31 research outputs found

    Energy distribution control in wireless sensor networks through range optimization

    Get PDF
    A major objective in wireless sensor networks is to find optimum routing strategies for energy efficient use of nodes. Routing decision and transmission power selection are intrinsically connected since the transmission power of a node is adjusted depending on the location of the next hop. In this paper, we propose a location-based routing framework to control the energy distribution in a network where transmission ranges, hence powers, of nodes are determined based on their locations. We show that the proposed framework is sufficiently general to investigate the minimum-energy and maximum-lifetime routing problems. It is shown that via the location based strategy the network lifetime can be improved by 70% and the total energy consumption can be decreased to three-fourths to one-third of the constant transmission range strategy depending on the propagation medium and the size of the network

    Enhancing Network Lifetime in Wireless Sensor Networks Adopting Elephant Swarm Optimization

    Get PDF
    Enhancing the lifetime of wireless sensor networks had baffled researchers for quite some time now. The authors of this research manuscript draw inspiration from the behavior of large elephant swarms and incorporate their behavior into wireless sensor networks. The complex elephant swarm behavior is incorporated using a cross layer approach. The elephant optimization discussed in this paper enables optimized routing techniques, adaptive radio link optimization and balanced scheduling to achieve a cumulative enhanced network performance. The proposed elephant swarm optimization is compared with the popular protocol. The experimental study presented proves that the Elephant Swarm Optimization technique enhances the network life time by about 73%

    LBR: Load Balancing Routing Algorithm for Wireless Sensor Networks

    Full text link

    Multi-hop/Direct Forwarding (MDF) for Static Wireless Sensor Networks

    Get PDF
    The success of Wireless Sensor Networks (WSNs) depends largely on efficient information delivery from target areas toward data sinks. The problem of data forwarding is complicated by the severe energy constraints of sensors in WSNs. In this work, we propose and analyze a data forwarding scheme, termed Multi-hop/Direct Forwarding (MDF), for WSNs where sensor nodes forward data traffic toward a common data sink. In the MDF scheme, a node splits out-going traffic into at most two branches: one is sent to a node that is h units away, the other is sent directly to the data sink. The value of h is chosen to minimize the overall energy consumption of the network. The direct transmission is employed to balance the energy consumption of nodes at different locations and to avoid the so-called ?hot spot? problem in data forwarding. In order to calculate its traffic splitting ratio, a node only needs to know the distance toward the common data sink and that of the farthest node. Our analytical and simulation results show that the MDF scheme performs close to, in terms of energy efficiency and network lifetime, the optimum data forwarding rules, which are more complex and computation intensive

    A Fair and Lifetime-Maximum Routing Algorithm for Wireless Sensor Networks

    Get PDF
    Abstract-In multi-hop sensor networks, information obtained by the monitoring nodes need to be routed to the sinks. If we assume that the transmitter power level can be adjusted to use the minimum energy required to reach the intended next hop receiver, the energy consumption rate per unit information transmission depends on the choice of the next hop node. In a power-aware routing approach, most proposed algorithms aim at minimizing the total energy consumption or maximizing network lifetime. In this paper, we propose a new routing algorithm with two goals: minimizing the total energy consumption and ensuring fairness of energy consumption between nodes. We formulate this as a nonlinear programming problem and use a sub-gradient algorithm to solve the problem. We also evaluate the proposed algorithm via simulations at the end of this paper

    Joint Mobility and Routing for Lifetime Elongation in Wireless Sensor Networks

    Get PDF
    Although many energy efficient/conserving routing protocols have been proposed for wireless sensor networks, the concentration of data traffic towards a small number of base stations remains a major threat to the network lifetime. The main reason is that the sensor nodes located near a base station have to relay data for a large part of the network and thus deplete their batteries very quickly. The solution we propose in this paper suggests that the base station be mobile; in this way, the nodes located close to it change over time. Data collection protocols can then be optimized by taking both base station mobility and multi-hop routing into account. We first study the former, and conclude that the best mobility strategy consists in following the periphery of the network (we assume that the sensors are deployed within a circle). We then consider jointly mobility and routing algorithms in this case, and show that a better routing strategy uses a combination of round routes and short paths. We provide a detailed analytical model for each of our statements, and corroborate it with simulation results. We show that the obtained improvement in terms of network lifetime is in the order of 500%

    Distance-Based and Low Energy Adaptive Clustering Protocol for Wireless Sensor Networks

    Get PDF
    A wireless sensor network (WSN) comprises small sensor nodes with limited energy capabilities. The power constraints of WSNs necessitate efficient energy utilization to extend the overall network lifetime of these networks. We propose a distance-based and low-energy adaptive clustering (DISCPLN) protocol to streamline the green issue of efficient energy utilization in WSNs. We also enhance our proposed protocol into the multi-hop-DISCPLN protocol to increase the lifetime of the network in terms of high throughput with minimum delay time and packet loss. We also propose the mobile-DISCPLN protocol to maintain the stability of the network. The modelling and comparison of these protocols with their corresponding benchmarks exhibit promising results
    corecore