let E be the set of column labels of an m by n matrix A over a

field F , and let I be the set of subsets X of E for which the multiset of columns labeled

by X is linearly independent in the vector space V (m,F ) for some positive integers m

and n. Then I satisfies axioms (I1), (I2), and (I3) so that (E, I) is a matroid.

The matroid M above is called the vector matroid of the matrix A. If M is the vector

matroid of a matrix A over some field F , then M is said to representable over F or

F -representable. A binary matroid is a matroid that is representable over GF (2).

Murty [12], and later Lemos, Reid, and Wu [8], studied the class of binary matroids

with a circuit-spectrum of small cardinality. The binary projective geometry of rank

r over GF (2) is denoted by PG(r − 1, 2) for each positive integer r. This is the

vector matroid of the matrix over GF (2) consisting of all nonzero column vectors of

V (r, 2). The matrix for which PG(2, 2) is the vector matroid is given in Figure 1.1.

The binary affine geometry of rank r over GF (2) is denoted by AG(r− 1, 2) for each
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positive integer r. This matroid is obtained by deleting a hyperplane of PG(r− 1, 2).

For example, one can delete all columns that contain a zero in a particular row of

matrix representation for PG(r− 1, 2) to obtain a representation for AG(r− 1, 2). In

Figure 1.1 we have deleted all columns with a zero in the first entry from the matrix

representing PG(3, 2) to obtain a matrix representation for AG(3, 2).



1 2 3 4 5 6 7

1 0 0 0 1 1 1

0 1 0 1 0 1 1

0 0 1 1 1 0 1


(a) PG(2, 2)



1 2 3 4 5 6 7 8

1 1 1 1 1 1 1 1

0 1 0 0 0 1 1 1

0 0 1 0 1 0 1 1

0 0 0 1 1 1 0 0


(b) AG(3, 2)

Figure 1.1. A projective geometry and an affine geometry

The graph theory terxminology used here mostly follows West [17]. Pictures of

the wheel graph Wr with r-spokes (r ≥ 3), the complete graph on five vertices K5,

and the complete bipartite graph K3,p (p ≥ 3) are given in Figure 1.2. We have

labeled the edges of Wr by Ai and Bi for i ∈ {1, 2, . . . , r}. The edges Ai are called

the spokes of Wr and the edges Bi are called the rim of Wr. For an positive integer k,

a k-subdivision of a graph is obtained by replacing each edge by a path of length k.

A 3-subdivision of the graph W5 is also given in Figure 1.2. Any finite graph yields a

matroid as stated in the following well-known result (see Proposition 1.1.7 of [14]).

Proposition 1.6. Let E be the set of edges of a graph G and C be the set of edge

sets of cycles of G. Then C is the set of circuits of a matroid on E.
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A

B

C

2

1

3

p

(c) The graph K3,p

A1

A2

A3

A4

A5

Ar

B1

B2

B3B4

...

Br

(a) The graph Wr (b) The graph K5

(d) A 3-subdivision of W4

Figure 1.2. Some graphs without vertex-disjoint cycles
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The matroid derived from G above is called the cycle matroid of G and is denoted

by M(G). A graphic matroid is a matroid that is the cycle matroid of some graph.

The set of independent sets I of M(G) has as its members edge sets of G that are

acyclic. One can show that a graphic matroid is representable over every field (see,

for example, [14, Section 5.1]).

Let r and n be non-negative integers such that r ≤ n. Let E be an n-element set

and B be the collection of r-element subsets of E. One can check that B is the set

of bases of a matroid on E. We denote this matroid by Ur,n and call it the uniform

matroid of rank r on an n-element set.

Let M be a matroid on E. Then the dual matroid of M is the matroid on E

with bases {E − B : B ∈ B(M)}. This dual matroid of M is denoted by M∗. Hence

U∗r,n
∼= Un−r,n for nonnegative integers r and n with 0 ≤ r ≤ n and n > 0.

Let S be a finite set. Let A = (A1, A2, . . . , Am) = (Aj : j ∈ J), with J =

{1, 2, . . . ,m}, be a family of subsets of S. A system of distinct representatives or a

transversal of A is a subset {e1, e2, . . . , em} of S such that ei ∈ Ai for each i ∈ J . If

X ⊆ S, then X is a partial transversal of (Aj : j ∈ J) if for some subset K of J , X

is a transversal of (Aj : j ∈ K). The transversal matroid M [A] is the matroid with

ground set S and independent sets being the partial transversals of A. This class of

matroids is especially important because bicircular matroids are transversal matroids

as shown by Matthews [10].

8



3. Matroid Connectivity

Let k be a positive integer. Then, for a matroid M , a partition (X, Y ) of E(M)

is a k-separation if

min{|X|, |Y |} ≥ k

and

r(X) + r(Y )− r(M) ≤ k − 1.

Next let τ(M) = min{j : M has a j-separation} if M has a j-separation for some

j ∈ {2, 3, . . .}, otherwise, let τ(M) = ∞. For an integer n ≥ 2, a matroid M

is n-connected if and only if τ(M) ≥ n. The parameter τ(M) is called the Tutte-

connectivity of M . If n is an integer exceeding one, then we say that M is n-connected

if τ(M) ≥ n. Connectivity is invariant over duality since, for a partition (X, Y )

of E(M), it can be shown that r(X) + r(Y ) − r(M) = r(X) + r∗(X) − |X| =

r∗(X) + r∗(Y ) − r∗(M). So (X, Y ) is a k-separation of M if and only if it is a k-

separation of M∗ and τ(M) = τ(M∗). We are particularly interested in 2-connected

matroids in this dissertation. A 2-connected matroid is often said to be connnected.

One can show that a matroid is connected if and only if each pair of distinct elements

is contained in some circuit of the matroid [16].
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CHAPTER 2

Matroids with Few Circuit Sizes

We discuss the results from the literature that motivate this dissertation in this

chapter.

1. Binary Matroid Designs

The first characterization of a class of matroids with circuits of only one size was

given by Murty [12]. Some terminology is given next before the statement of Murty’s

result. Recall that the circuit-spectrum of a matroid is the set whose members are

the cardinalities of its circuits. A series class of a matroid is a maximal subset of

the ground set such that each pair of distinct elements of the subset are a cocircuit

of the matroid. A k-subdivision of a matroid is obtained by replacing each element

by a series class of size k. This notion generalizes such subdivisions from graphs to

matroids.

Theorem 2.1. [12] Let M be a connected binary matroid. For η ∈ Z+, spec(M) =

{η} if and only if M is isomorphic to one of the following matroids:

(i) an η-subdivision of U0,1,

(ii) a k-subdivision of U1,n, where η = 2k and n ≥ 3,

(iii) an l-subdivision of PG(r, 2)∗, where η = 2rl and r ≥ 2,

(iv) an l-subdivision of AG(r + 1, 2)∗, where η = 2rl and r ≥ 2.

10



The previous result specifies the connected binary matroids whose dual matroids

are matroid designs. Extensions of this result are given in the next section of the

dissertation.

2. Matroids with Circuit-Spectrums of Small Cardinality

In this section of the dissertation we present results on matroids with a circuit-

spectrum of small cardinality exceeding one. Before presenting such results of Lemos,

Reid, and Wu [8] we introduce some particular matroids as well as give some termi-

nology.

If M is a matroid, then the sets of circuits, hyperplanes, and series classes of M are

denoted by C(M), H(M), and S(M), respectively. The series-connection of matroids

M and N is denoted by S(M,N) [14, Section 7.1]. A series-connection S(G,H) of

two graphs G and H is given Figure 2.1. The cycles of G and H determine the cycles

of S(G,H). In a similar manner, the circuits of the matroids M1 and M2 determine

the circuits of S(M1,M2). Let C1 and C2 denote the sets of circuits of M1 and M2,

respectively, and CS be the set of circuits of S(M1,M2). If the ground set of Mi

contains an element pi, which is neither a loop nor a coloop (i = 1, 2), then the series

connection of M1 and M2 across the elements p1 and p2 is given by

CS = C(M1\p1) ∪ C(M2\p2) ∪ {(C1 − p1) ∪ (C2 − p2) ∪ p : pi ∈ Ci ∈ C(Mi), i = 1, 2}

where p is a new element that is in neither the ground set of M1 nor in the ground

set of M2.

11



c v

ab

p1

The graph G

v g

f

ed

p2

The graph H

c v g

f

edab p

The series-connection S(G,H)

Figure 2.1. A series-connection of two graphs

For an integer exceeding two, the binary spike of rank n, denoted by Sn, is the

vector matroid of the matrix consisting of all binary columns of length n with exactly

one, n − 1, or n ones. The tip (cotip) of Sn (S∗n) corresponds to the column of all

ones. The Fano-matroid is S3.

The matroid B(r, 2) is constructed as follows. Add a point e of projective space to

AG(r, 2), where e is outside the r + 1-dimensional subspace determined by AG(r, 2).

Add a point of projective space to each line joining e to a point of AG(r, 2). The

resulting matroid is B(r, 2) (see Figure 2.2). Equivalently, B(r, 2) may be constructed

by adding a single new point e of PG(r+1, 2) to AG(r+1, 2). The element ementioned

above is called the tip (cotip) of B(r, 2) and B(r, 2)∗ respectively.

12



1

2

AG(r, 2)

Figure 2.2. The matroid B(r, 2)

Theorem 2.2. [8] Let c, d ∈ Z+ with c < d and d odd. Let M be a connected

binary matroid. Then spec(M) = {c, d} if and only if there are connected binary

matroids M0,M1, . . . ,Mn for some n ∈ Z+ such that the following hold.

(i) E(Mi) ∩ E(Mj) = {e}, for distinct i and j in {0, 1, . . . , n}.

(ii) E(M0) is a circuit of M0.

(iii) For i ∈ {1, 2, . . . , n}, {e} is a series class of Mi, all other series class of

Mi have size li, and the cosimplification of Mi is isomorphic to one of the

following matroids.

(a) U1,ni
, for some ni ≥ 3, where c = 2li.

(b) PG(ri, 2)∗, for some ri ≥ 2, where c = 2rili.

13



(c) AG(ri, 2)∗, for some ri ≥ 3, where c = 2ri−1li.

(d) S∗ni
, for some ni ≥ 4, and e is the cotip, where c = 4li.

(e) B(ri, 2)∗, for some ri ≥ 3, and e is the cotip, where c = 2rili.

(iv) d = |E(M0)| − 1 + d1 + d2 + · · ·+ dn > c, where di = c
2

when (iii) (a) holds,

di = (2ri − 1)li when (iii) (b) holds, di = (2ri−1 − 1)li when (iii) (c) holds,

di = nili when (iii) (d) holds, and di = c when (iii) (e) holds.

(v) M = S(M0,M1, . . . ,Mn)/e.

Note that the complex statement of the above theorem indicates the difficulty in

obtaining a complete characterization of the binary matroids with a spectrum of size

two. Further, Lemos, Reid, and Wu constructed many such matroids in the paper

in which this theorem appears. The above theorem simplifies greatly if one restricts

their attention to 3-connected matroids as stated in the following result.

Corollary 2.3. Let M be a 3-connected binary matroid with largest circuit size

odd. Then |spec(M)| ≤ 2 if and only if M is isomorphic to one of the following

matroids.

(i) U0,1 or U2,3.

(ii) S∗2n, for some n ≥ 2.

(iii) B(r, 2)∗, for some r ≥ 2.
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CHAPTER 3

Bicircular Matroids

In this chapter of the dissertation we provide some background results on bicircular

matroids.

1. Bicircular Matroid Concepts

This research is focused on the class of matroids called bicircular matroids. We

review some definitions and some basic properties of bicircular matroids in this section

Bowtie Barbell

Theta

Figure 3.1. Types of bicycles

15



of the dissertation (see [3] and [13] for most of this material). Let G be a graph on

edge set E. The bicircular matroid of G, denoted by B(G), has ground set E and

circuits being the edge sets of subdivisions of one of the following three graphs: (i)

two loops that share a vertex, (ii) two loops with distinct vertices that are joined by

an edge, (iii) three edges joining the same pair of vertices. The circuits of B(G) are

called the bicycles of G. A bicycle of type (i), (ii), or (iii) is referred to as a bow-tie,

a barbell, or a theta, respectively (see Figure 3.1 for some examples). Moreover, if

M is a bicircular matroid and G is a graph such that M=B(G) then G is called a

representation of M .

A set of edges E is independent in the bicircular matroid B(G) provided each

connected component of G[E], the subgraph of G induced by the edge set E, contains

at most one cycle. In a bicircular matroid, the rank of a set X of edges is r(X) =

n(X)− t(X), where n(X) is the number of vertices incident with the edges of X and

t(X) is the number of non trivial tree components of X. The maximal independent

sets of B(G) have cardinality equal to n.

Each bicircular matroid is known to be a transversal matroid (see Matthews [10]).

Let Ei be the set of edges of G which are incident with vertex i for i = 1, 2, ..., n.

Then B(G) is a transversal matroid whose independent sets are the partial transver-

sals of the family of sets ξ(G) = (E1, E2, ..., En). The family of sets ξ(G) is the

natural presentation of B(G) corresponding to the graph G. The transversal ma-

troidM has many minimal presentations (C1, C2, ..., Cn). The sets Ci in eachminimal

presentation are distinct cocircuits of M .

16



1

2

3

n

U1,n

21 n

U2,n U3,5 U4,6 U4,6

Figure 3.2. Some bicircular matroids

Graphs whose bicircular matroids are isomorphic to the matroids U1,n and U2,n,

for n ≥ 2, U3,5, and U4,6 are given in Figure 3.2. Note that two last two graphs in

that figure are not isomorphic but have the same bicircular matroid U4,6. Coullard,

del Greco, and Wagner [3] determined precisely when this phenomenon can occur

using certain graph operations (see also [13]). After first giving some more graph

terminology we will describe two of these operations.

Let G be a graph with F a non-empty proper subset of the edge set E. The

vertex-boundary of F consists of those vertices of G that are in both of the subgraphs

induced by F and induced by E − F . A block is a maximal connected subgraph

without a cutvertex. An end-block of G is a block whose vertex-boundary contains

exactly one vertex. A balloon of G is subgraph of G which is a subdivision one of the

two graphs of Figure 3.3, whose vertex-boundary contains exactly one vertex. The

vertex boundary (the vertices v and w pictured there) is called the tip of the balloon.

A path of G is a sequence v0e1v1e2...vk−1ekvk such that v0, v1, ..., vk. are distinct

vertices, e1, e2, ..., ek are distinct edges, and each vertex or edge in the sequence, except

vk, is incident with its successor in the sequence. A line of G is a set of edges that

17



wv

Figure 3.3. Some balloons

forms a path with the internal vertices having degree two and the end-vertices having

degree at least three. We further require that the line is not contained in any balloon.

Now let L be a line of G with endvertices u and v and e be the edge of L that is

incident with v.

Let H be a graph obtained from G by redefining the incidence relation of e so

that e is adjacent to a vertex w 6= v of L instead of v. Then H is said to be obtained

from G by rolling L away from v. Likewise, G is said to be obtained from H by

unrolling of L to v. Note that L is a balloon of H (see, for example, the top left graph

of Figure 3.4). Hence the operation of unrolling reduces the number of balloons of a

graph. The following useful results can be found in [3] and [15].

Lemma 3.1. Suppose that G and H are graphs with B(H) connected and H is

obtained from G by rolling a line L away from a vertex v. Then B(G) = B(H) if and

only v is the tip of an end-block of G that contains L and every cycle of the end-block

contains v.

Lemma 3.2. If H is a graph obtained from a graph G replacing a balloon with

another balloon on the same edge set and with the same vertex-boundary, then B(G) =

B(H).
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Figure 3.4. Rolling and replacement

As mentioned before, Coullard, del Greco, and Wagner in [3] further expand on

Lemmas 3.1 and 3.2, although these are the two primary lemmas used here.
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CHAPTER 4

Thesis Results

The results of the dissertation are given in this chapter. In the first section of the

chapter we determine the (dual) connected bicircular matroid designs. In the second

section of the chapter we extend this results to bicircular matroids with two circuit

sizes in the special case that the associated graph is 3-connected.

1. Bicircular Matroid Designs

The first main result of the dissertation is given next. This matroid characterizes

the matroids whose duals are connected bicircular matroid designs.

Theorem 4.1. Let M be a connected bicircular matroid. For η ≥ 2, spec(M) =

{η} if and only if M is isomorphic to one of the following matroids:

(i) a k-subdivision of U1,n where η = 2k and n ≥ 2,

(ii) a k-subdivision of U2,n where η = 3k and n ≥ 3,

(iii) a k-subdivision of U3,5 where η = 4k, or

(iv) a k-subdivision of U4,6 where η = 5k.

We present the proof of Theorem 4.1 in this section of the paper after first giving

some graph terminology. Let G be a graph. Where X and Y are subgraphs of G,

an X-Y path is a path which intersects each of X and Y in exactly one vertex. A
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path is said to be internally disjoint from a subgraph X if it intersects X only in its

endvertices, if at all. Each block of G is either a maximal 2-connected subgraph, a

cut-edge (bridge), or an isolated vertex (i.e. a vertex with no incident edges). We

will call a block a t-block if it is not a vertex, a single edge, or a cycle. Note that in

any t-block , there must be some pair of vertices {u, v} for which the block contains

at least three internally disjoint u-v paths. We call any such pair a branching pair of

the block. A set of internally disjoint u-v paths is called a set of arms of the block.

When P is a path in a graph G, and u, v ∈ V (P ), we let P [u, v] denote the subpath of

P between u and v, inclusive. Let P (u, v) := P [u, v]− {u, v}, P (u, v] := P [u, v]− u,

and P [u, v) := P [u, v] − v. We use similar notation to indicate subpaths in cycles.

We will use the convention that an uppercase letter refers to a subgraph, while the

corresponding lowercase letter refers to the number of edges in that subgraph. So

where P1 is a path, for example, p1 is the number of edges in that path. A graph is

said to be a bundle of balloons if its edge set can be partitioned into disjoint balloons

whose vertex boundaries share a single common vertex (see, for example, the first

graph of Figure 3.2).

Proof of Theorem 4.1. First note that if M is isomorphic to one of the ma-

troids listed in the theorem statement, then spec(M) = {η}. Conversely, let G be a

graph without isolated vertices whose bicircular matroid represents M and suppose

that spec(M) = {η}. We begin by showing that we may assume that G satisfies the

following conditions.
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(1) G is connected, with minimum degree at least two, and each balloon of G is

a cycle.

(2) G includes at most one t-block.

(3) There is a block B of G whose vertex-boundary meets all blocks of G.

(4) If G has no t-block, then it is a bundle of balloons.

Proof of (1). The matroid M is connected with at least two elements so that

each pair of edges of G is contained in a bicycle. Thus G is connected. Suppose that

G has a vertex v of degree one. Then the unique edge of G that meets v is in no

bicycle; a contradiction. Hence the minimum degree of G is at least two. It follows

from Lemma 3.2 that each balloon G may be replaced by a cycle with its tip being

the unique vertex in its vertex-boundary. �

Proof of (2). It follows from Lemma 3.1 that we may assume that G has the

fewest number of balloons among all representations for M that satisfy condition (1)

(no unrolling of a balloon is possible). Suppose G includes two t-blocks B and B′.

Let u, v be a branching pair of B with arms P1, P2, and P3 and let x, y be a branching

pair of B′ with 3 arms Q1, Q2, and Q3. Since G is connected there is some B-B′ path

R. Without loss of generality, assume that R intersects paths P1 and Q1 Consider

the following bicycles of G.

P1 ∪ P2 ∪ P3 P1 ∪ P2 ∪R ∪Q1 ∪Q2 Q1 ∪Q2 ∪Q3 P1 ∪ P3 ∪R ∪Q1 ∪Q3
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From the first two bicycles we obtain p3 = r + q1 + q2, and from the last two

bicycles we obtain

η = p1 + p3 + r + q1 + q3

= p1 + (r + q1 + q2) + r + q1 + q3

= q1 + q2 + q3 + q1 + p1 + 2r

= η + q1 + p1 + 2r

Thus q1 + p1 + 2r = 0; a contradiction. Therefore G includes at most one

t-block. �

Proof of (3). If G contains a t-block, call it B and label some set of its arms

B1, . . . Bn for n ≥ 3. Otherwise, let B be any cycle of G which is not a balloon if such

exists, or any balloon if it does not, and let B1 and B2 be any two paths forming a

partition of the edges of B. We now proceed to show that every balloon of G must

have it’s tip in B. This will show that every end-block, and hence every block, must

meet the vertex boundary of B.

Suppose there is some balloon C of G whose tip v is not in B. Then there is some

cycle D with the vertex-boundary of C and D meeting in v. There is a path P from

D to B that is internally disjoint from C. Let u = P ∩D, w = P ∩ B, and assume

without loss of generality that w ∈ B1. Note that C ∪D is a bicycle, so η = c+ d

When u = v (Figure 4.1 (A)), we must have p > 0. By symmetry c = d, and

hence η = 2c. Since B1∪B2∪P ∪C is a bicycle, we have b1 +b2 +p = c. Alternatively,
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(A) (B)

aB bP u = v

C

D

aB bP u

c v

D

C

Figure 4.1. A bundle of balloons

when u 6= v (Figure 4.1 (B)), fix an orientation of the cycle D and let D1 = D[u, v],

D2 = D[v, u]. Then each of the following is a bicycle.

B1 ∪B2 ∪ P ∪D B1 ∪B2 ∪ P ∪D1 ∪ C B1 ∪B2 ∪ P ∪D2 ∪ C

So we have d1 = d2 and d1 + c = d. Hence d1 = d2 = c, and η = 3c. Again we find

b1 + b2 + p = c.

Consider the case that B is a t-block. Then B1∪B2∪B3 is a bicycle, so b1+b2+b3 =

η = c + d. By symmetry, we have b2 = b3. From the arguments above we know
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b1 + b2 + p = c. So

2c = (b1 + b2 + p) + (b1 + b3 + p) = (b1 + b2 + b3) + b1 + 2p = c+ d+ b1 + 2p

which gives c = d + b1 + 2p. But from above we have either d = c (when u = v) or

d = 2c (when u 6= v), and hence this is impossible.

Now consider the case that B is a cycle. Suppose B intersects exactly one other

block. Then B is a balloon. By our choice of B, every cycle must be a balloon, and

G is a bundle of two balloons (i.e. a bowtie). We are left with the case that the

cycle B intersects at least two other blocks. We may choose some subgraph A which

contains exactly one cycle, is disjoint from C ∪ D ∪ P , and intersects B at exactly

one vertex. (See Figure 4.2.) Then B1 ∪ B2 ∪ A is a bicycle, so b1 + b2 + a = η.

Since b1 + b2 + p = c, we have a+ c = η + p. But there is some bicycle which strictly

contains A ∪ C, so a+ c < η; a contradiction. �

Proof of (4). Here G has no t-block, so B is a cycle. We wish to show that G

is a bundle of balloons. From property (3), G must consist of B and balloons with

tips in B. We proceed to show that the vertex boundaries of those balloons share a

single common vertex.

Suppose B is a cycle and A1 and A2 are balloons with tips u and v. Fix an

orientation of B and let B1 = B[u, v] and B2 = B[v, u]. Note that A1 ∪ A2 ∪ Bi is

a bicycle for i ∈ {1, 2}, so b1 = b2. Since this argument applies to any two balloons,

we can see that there is no balloon A3 attached at w /∈ {u, v}. Note also that B ∪Ai

is a bicycle for each i ∈ {1, 2}, so a1 = a2. We now have η = 2a1 + b1 = a1 + 2b1,
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Figure 4.2. A subgraph that intersects B at precisely one vertex

and hence a1 = b1, η = 3a1. If there is a third balloon A3 attached at u, then by

the argument above a3 = a1. The bicycle A1 ∪ A3 has length 2a1 but η = 3a1; a

contradiction. Thus there is at most one balloon attached at u, and similarly at v.

Now A2 can be unrolled to u, leaving a graph G′ representing M which has fewer

balloons than G. This contradicts our choice of G. Hence there is no balloon A2

attached at v. This shows that all balloons share a single common tip, and hence G

is a bundle of balloons. �

In the case that G has no t-block, we have shown that it is a bundle of balloons.

To complete the proof of Theorem 4.1, we now consider with the case that G does
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have a t-block B with branch vertices {u, v} and arms B1, . . . Bn. We will show that

G is a subdivision of one of the graphs shown in Figure 3.2. Hence M is one of the

matroids specified in the theorem.

Applying the arguments from the proof of (4) above to any cycle Bi∪Bj in B, we

find that the vertex boundary of B can meet balloons in at most two vertices, which

must be equidistant along the cycle. Suppose there are balloons A1 and A2 with tips

x1 and x2, respectively, and assume without loss that xi ∈ V (Bi). Note that each of

the following is a bicycle.

B1 ∪B2 ∪B3 A1 ∪B1 ∪B2 A1 ∪B1 ∪B3 A2 ∪B1 ∪B2 A2 ∪B2 ∪B3

So we have a1 = a2 = b1 = b2 = b3 and η = 3a1. Now the subgraph A1 ∪ A2 ∪ B3 is

contained in some bicycle. Since this subgraph includes η edges, it must be a bicycle.

So each of A1 and A2 must meet B3, and we find {x1, x2} = {u, v}. Suppose without

loss that x1 = u. There must at least one other balloon A3 with tip u. Otherwise A1

can be unrolled to v to obtain a representation with fewer balloons. From symmetry

a1 = a3, and since A1 ∪ A3 is a bicycle we have η = 2a1; a contradiction. So G does

not have balloons with two distinct tips.

Now consider the case that exactly one vertex in the boundary of B is a balloon

tip. If this vertex is u, then each balloon can be unrolled to v, leaving a graph G′

representing M with fewer balloons than G. Similarly if the tip is v they may be

unrolled to u. If exactly one balloon has tip x /∈ {u, v}, it can be unrolled to v. So

we are left with the case that there are at least two balloons, A1 and A2, with shared
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Figure 4.3. A single t-block with precisely three arms

tip x /∈ {u, v}. Assume x ∈ B1. By symmetry a1 = a2, and since A1 ∪A2 is a bicycle

we have η = 2a1. Also by symmetry b2 = b3. Since B1 ∪B2 ∪B3 is a bicycle we have

b1 + 2b2 = η = 2a1. The bicycles B1 ∪ B2 ∪ A1 and B1 ∪ B2 ∪ B3 show b3 = a1, so

we’re left with 2a1 = b1 + 2b2 = b1 + 2b3 = b1 + 2a1; a contradiction. Hence there are

no balloons attached to B.

When n ≥ 4, any three arms of B form a bicycle. By symmetry, each arm is of the

same length, η/3. Suppose there is some path P from Bi to Bj internally disjoint from

the arms of B, where P is not itself an arm. (We allow the possibility that i = j).

Assume without loss that there is a vertex w ∈ P ∩ B1 with w /∈ {u, v}, and that

j ∈ {1, 2}. Then B1 ∪B2 ∪P forms a bicycle, so p = η/3. But B1[w, u]∪P ∪B2 ∪B3

is contained in a bicycle of size strictly larger than p + b2 + b3 = η. Hence there can

be no such path P . So if B has at least 4 arms, then G is exactly the union of those

arms, and M is a η/3-subdivision of U2,n.

It remains to consider with the case n = 3, where G is a single t-block B with

exactly three arms.
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Suppose there is some path P from B1 to B2 internally disjoint from the arms of

B. Assume without loss that P ∩B1 = w /∈ {u, v}, and let x = P ∩B2. (Figure 4.3)

If x /∈ {u, v}, consider the 6 paths B1[u,w], B1[w, v], B2[u, x], B2[x, v], B3, P .

Any 5 of these together will form a bicycle. By symmetry, each is of the the same

size, p, and η = 5p. Note that since this argument applies to any Bi to Bj paths, it

precludes any such paths except those from w to x. But if Q is a w, x path internally

disjoint from the arms of B, and q = p, then B1[u,w] ∪B2[u,w] ∪ P ∪Q is a bicycle

of size 4p < η. So we find that no such Q exists. Hence G represents a p-subdivision

of U4,6.

Now suppose x = u. Consider the 5 paths B1[u,w], B1[w, v], B2, B3, P . Any

4 of these together form a bicycle, so each is of size p, and η = 4p. If Q is another

w, x path, then B1[u, x] ∪ P ∪ Q is a bicycle of size 3p. Hence no Q exists, and G

represents a p-subdivision of U3,5

Finally, suppose there is a non-trivial path P from B1 to B1 internally disjoint

from the arms of B. Assume that P ∩ B1 = {w, x} with {w, x} ∩ {u, v} = ∅ and

such that R = B1[u,w], S = B1[w, x], and T = B1[x, v] partition the edges of B1.

By symmetry we see that b2 = b3, that p = s, and that r = t. Consider each of the

following bicycles of G.

B1 ∪B2 ∪B3 B2 ∪B3 ∪R ∪ S ∪ P B1 ∪B2 ∪ P

The first gives η = b1 + b2 + b3 = r + s + t + 2b2 = 2r + s + 2b2. The second gives

η = b2+b3+r+s+p = r+2s+2b2. The third gives η = b1+b2+p = r+s+t+b2+p =
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Figure 4.4. The prism graph P6

2r + 2s+ b2. Hence r = s = b2(= t = b1 = b3 = p), and η = 5p. Here G represents a

p-subdivision of U4.6

�

2. Bicircular Matroids with Circuits of Two Sizes

The second main result of the dissertation is given next. It is a partial extension

of Theorem 4.1 to bicircular matroids with circuits of two cardinalities. A complete

extension of that theorem would require dropping the condition that the graph G

is a subdivision of a 3-connected graph from Theorem 4.2. An (a, b)-subdivision of

a graph, for distinct positive integers a and b, is obtained by subdividing each edge

of the graph into a path of length a or a path of length b so that there is at least

one path of each of these lengths after the subdivision. The prism graph is given in

Figure 4.4.
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Theorem 4.2. Let M = B(G) be a connected bicircular matroid where G is a

subdivision of a 3-connected graph H. Then |spec(M)| = 2 if and only if H is one of

the following graphs.

(1) An (a, b)-subdivision of W3 for distinct positive integers a and b.

(2) A k-subdivision of W4, K5\e, K5, K3,3, K3,4, or the prism P6 for some

k ∈ Z+. If H is isomorphic to W4, K5\e, or K5, then spec(M) = {5k, 6k}.

If H is isomorphic to K3,3, K3,4, or P6, then spec(M) = {6k, 7k}.

D

E

C

A

G

H

(a)

C

D

E

A

G

H

(b)

Figure 4.5. A couple of 2-edge colorings of the prism

The next concept is crucial to the proof Theorem 4.2. We use this concept to

connect the problem of determining the graphs with few bicycle sizes with an edge

coloring of graphs that follows certain rules. The vertex and edge sets of a graph G

are denoted by V (G) and E(G), respectively. Note that the vertex- and edge-labeling

functions considered below are not required to be injective as is common in graph

labeling problems (see [5, 6]). This is because we are considering problems involving
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bicycle sizes in certain matroids. The bicycle sizes will be the “color” of certain edges

in an associated graph. As we have few bicycle sizes, we will have many repeated

edge colors in our graphs.

Definition 4.3. Let G be a simple graph, ϕ : V (G)→ Z+, and j ∈ Z+.

(1) We say that ϕ is a j-vertex coloring of G if |{ϕ(A) : A ∈ V (G)}| = j.

(2) We say that ϕ is a j-edge coloring of G if |{ϕ(A)+ϕ(B) : AB ∈ E(G)}| = j.

Let G be a simple graph with a fixed j−vertex coloring ϕ. Suppose that A and B are

distinct vertices of G. We refer to a number ϕ(A) as the “color” of a vertex A. We

refer to a number ϕ(A)+ϕ(B) as the “color” of an edge AB. Typically we will use the

convention that ϕ(A) = a for each vertex A so that a+ b will be the color of an edge

AB. The graph G will be said to be vertex-monochromatic if ϕ is a 1-vertex coloring.

The graph G will be said to be edge-monochromatic if ϕ is a 1-edge coloring. If G is

vertex-monochromatic, then it will be edge-monochromatic but not conversely. Two

2-edge colorings of the prism graph are illustrated in Figure 4.5. In that figure the

dashed edges represent one edge color class and the bold edges represent the other.

The shaded vertices are one vertex-color class and the non-shaded vertices are the

other.

Lemma 4.4. Let G be a connected graph with a 2-edge coloring ϕ.

(1) If U and V are vertices of G connected by an edge-monochromatic path of

even length, then ϕ(U) = ϕ(V ).
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Figure 4.6. An alternating four-cycle

(2) If a four-cycle is not edge-monochromatic, then opposite edges of the four-

cycle have different colors.

(3) If G is a prism graph, then, up to symmetry, the edges of G are as colored in

Figure 4.5 (a) or (b). In these two cases the coloring is a 2-vertex coloring.

(4) If ϕ is a 2-vertex coloring, then one of the vertex color classes is an indepen-

dent set of vertices.

(5) If a neighbor of a vertex V is adjacent to vertices of two different colors, then

V has one of these two colors.

Proof. Let the edge colors of G be “dash” and “bold” and picture the edges

appropriately in diagrams. Suppose that UVW are the vertices of a path of G of

length two listed in order with monochromatic edges. Then u + v = v + w so that

u = w. Extend this observation by induction to obtain Lemma 4.4 (1).

Suppose that UVWX are the vertices of a four-cycle of G listed in cyclic order.

Assume that exactly three of the edges are monochromatic, say u+v = v+w = w+x

without loss of generality. Then apply (1) to the path UVW to obtain that u = w

and apply (1) to the path VWX to obtain that v = x. Hence u + x = w + v and

the edges of the four-cycle are monochromatic; a contradiction. Hence the four-cycle
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of G has precisely two edges of each color. Suppose that (2) does not hold. Then

we may assume that u + v = x + w and u + x = v + w and these two colors are

different (see Figure 4.6 (a)). Then u+ v−w = x = v+w− u so that u = w. Hence

u + v = w + v; a contradiction. Hence Lemma 4.4 (2) holds and the four-cycle is as

colored in Figure 4.6 (b) up to symmetry. Hence Lemma 4.4 (2) holds.

Suppose that G ∼= P6 and that the vertices of G are as labeled in either of the

graphs given in Figure 4.5. The symmetry of the graph allows us to assume that

any of the three four-cycles of G is the exterior cycle. Let n denote the number of

edge-monochromatic four-cycles of G. Then n 6= 3 as two colors are used on the

edges of G. Assume that n = 2. It follows by symmetry that we may assume that

the cycles ACGEA and ACDHA are edge-monochromatic of the same color. Then

(1) implies that the vertices of G are monochromatic; a contradiction. Hence n 6= 2.

Suppose that n = 0. Then (2) implies that edges EG and AC have different colors

and that edges AC and DH have different colors. Hence edges EG and DH have the

same color. This contradicts (2) applied to the cycle DGEHD. Hence n = 1.

We may suppose that the cycle EGDHE is edge-monochromatic of color bold by

symmetry. Then the edges of the cycle ACGEA are not. Apply (2) to this cycle

to obtain that the edge AC is dashed and exactly one of the edges AE and CG is

dashed. Suppose the latter by symmetry. Edge AH is either dashed or bold. Suppose

the former holds. Then the edges of G are as colored in Figure 4.5 (a). Moreover, (1)

implies that a = c = g = h and d = e. Hence the two edge colors of K are a+h = 2a

and a+e = a+d. Now suppose that edge AH is bold. Apply (2) to the cycle AHDCA
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Figure 4.7. A 2-edge coloring of K5

to obtain that edge CD is dashed. Hence (1) implies that a = d = e = g = h and

c 6= a. This completes the proof of Lemma 4.4 (3).

Now suppose that the vertices of G are colored with two colors, say a and b with

a 6= b. If neither of the vertex-color classes of G is an independent set, then G has

edges colored 2a and 2b. It follows from G being connected that G has an edge colored

a+ b. Hence G has edges of three distinct colors; a contradiction. This completes the

proof of Lemma 4.4 (4).

Suppose that V is adjacent to a vertex U with two other neighbors of colors a and

b with a 6= b. The two edge-colors of G must be u+ a and u + b. Hence the color of

the edge UV must be one of these two values. then u + v = u + a or u + v = u + b

so that v ∈ {a, b}. This completes the proof of Lemma 4.4 (5). �

Lemma 4.5. Let G ∼= Kn have a 2-edge coloring for some n ≥ 4. Then the edges

of one color induce a subgraph isomorphic to Kn−1 and the edges of the other color

induce a subgraph isomorphic to K1,n−1 and exactly one vertex is of one color, n− 1

vertices are of the other color.
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Proof. Let the vertex set of G be {V1, V2, . . . , Vn} with vertex Vi having color vi

for each i. Let H be a maximal complete vertex-monochromatic subgraph of G with

vertex set, say {V1, V2, . . . , Vj} without loss of generality. The edge set of G is not

monochromatic so that j < n. Let the edge colors of G be “bold” and “dash”.

Suppose that j = 2. Then G contains no edge-monochromatic triangles. It follows

from Lemma 4.4 (2) that G either contains an edge-monochromatic four-cycle or a

four-cycle with opposite edges having different colors. If the latter occurs, then one of

the chords of the four-cycle will complete an edge-monochromatic triangle with two

of the edges of the cycle; a contradiction. Hence the former occurs and the two chords

of the four-cycle have the opposite color of the edges of the four-cycle. However, these

two chords are opposite edges of a four-cycle that have the same color; a contradiction

to Lemma 4.4 (2). Hence j ≥ 3. Then the vertices of H are monochromatic of color

v1 by Lemma 4.4 (1). Let bold be the color of the edges of H. Assume that some

edge ViVk is bold for i ≤ j < k. Then vertex Vk has color v1 by Lemma 4.4 (1).

Then each edge from Vk to {V1, V2, . . . , Vj} has color 2v1 so that V (H)∪{Vk} induces

an edge-monochromatic subgraph of G. This contradicts the choice of H. Hence all

edges ViVk are colored dash for i ≤ j < k.

Assume that j < n − 1. Then each vertex of {vj+1, vj+2, . . . , vn} has color vn

by Lemma 4.4 (1). Thus the edge colors of G include v1 + v2 = 2v1, v1 + vn, and

vn−1 + vn = 2vn. Two of these three sums must be the same so that v1 = vn. It

follows that the vertices of G are monochromatic; a contradiction. Hence j = n − 1

(see Figure 4.7 for an example of such a coloring when n = 5). �
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Dirac provided the following result in 1963 [4] (see [1] for an alternate proof and

[7] for an exposition). The graphs Wr, K5, and K3,p were given in Figure 1.2. The

graph K5\e is obtained by deleting a single edge of K5. The graphs K ′3,p, K ′′3,p, and

K ′′′3,p are obtained from K3,p by adding, respectively, one, two, or three edges to the

partite class of size three.

Theorem 4.6. A graph G is a subdivision of a simple 3-connected graph without

two vertex-disjoint cycles if and only if G is isomorphic to a subdivision of one of the

following graphs: a wheel graph, K5, K5\e, K3,p, K ′3,p, K ′′3,p, or K ′′′3,p for some p ≥ 3.

Note that in the proof of the lemma below, and throughout the remainder of

the dissertation, we again use the convention that an uppercase letter represent a

subgraph of a graph, while the corresponding lowercase letter represents the number

of edges in that subgraph. This convention will mesh nicely with the convention for

coloring the vertices and edges of graphs as in Definition 4.3.

Lemma 4.7. Suppose that G is isomorphic to a subdivision of Wr (r ≥ 3), K5,

K5\e, K3,p, K ′3,p, K ′′3,p, or K ′′′3,p (p ≥ 3). Let M = B(G). Then |spec(M)| = 2 if and

only if G is to one of the following graphs.

(1) An (a, b)-subdivision of W3 for distinct positive integers a and b.

(2) A k-subdivision of W4, K5\e, K5, K3,3, or K3,4 for some k ∈ Z+.

Proof. First note that each graph represent a bicircular matroid with bicycles

of two cardinalities. Suppose that |spec(M)| = 2. Let S denote the edge set of
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G. First assume that H is a wheel-graph. Let G be as given in Figure 1.2 (a)

with Ai and Bi denoting paths of G obtained by subdividing an edge of H for each

i ∈ {1, 2, . . . , r}. Hence Ai has ai edges and Bi has bi edges, for each i, by following

our convention. Assume that a subdivison of G ∼= W3. Then S − Ai and S − Bi are

bicycles of G for each i ∈ {1, 2, 3}. These bicycles are of two cardinalities so that

{a1, a2, a3, b1, b2, b3} = {a, b} for some distinct positive integers a and b. It follows

that G is obtained from W3 by either an a-subdivision or a b-subdivision of each edge

where a 6= b are positive integers.

Assume that H is isomorphic to Wr for some r ≥ 4. Define A = A1∪A2∪ . . .∪Ar

and B = B1∪B2∪. . . Br. Note that the positive integers a and b subsequently defined

will not be related to the cardinalities of A and B in what follows as an exception to

our coloring rules. Now {Ai, Aj} ∪B is a theta-graph for distinct i, j ∈ {1, 2, . . . , r}.

Thus there are at most two values for the sums ai + aj, i 6= j. Let Z(G) be the

complete graph with vertex set {A1, A2, . . . , Ar}. Color each vertex Ai with color ai

and each edge with the sum of the colors of its endvertices. This coloring yields a

j-edge coloring of Z(G) for j ∈ {1, 2}. If j = 2, then we may assume that (†) holds

by symmetry. If j = 1, then (‡) holds.

(†) a1 = a2 = . . . = ar−1 = a and ar = b 6= a or

(‡) a1 = a2 = . . . = ar = a for some a, b ∈ Z+.

Assume that G is a subdivison of W4. Then the sets {Bi, Bi+1, Ai+1}, {Ai, Aj},

{Bi, Bi+2}, {Bi, Ai+2}, {Bi, Ai+3} for distinct i, j ∈ {1, 2, 3, 4} mod 4 are comple-

ments of bicycles of G. Hence 2 = |Z| where Z is the set {a1 + b1 + b4, a2 + b1 + b2,
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a3 + b2 + b3, a4 + b3 + b4, a1 + a2, a1 + a3, a1 + a4, a2 + a3, a2 + a4, a3 + a4, b1 + b3,

b2 + b4, b1 + a3, b1 + a4, b2 + a1, b2 + a4, b3 + a1, b3 + a2, b4 + a2, b4 + a3 }.

Case 1. Suppose that (†) holds so that Z = {2a, a+ b, a+ b1 + b4, a+ b1 + b2, a+

b2 + b3, b+ b3 + b4, b1 + b3, b2 + b4, b1 + a, b1 + b, b2 + a, b2 + b, b3 + a, b4 + a}.

Note that (†) each sum in Z is equal to 2a or a + b as a 6= b so that 2a 6= a + b.

Then |{a+ b1 + b2, a+ b1, a+ b2}| ≤ 2. Hence a+ b1 = a+ b2. Thus b1 = b2. So Z =

{2a, a+b, a+b1+b4, a+2b1, a+b1+b3, b+b3+b4, b1+b3, b1+b4, b1+a, b1+b, b3+a, b4+a}.

Likewise, a + b1 + b3 is neither b1 + a nor b3 + a so b1 + a = b3 + a. Thus b3 = b1.

Hence Z = {2a, a+ b, a+ b1 + b4, a+ 2b1, b+ b1 + b4, 2b1, b1 + b4, b1 + a, b1 + b, , b4 + a}.

Now b + b1 + b4 is neither b1 + b4 nor b1 + b. Hence b1 + b4 = b1 + b. Hence

b4 = b and Z = {2a, a + b, a + b + b1, a + 2b1, 2b + b1, 2b1, b1 + b, b1 + a}. Now

|{a + b, a + b + b1, b1 + b}| ≤ 2 implies that a + b = b1 + b. Hence a = b1 and

Z = {2a, a+ b, 2a+ b, 3a, a+ 2b}. Then |{2a, a+ b, 2a+ b}| ≤ 2. However, these three

sums are pairwise distinct because a 6= b; a contradiction. Thus Case 2 occurs.

Case 2. Suppose that (‡) holds so that Z = {2a, a+b1 +b4, a+b1 +b2, a+b2 +b3,

a+ b3 + b4, b1 + b3, b2 + b4, b1 + a, b2 + a, b3 + a, b4 + a }.

As before |{a + bi + bj, a + bi, a + bj}| ≤ 2 for distinct i, j ∈ {1, 2, 3, 4} so that

b1 = b2 = b3 = b4. Hence Z ={2a, a+2b1, 2b1, a+b1 }. Then |{a+2b1, 2b1, a+b1}| ≤ 2

so that b1 = a. Thus Z = {2a, 3a} and ai = aj = bi = bj for all i, j ∈ {1, 2, 3, 4}.

Then G is a k-subdivision of W4 where k = a.
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Now assume that H is isomorphic to Wr for r ≥ 5. Then the graph obtained from

G by deleting the edge set of r−4 consecutive spoke paths of G is a subdivision of W4.

By the previous remarks, each subdivision path of such a W4 with the given coloring

has the same number of edges. Each of the paths Ai and Bj is in such a subgraph

so that this common number is ai = bj = b1 for any i, j ∈ {1, 2, . . . , r}. Remove the

paths A1, A2, · · · , and Ar−4 to obtain a subdivision of W4 with Br∪B1∪B2∪· · ·∪Br−4

being a subdivision path. This path has b1 edges so that br + b1 + b2 + · · ·+ br−4 = b1;

a contradiction.

Suppose that H is isomorphic to K5. Assume that H is given in Figure 4.8 where

each labeled edge X corresponds to a path X of G of length x. Then each of the

labeled paths is in a subgraph of G that is a subdivision of W4. Hence each of these

paths has length k. The paths P and Q are in bicycles of G with 5k and 6k edges.

Hence G is isomorphic to k-subdivision of K5 and spec(M) = {5k, 6k}. Likewise, if

H is isomorphic to K5\e, then spec(M) = {5k, 6k}.

Suppose that H is isomorphic to K3,3, where the subdivision paths of G are as

given in Figure 1.2 with path Ai corresponding to edge Ai, path Bi corresponding

to edge Bi, and path Ci corresponding to edge Ci, for i = 1, 2, 3. Then the edge

sets of A1 ∪ A2 ∪ A3, B1 ∪ B2 ∪ B3, C1 ∪ C2 ∪ C3, Ai ∪ Bj, Ai ∪ Cj, and Bi ∪ Cj for

i, j ∈ {1, 2, 3} with i 6= j are complements of bicycles of G. Hence the above sets are

of two cardinalities.

Let Z(G) be the graph with vertex set {A1, A2, A3, B1, B2, B3, C1, C2, C3} and

edges AiBj, AiCj, and Bi, Cj for i, j ∈ {1, 2, 3} with i 6= j. Color a vertex X by
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Figure 4.8. Adding paths to a subdivision of W4
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Figure 4.9. A bicycle graph associated with K3,3

x, the number of edges in the path X of G, and color an edge XY by x + y. This

coloring yields a j-edge coloring of Z(G) for j ∈ {1, 2}. If j = 1, then a1 = a2 =

a3 = b1 = b2 = b3 = c1 = c2 = c3 = k for some k ∈ Z+. Then G is a k-subdivision of

H ∼= K3,3 and each bicycle of G has 6k or 7k edges. Suppose that j = 2.

We claim that this is a 2-vertex coloring of Z(G). The graph of Z(G) is given

in Figure 4.9. The subgraphs induced by deleting a triangle {Ai, Bj, Ck} with i 6= j,
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Figure 4.10. The prism graph Q

6= k, and i 6= k are all prism graphs. At least one of these prism graphs is not edge-

monochromatic as Z(G) is not. By symmetry, assume that Q is two-edge colored

where Q is the subgraph induced by the vertices A1, B2, C3, A2, B3, and C1 (see

Figure 4.10).

The vertices and edges of Q are colored as in Figure 4.5 (a) or (b) by Lemma 4.4

(3). If V ∈ {A3, B1, C2}, then V is is adjacent to three of the vertices of Q. Then

Lemma 4.4 (5) implies that V has one of the two vertex-colors used on Q because V

is adjacent to some vertex of Q that is adjacent to vertices of different colors. Thus

the vertex set of Z(G) is two-colored.

Assume that the vertex sets A := {A1, A2, A3}, B := {B1, B2, B3}, and C :=

{C1, C2, C3} are each vertex-monochromatic. Then Lemma 4.4 (1) implies that Z(G)

is vertex-monochromatic; a contradiction. Hence we may assume that A is not vertex-

monochromatic so that a1 = a2 = a and a3 = b with a 6= b for some positive integers a

and b. Assume that either B or C is vertex-monochromatic, say B by symmetry. Then

the vertex color of B is either a or b. If the former holds, then a1 + a2 + a3 = 2a+ b,
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b1 + b2 + b3 = 3a, the edge A1B2 has color 2a, and the edge A3B2 has color a + b.

Hence |{2a + b, 3a, 2a, a + b}| ≤ 2. It follows from a + b = 3a that b = 2a. Then

{2a + b, 3a, 2a, a + b} = {2a, 3a, 4a}; a contradiction. Hence the latter holds and

a1 + a2 + a3 = 2a+ b, b1 + b2 + b3 = 3b, the edge A1B2 has color a+ b, and the edge

A3B2 has color 2b. Then |{2a + b, 3b, a+ b, 2b}| ≤ 2. It follows from a + b = 3b that

a = 2b. Then {2a + b, 3b, a + b, 2b} = {2b, 3b, 5b}; a contradiction. Hence B, and

likewise C are not vertex-monochromatic sets.

There exists an edge AiBj of color 2a and one of color a+ b since each vertex Bj

has two neighbors in A and at least one of these vertices has color a. However, these

two colors and the sum a1 +a2 +a3 = 2a+b are all pairwise different; a contradiction.

Suppose that H ∼= K3,p for some integer p exceeding three. Then delete any

p − 3 of the vertices of the classes of size p of G to obtain that any such path is in

a subdivision of K3,3. Thus each such path has the same number, say k, of edges by

the previous arguments. The graph K3,p only has bicycles of two sizes when p = 4 in

this case. When p = 4, G will have bicycles of cardinality 6k and 7k.

Note that K ′3,p has bicycles of cardinalities 5, 6, and 7 for all p ≥ 3. If H is

isomorphic to this graph, then the paths between the partite classes of G have the

same number of edges, say k, by previous arguments. Let p be the number of edges

in the path between two vertices of the partite class of size three of G. Then G has

bicycles of size 4k + p, 6k + p, 6k, and 7k. At least three of these cardinalities are

different; a contradiction.

43



C1 C2

PD

PE

PF

PG

PH

PI

PA

PB

PC

Figure 4.11. Two vertex-disjoint cycles

Likewise, we obtain a contradiction if H is isomorphic to K ′′3,p or K ′′′3,p as G

will contain bicycles of three different cardinalities. This completes the proof of

Lemma 4.7. �

Theorem 4.8. Let G be a subdivision of a simple 3-connected graph with two

vertex-disjoint cycles. For M = B(G), |spec(M)| = 2 if and only if G is isomorphic to

a k-subdivision of the prism graph for some k ∈ Z+. In this case spec(M) = {6k, 7k}.

The next lemma follows from an observation of H. Wu. It is a key part of the

proof of Theorem 4.8.

Lemma 4.9. Suppose that C1 and C2 are distinct vertex-disjoint cycles in a graph

G. Let paths PX from C1 to C2, for X ∈ {A,B,C,D,E, F,G,H, I}, be as given in

Figure 4.11, where the length of PX is x > 0. Let S consist of the edge set of these

two cycles and nine paths. If the bicycles of B(G[S]) have exactly two different sizes,

then x = y for all x, y ∈ {a, b, c, d, e, f, g, h, i}.
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Proof. Note that S − (PX ∪ PY ) is a bicycle of B(G[S]) for {XY } ∈ {AB, AC,

BC, BF , CD, AE, AH, BI, CG, FI, FG, FH, DG, DH, DI, EG, EH, EI}.

Likewise, S − (PX ∪ PY ∪ PZ) is a bicycle of B(G[S]) for {XY Z} ∈ { ADF , BDE,

CEF , AGI, BGH, CHI}. Each of these bicycles has one of two edge set cardinalities.

Hence for such pairs (X, Y ) and triples (X, Y, Z) above, x + y and x + y + z take

one of two distinct values. These eighteen two-sums and six three-sums are listed in

Table 1.

Let K be the graph on vertex set A, B, C, D, E, F , G, H, I with vertices joined

by an edge if the corresponding two-sum is listed the table (see Figure 4.12). Color

each vertex X of K by x and each edge XY by x + y. This coloring yields a j-edge

coloring of K for j ∈ {1, 2}. First suppose that j = 2. We will denote the two colors

by “bold” and “dash” and indicate these colors by using thick and dashed edges,

respectively, in our drawings.

The subgraphs Li, i ∈ {1, 2, 3}, of K are given in Figure 4.13. We claim that the

vertices of each graph Li, i ∈ {1, 2, 3}, are monochromatic.

Consider the six vertex triples of K corresponding to each of the triples in Table 1.

Such a vertex triple meets the vertex set of each prism graph Li precisely twice in a

a+ b b+ f a+ h f + i d+ g e+ g a+ d+ f a+ g + i

a+ c c+ d b+ i f + g d+ h e+ h b+ d+ e b+ g + h

b+ c a+ e c+ g f + h d+ i e+ i c+ e+ f c+ h+ i

Table 1. Sums that take on two different values
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Figure 4.12. The graph K
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Figure 4.13. Three subgraphs of K

symmetric manner. For example, the triples {a, d, f}, {a, g, i}, {c, e, f}, and {c, h, i}

meet the vertex set of L1 in an interior vertex and a nonadjacent vertex on the cycle

bounding the exterior face. The triples {d, e, b} and {g, h, b} meet the vertex set of L1

in nonadjacent vertices of the exterior face. The third vertex of the triple is not in L1.

We will only use the fact that the color of the third vertex is positive in what follows.

We now assume that the vertex set of L1 is not monochromatic. We will use the six

triples above to obtain a contradiction. It will then follow by symmetry the vertex

46



set of each graph Li is monochromatic so that the vertex set of K is monochromatic

and j = 1. Note that the symmetry mentioned above also allows us to assume that

any of the three four-cycles of each prism graph of Figure 4.13 is the cycle bounding

the exterior face. Hence we may apply Lemma 4.4 (3) to assume that the vertices and

edges of L1 are as colored in Figure 4.5 (a) or (b) where the edge colors are “bold”

and “dash” and the vertices of each color class are denoted by using shading or not.

If L1 is as colored in Figure 4.5 (a), then the two edge colors are a+ h = 2a and

a+ e = a+ d. Then the sums a+ d+ f and a+ g+ i = 2a+ i have color 2a or a+ d.

It follows from f and i being positive that a+ d+ f = 2a and 2a+ i = a+ d. Hence

a = d + f and d = a + i. But this implies that a > d and d > a; a contradiction.

Hence L1 is as colored in Figure 4.5 (b). Then the edge colors of K are a + e = 2a

and a+ c = c+ h. Then a+ g+ i = 2a+ i and c+ h+ i = a+ c+ i have one of these

two colors so that 2a + i = a + c and a + c + i = 2a. It follows that c = a + i and

a = c + i. This implies that c > a and a > c; a contradiction. Hence the edges of K

are monochromatic. Then the vertices of K are monochromatic. This completes the

proof of Lemma 4.9. �

Proof of Theorem 4.8. First note that the bicircular matroid of a k-subdivision

of the prism graph has a spectrum of size two with bicycles of cardinality {6k, 7k}

for k ∈ Z+. For the converse, suppose that |spec(M)| = 2. There exists a subset S of

the edge set of G consisting of paths and cycles as given in Figure 4.11 because G is

a subdivision of a 3-connected graph. Further, Lemma 4.9 guarantees that the nine
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Figure 4.14. Bicycles of size 3 · 6 and 3 · 7, k = 3

labeled paths of Figure 4.11 each have k edges for some k ∈ Z+. Relabel the ver-

tices of S so that the vertices of the nine paths given in Figure 4.11 are when listed

in order PA = {D1, A1, A2, . . . , Ak−1, G1}, PB = {E1, B1, B2, . . . , Bk−1, H1}, PC =

{F1, C1, C2, . . . , Ck−1, I1}, PD = {D1, D2, . . . , Dk, E1}, PE = {E1, E2, . . . , Ek, F1},

PF = {F1, F2, . . . , Fk, D1}, PG = {G1, G2, . . . , Gk, H1}, PH = {H1, H2, . . . , Hk, I1},

and PI = {I1, I2, . . . , Ik, G1} ( See Figure 4.14 for the case k = 3 of this construc-

tion).

We claim that the edge set of the 2-connected graph G is S. Suppose otherwise.

Let P [U, V ] be a path with U and V being vertices of S and that is internally disjoint

from the vertices of S. First, assume that there exist four internally disjoint paths

from C1 to C2 in G. Then the endvertices of any three of these paths divide each of

C1 and C2 into three paths of equal lengths, k. Hence the intersection of the vertex
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sets of these four paths and C1 are D1, E1, F1, and the intersection of the vertex sets

of these four paths and C2 are G1, H1, and I1. We may assume that either U = D1

and V = G1 or U = D1 and V = H1. In either case, P [U, V ] has k edges. In the

former case P [U, V ] ∪ PA ∪ C1 is a bow-tie with 5k edges; a contradiction. In the

latter case, P [U, V ]∪PA∪PB ∪PD ∪PG is a theta-graph so that P [U, V ] has 2k or 3k

edges; a contradiction. Hence there do not exist four internally-disjoint paths from

C1 to C2.

Assume that P [U, V ] is a chordal path of Ci for i = 1, 2, say i = 1. Then

C1 ∪ P [U, V ] is a theta-graph so that P [U, V ] has 3k or 4k edges. Then there exists

a theta-graph with branching vertices being the endvertices of P [U, V ] that contains

P [U, V ], an arc of C1, two of the paths PA, PB, and PC , as well as two of the paths

PG, PH , and PI . Hence this theta-graph contains at least 3k + 2k + 2k edges in

addition to the length of the included arc of C1. However, this length exceeds 7k; a

contradiction.

Hence no such chordal path exists. It follows that we may assume that P [U, V ] is

a chordal path of the cycle PA ∪ PB ∪ PD ∪ PG. This cycle together with P [U, V ] is a

theta-graph so that P [U, V ] has a least 2k edges.

We may assume that U and V are not vertices of C2 by the previous remarks and

symmetry. Either U or V is a vertex of C1 or not. In the former case then two of the

paths PA, PB, and PC together with a path Q formed from P [U, V ] and a segment of

either PA or PB is a set of three internally disjoint paths from C1 to C2. Hence each

of these paths has k edges. However, Q has at least 2k edges; a contradiction. Hence
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neither U nor V is a vertex of C1. Then P [U, V ] is a path between two internal vertices

of PA and PB. Then PE ∪ PF together with P [U, V ] and segments of each of PA and

PB forms a cycle that this vertex-disjoint from C2. Hence this cycle has 3k edges by

the previous remarks. However, this cycle has at least 4k edges; a contradiction.

It follows from these observations that no such path P [U, V ] exists. Hence the

edge set of G is S. It follows that G is a k-subdivision of the prism graph for some

k ∈ Z+. This completes the proof of Theorem 4.8. �

Note that Theorem 4.2 follows immediately from Lemma 4.7 and Theorem 4.8.

2
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