2,290 research outputs found

    Statistical Methods for Conservation and Alignment Quality in Proteins

    Get PDF
    Construction of multiple sequence alignments is a fundamental task in Bioinformatics. Multiple sequence alignments are used as a prerequisite in many Bioinformatics methods, and subsequently the quality of such methods can be critically dependent on the quality of the alignment. However, automatic construction of a multiple sequence alignment for a set of remotely related sequences does not always provide biologically relevant alignments.Therefore, there is a need for an objective approach for evaluating the quality of automatically aligned sequences. The profile hidden Markov model is a powerful approach in comparative genomics. In the profile hidden Markov model, the symbol probabilities are estimated at each conserved alignment position. This can increase the dimension of parameter space and cause an overfitting problem. These two research problems are both related to conservation. We have developed statistical measures for quantifying the conservation of multiple sequence alignments. Two types of methods are considered, those identifying conserved residues in an alignment position, and those calculating positional conservation scores. The positional conservation score was exploited in a statistical prediction model for assessing the quality of multiple sequence alignments. The residue conservation score was used as part of the emission probability estimation method proposed for profile hidden Markov models. The results of the predicted alignment quality score highly correlated with the correct alignment quality scores, indicating that our method is reliable for assessing the quality of any multiple sequence alignment. The comparison of the emission probability estimation method with the maximum likelihood method showed that the number of estimated parameters in the model was dramatically decreased, while the same level of accuracy was maintained. To conclude, we have shown that conservation can be successfully used in the statistical model for alignment quality assessment and in the estimation of emission probabilities in the profile hidden Markov models.Siirretty Doriast

    Incorporating background frequency improves entropy-based residue conservation measures

    Get PDF
    BACKGROUND: Several entropy-based methods have been developed for scoring sequence conservation in protein multiple sequence alignments. High scoring amino acid positions may correlate with structurally or functionally important residues. However, amino acid background frequencies are usually not taken into account in these entropy-based scoring schemes. RESULTS: We demonstrate that using a relative entropy measure that incorporates amino acid background frequency results in improved performance in identifying functional sites from protein multiple sequence alignments. CONCLUSION: Our results suggest that the application of appropriate background frequency information may lead to more biologically relevant results in many areas of bioinformatics

    An entropy based heuristic model for predicting functional sub-type divisions of protein families

    Get PDF
    Multiple sequence alignments of protein families are often used for locating residues that are widely apart in the sequence, which are considered as influential for determining functional specificity of proteins towards various substrates, ligands, DNA and other proteins. In this paper, we propose an entropy-score based heuristic algorithm model for predicting functional sub-family divisions of protein families, given the multiple sequence alignment of the protein family as input without any functional sub-type or key site information given for any protein sequence. Two of the experimented test-cases are reported in this paper. First test-case is Nucleotidyl Cyclase protein family consisting of guanalyate and adenylate cyclases. And the second test-case is a dataset of proteins taken from six superfamilies in Structure-Function Linkage Database (SFLD). Results from these test-cases are reported in terms of confirmed sub-type divisions with phylogeny relations from former studies in the literature

    AlignMiner: a Web-based tool for detection of divergent regions in multiple sequence alignments of conserved sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Multiple sequence alignments are used to study gene or protein function, phylogenetic relations, genome evolution hypotheses and even gene polymorphisms. Virtually without exception, all available tools focus on conserved segments or residues. Small divergent regions, however, are biologically important for specific quantitative polymerase chain reaction, genotyping, molecular markers and preparation of specific antibodies, and yet have received little attention. As a consequence, they must be selected empirically by the researcher. AlignMiner has been developed to fill this gap in bioinformatic analyses.</p> <p>Results</p> <p>AlignMiner is a Web-based application for detection of conserved and divergent regions in alignments of conserved sequences, focusing particularly on divergence. It accepts alignments (protein or nucleic acid) obtained using any of a variety of algorithms, which does not appear to have a significant impact on the final results. AlignMiner uses different scoring methods for assessing conserved/divergent regions, <monospace>Entropy</monospace> being the method that provides the highest number of regions with the greatest length, and <monospace>Weighted</monospace> being the most restrictive. Conserved/divergent regions can be generated either with respect to the consensus sequence or to one master sequence. The resulting data are presented in a graphical interface developed in AJAX, which provides remarkable user interaction capabilities. Users do not need to wait until execution is complete and can.even inspect their results on a different computer. Data can be downloaded onto a user disk, in standard formats. <it>In silico </it>and experimental proof-of-concept cases have shown that AlignMiner can be successfully used to designing specific polymerase chain reaction primers as well as potential epitopes for antibodies. Primer design is assisted by a module that deploys several oligonucleotide parameters for designing primers "on the fly".</p> <p>Conclusions</p> <p>AlignMiner can be used to reliably detect divergent regions via several scoring methods that provide different levels of selectivity. Its predictions have been verified by experimental means. Hence, it is expected that its usage will save researchers' time and ensure an objective selection of the best-possible divergent region when closely related sequences are analysed. AlignMiner is freely available at <url>http://www.scbi.uma.es/alignminer</url>.</p

    Sequence alignment, mutual information, and dissimilarity measures for constructing phylogenies

    Get PDF
    Existing sequence alignment algorithms use heuristic scoring schemes which cannot be used as objective distance metrics. Therefore one relies on measures like the p- or log-det distances, or makes explicit, and often simplistic, assumptions about sequence evolution. Information theory provides an alternative, in the form of mutual information (MI) which is, in principle, an objective and model independent similarity measure. MI can be estimated by concatenating and zipping sequences, yielding thereby the "normalized compression distance". So far this has produced promising results, but with uncontrolled errors. We describe a simple approach to get robust estimates of MI from global pairwise alignments. Using standard alignment algorithms, this gives for animal mitochondrial DNA estimates that are strikingly close to estimates obtained from the alignment free methods mentioned above. Our main result uses algorithmic (Kolmogorov) information theory, but we show that similar results can also be obtained from Shannon theory. Due to the fact that it is not additive, normalized compression distance is not an optimal metric for phylogenetics, but we propose a simple modification that overcomes the issue of additivity. We test several versions of our MI based distance measures on a large number of randomly chosen quartets and demonstrate that they all perform better than traditional measures like the Kimura or log-det (resp. paralinear) distances. Even a simplified version based on single letter Shannon entropies, which can be easily incorporated in existing software packages, gave superior results throughout the entire animal kingdom. But we see the main virtue of our approach in a more general way. For example, it can also help to judge the relative merits of different alignment algorithms, by estimating the significance of specific alignments.Comment: 19 pages + 16 pages of supplementary materia
    • …
    corecore