4,926 research outputs found

    Hierarchical Bayesian sparse image reconstruction with application to MRFM

    Get PDF
    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g. by maximizing the estimated posterior distribution. In our fully Bayesian approach the posteriors of all the parameters are available. Thus our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of our hierarchical Bayesian sparse reconstruction method is illustrated on synthetic and real data collected from a tobacco virus sample using a prototype MRFM instrument.Comment: v2: final version; IEEE Trans. Image Processing, 200

    Fractal analysis of resting state functional connectivity of the brain

    Get PDF
    A variety of resting state neuroimaging data tend to exhibit fractal behavior where its power spectrum follows power-law scaling. Resting state functional connectivity is significantly influenced by fractal behavior which may not directly originate from neuronal population activities of the brain. To describe the fractal behavior, we adopted the fractionally integrated process (FIP) model instead of the fractional Gaussian noise (FGN) since the FIP model covers more general aspects of fractality than the FGN model. We also introduce a novel concept called the nonfractal connectivity which is defined as the correlation of short memory independent of fractal behavior, and compared it with the fractal connectivity which is an asymptotic wavelet correlation. We propose several wavelet-based estimators of fractal connectivity and nonfractal connectivity for a multivariate fractionally integrated noise (mFIN). The performance of these estimators was evaluated through simulation studies and the analyses of resting state functional MRI data of the rat brain.Comment: The 2012 International Joint Conference on Neural Network

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    Variational semi-blind sparse deconvolution with orthogonal kernel bases and its application to MRFM

    Get PDF
    We present a variational Bayesian method of joint image reconstruction and point spread function (PSF) estimation when the PSF of the imaging device is only partially known. To solve this semi-blind deconvolution problem, prior distributions are specified for the PSF and the 3D image. Joint image reconstruction and PSF estimation is then performed within a Bayesian framework, using a variational algorithm to estimate the posterior distribution. The image prior distribution imposes an explicit atomic measure that corresponds to image sparsity. Importantly, the proposed Bayesian deconvolution algorithm does not require hand tuning. Simulation results clearly demonstrate that the semi-blind deconvolution algorithm compares favorably with previous Markov chain Monte Carlo (MCMC) version of myopic sparse reconstruction. It significantly outperforms mismatched non-blind algorithms that rely on the assumption of the perfect knowledge of the PSF. The algorithm is illustrated on real data from magnetic resonance force microscopy (MRFM)

    Brain covariance selection: better individual functional connectivity models using population prior

    Get PDF
    Spontaneous brain activity, as observed in functional neuroimaging, has been shown to display reproducible structure that expresses brain architecture and carries markers of brain pathologies. An important view of modern neuroscience is that such large-scale structure of coherent activity reflects modularity properties of brain connectivity graphs. However, to date, there has been no demonstration that the limited and noisy data available in spontaneous activity observations could be used to learn full-brain probabilistic models that generalize to new data. Learning such models entails two main challenges: i) modeling full brain connectivity is a difficult estimation problem that faces the curse of dimensionality and ii) variability between subjects, coupled with the variability of functional signals between experimental runs, makes the use of multiple datasets challenging. We describe subject-level brain functional connectivity structure as a multivariate Gaussian process and introduce a new strategy to estimate it from group data, by imposing a common structure on the graphical model in the population. We show that individual models learned from functional Magnetic Resonance Imaging (fMRI) data using this population prior generalize better to unseen data than models based on alternative regularization schemes. To our knowledge, this is the first report of a cross-validated model of spontaneous brain activity. Finally, we use the estimated graphical model to explore the large-scale characteristics of functional architecture and show for the first time that known cognitive networks appear as the integrated communities of functional connectivity graph.Comment: in Advances in Neural Information Processing Systems, Vancouver : Canada (2010

    A Multiscale Approach for Statistical Characterization of Functional Images

    Get PDF
    Increasingly, scientific studies yield functional image data, in which the observed data consist of sets of curves recorded on the pixels of the image. Examples include temporal brain response intensities measured by fMRI and NMR frequency spectra measured at each pixel. This article presents a new methodology for improving the characterization of pixels in functional imaging, formulated as a spatial curve clustering problem. Our method operates on curves as a unit. It is nonparametric and involves multiple stages: (i) wavelet thresholding, aggregation, and Neyman truncation to effectively reduce dimensionality; (ii) clustering based on an extended EM algorithm; and (iii) multiscale penalized dyadic partitioning to create a spatial segmentation. We motivate the different stages with theoretical considerations and arguments, and illustrate the overall procedure on simulated and real datasets. Our method appears to offer substantial improvements over monoscale pixel-wise methods. An Appendix which gives some theoretical justifications of the methodology, computer code, documentation and dataset are available in the online supplements

    Sparse image reconstruction for molecular imaging

    Full text link
    The application that motivates this paper is molecular imaging at the atomic level. When discretized at sub-atomic distances, the volume is inherently sparse. Noiseless measurements from an imaging technology can be modeled by convolution of the image with the system point spread function (psf). Such is the case with magnetic resonance force microscopy (MRFM), an emerging technology where imaging of an individual tobacco mosaic virus was recently demonstrated with nanometer resolution. We also consider additive white Gaussian noise (AWGN) in the measurements. Many prior works of sparse estimators have focused on the case when H has low coherence; however, the system matrix H in our application is the convolution matrix for the system psf. A typical convolution matrix has high coherence. The paper therefore does not assume a low coherence H. A discrete-continuous form of the Laplacian and atom at zero (LAZE) p.d.f. used by Johnstone and Silverman is formulated, and two sparse estimators derived by maximizing the joint p.d.f. of the observation and image conditioned on the hyperparameters. A thresholding rule that generalizes the hard and soft thresholding rule appears in the course of the derivation. This so-called hybrid thresholding rule, when used in the iterative thresholding framework, gives rise to the hybrid estimator, a generalization of the lasso. Unbiased estimates of the hyperparameters for the lasso and hybrid estimator are obtained via Stein's unbiased risk estimate (SURE). A numerical study with a Gaussian psf and two sparse images shows that the hybrid estimator outperforms the lasso.Comment: 12 pages, 8 figure

    Automatic, fast and robust characterization of noise distributions for diffusion MRI

    Full text link
    Knowledge of the noise distribution in magnitude diffusion MRI images is the centerpiece to quantify uncertainties arising from the acquisition process. The use of parallel imaging methods, the number of receiver coils and imaging filters applied by the scanner, amongst other factors, dictate the resulting signal distribution. Accurate estimation beyond textbook Rician or noncentral chi distributions often requires information about the acquisition process (e.g. coils sensitivity maps or reconstruction coefficients), which is not usually available. We introduce a new method where a change of variable naturally gives rise to a particular form of the gamma distribution for background signals. The first moments and maximum likelihood estimators of this gamma distribution explicitly depend on the number of coils, making it possible to estimate all unknown parameters using only the magnitude data. A rejection step is used to make the method automatic and robust to artifacts. Experiments on synthetic datasets show that the proposed method can reliably estimate both the degrees of freedom and the standard deviation. The worst case errors range from below 2% (spatially uniform noise) to approximately 10% (spatially variable noise). Repeated acquisitions of in vivo datasets show that the estimated parameters are stable and have lower variances than compared methods.Comment: v2: added publisher DOI statement, fixed text typo in appendix A
    corecore