BIVIC Bioinformatics moml.?@mral

Methodology article

A statistical score for assessing the quality of multiple sequence
alignments
Virpi Ahola*12, Tero Aittokallio3-°, Mauno Vihinen#> and Esa Uusipaikka?

Address: 'Biotechnology and Food Research, MTT Agrifood Research Finland, Jokioinen, Finland, 2Department of Statistics, University of Turku,
Turku, Finland, 3Department of Mathematics, University of Turku, Turku, Finland, 4Institute of Medical Technology, University of Tampere,
Tampere, Finland, 5Research Unit, Tampere University Hospital, Tampere, Finland and ¢Systems Biology Unit, Institut Pasteur, Paris, France

Email: Virpi Ahola* - virpi.ahola@mtt.fi; Tero Aittokallio - tero.aittokallio@utu.fi; Mauno Vihinen - mauno.vihinen@uta.fj;
Esa Uusipaikka - esa.uusipaikka@utu.fi

* Corresponding author

Published: 03 November 2006 Received: |1 April 2006
BMC Bioinformatics 2006, 7:484  doi:10.1186/1471-2105-7-484 Accepted: 03 November 2006
This article is available from: http://www.biomedcentral.com/1471-2105/7/484

© 2006 Ahola et al; licensee BioMed Central Ltd.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0),
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Background: Multiple sequence alignment is the foundation of many important applications in
bioinformatics that aim at detecting functionally important regions, predicting protein structures,
building phylogenetic trees etc. Although the automatic construction of a multiple sequence
alignment for a set of remotely related sequences cause a very challenging and error-prone task,
many downstream analyses still rely heavily on the accuracy of the alignments.

Results: To address the need for an objective evaluation framework, we introduce a statistical
score that assesses the quality of a given multiple sequence alignment. The quality assessment is
based on counting the number of significantly conserved positions in the alignment using
importance sampling method in conjunction with statistical profile analysis framework. We first
evaluate a novel objective function used in the alignment quality score for measuring the positional
conservation. The results for the Src homology 2 (SH2) domain, Ras-like proteins, peptidase M13,
subtilase and f-lactamase families demonstrate that the score can distinguish sequence patterns
with different degrees of conservation. Secondly, we evaluate the quality of the alignments
produced by several widely used multiple sequence alignment programs using a novel alignment
quality score and a commonly used sum of pairs method. According to these results, the Mafft
strategy L-INS-i outperforms the other methods, although the difference between the Probcons,
TCoffee and Muscle is mostly insignificant. The novel alignment quality score provides similar
results than the sum of pairs method.

Conclusion: The results indicate that the proposed statistical score is useful in assessing the
quality of multiple sequence alignments.

Background for understanding the structure and function of these mol-
A wealth of molecular data concerning the linear structure ~ ecules. The results of annotation of gene/protein
of proteins and nucleic acids is available in the form of  sequences, prediction of protein structures or building of
DNA, RNA and protein sequences. Multiple sequence  phylogenetic trees, for instance, are critically dependent
alignment has become an essential and widely used tool  on the quality of the given alignment. It has been recog-
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nized that the automatic construction of a multiple
sequence alignment for a set of remotely related
sequences can be a very demanding task. Therefore, there
is a need for an objective approach to evaluate the align-
ments produced by alignment programs.

Two popular measures for scoring entire multiple align-
ments are the sum of pairs (SP) score and the column
score (CS) [1]. These scores can, however, only be used if
a reference alignment of the same sequences is available.
The SP score calculates the proportion of identically
aligned residue pairs in the test and the reference align-
ments, whereas the CS score measures the fraction of
identically aligned positions. Several modifications have
been made to the SP score [2,3]. The APDB (Analyze
alignments with PDB) quality measure evaluates the qual-
ity of an alignment by using available tertiary structures of
the sequences in the alignment [4]. The recently intro-
duced multiple overlap score (MOS) is a promising
approach, which does not need a reference alignment [5].
The MOS searches for identically aligned regions in many
alignments and presumes that the alignment with the
highest number of such residues also has the highest qual-

ity.

We introduce a statistical alignment quality score which
first quantifies the degree of conservation at each align-
ment position and then counts the number of signifi-
cantly conserved positions over the alignment. For
measuring the degree of conservation, we use a type of Z-
score that is based on profile analysis [6]. After deriving
the maximum Z-score for positional conservation, the sta-
tistical significance of an observed score value is estimated
using the importance sampling method [7]. The full align-
ment quality score is defined in terms of positional signif-
icance levels, where the multiple comparison problem is
addressed with false discovery rates (FDR) [8]. The practi-
cal performance of the maxZ score is demonstrated using
the SH2 domain, Ras-like proteins, peptidase M13, subti-
lase and flactamase families. The alignment quality score
is finally applied to evaluate the alignment programs
Clustal [9], TCoffee [10], Dialign2 [11], Probcons [12],
Muscle [13], and Mafft [14,15].

Related work

Several approaches have been proposed for the conserva-
tion analysis of multiple sequence alignments to quantify
the degree of conservation at each aligned position using
column-specific score values [16]. Valdar reviewed a wide
range of such score types developed during the last two
decades for protein sequence analysis [17]. He also intro-
duced the following three criteria that a positional conser-
vation score should fulfill: (i) the score should be a
mathematical mapping from an alignment position into a
bounded interval of real values which (ii) takes into
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account the relative symbol frequencies in the column,
and (iii) their stereo-chemical properties. Additional
requirements for a good conservation score include the
possibility to incorporate (iv) the effect of gaps and (v)
sequence weighting into (vi) a simple scoring strategy.

Existing positional scoring approaches can be roughly
divided into two categories with respect to the second and
third criteria. In the first category, the positional conserva-
tion is characterized based on the symbol frequencies
only. Such frequency-based methods include, for
instance, the information-content score that quantify the
variability among the observed symbols at a particular
position by means of Shannon's entropy [18,19]. A popu-
lar variation of the information-content (IC) score meas-
ures the Kullback-Leibler distance (relative entropy)
between the observed symbol distribution and a back-
ground distribution of a priori symbol probabilities [20].
The background probability of an individual symbol may
be calculated from the complete alignment, possibly sup-
plemented with symbol-dependent pseudo-counts [21].
Alternatively, a priori distribution can be determined
using overall relative frequencies of symbols within the
sequences of the organism or protein family under inves-
tigation.

In the second category of scoring approaches, the posi-
tional conservation is characterized based on both symbol
frequencies and their similarity properties. Such similar-
ity-based scores address the fact that some symbol combi-
nations occur more frequently than others mainly because
of the chemical and physical properties. The most
straightforward strategy is to group all the symbols
according to their physicochemical properties before
applying a particular scoring scheme. For instance, Taylor
presented a classification of amino acids based on their
synthesis in the Dayhoff mutation data matrix [22,23].
Subsequently, the degree of positional conservation with
respect to each overlapping group of symbols can be
quantified using any frequency-based scoring approach,
such as the information content [24]. Different conserva-
tion scores accounting for the stereochemical sensitivity
can be obtained using different symbol properties [25].

In general, the symbol properties can be considered by
predefining an appropriate matrix where entries represent
the similarity or dissimilarity between a symbol pair. Fre-
quently used symbol scoring matrices for amino acids
include the BLOSUM and Gonnet series of substitution
matrices and PAM distance matrices [26-28]. Perhaps the
most widely used scoring approach, 'sum-of-pairs', char-
acterizes the positional conservation by calculating the
sum of all pairwise similarities between the symbols in the
particular column [29]. It should be noted, that this 'sum
of pairs' score is different from the SP score mentioned

Page 2 of 19

(page number not for citation purposes)



BMC Bioinformatics 2006, 7:484

earlier in the Background section. The SP score in [1] is
used to measure alignment quality with respect to the ref-
erence alignment, whereas the score by Carillo and Lip-
man [29] is more generally applicable. In this work, we
only use the reference alignment-based SP score. A similar
but more complex mean distance (MD) score is used as an
objective function in the multiple alignment software
Clustal [9]. This normalized MD score also considers the
fraction of gaps [30]. A number of variations can be made
by using different similarity matrices on symbols or
weighting schemes on sequences [31].

The present work is a continuation of our previous work
on a statistical (Dunn-Sidak) framework for detecting
conserved residues in the positions of a multiple sequence
alignment [32]. Here, we allow for the incorporation of
any symbol similarity matrix into the framework that was
based on simple frequency-based scoring function. We
have previously demonstrated the usefulness of this score
in the automatic detection of the conserved residues in a
multiple sequence alignment, and compared its results on
the SH2 domain with functionally and structurally impor-
tant positions of the alignment [32]. Another application
of the conservation scores includes the improvement of
the reliability of HMMs in the sequence similarity search
by decreasing the number of false positive search results
[33]. In the present study, the emphasis is on positional
conservation rather than on individual residues with the
aim of assessing the quality of full alignment.

Results

Evaluating the maxZ score for positional conservation

In this section, we study the practical performance of the
maxZ score in SH2 domain, Ras-like proteins, peptidase
M13, subtilase and S-lactamase familes. We first demon-
strate the effect of five different scoring matrices and then
we compare the performance of maxZ score with those of
information content (IC) and Mean Distance (MD) score
[20,9]. Finally, we demonstrate how the maxZ score can
be used to generate a consensus sequence.

Multiple sequence alignments

We used the multiple sequence alignments of the SH2
domains, Ras-like proteins, peptidase M13, subtilase and
Plactamase families to evaluate the maxZ score. The
alignments for the SH2 domain, peptidase M13, subtilase
and Blactamase families were obtained from the Pfam
database [34]. The seed alignments of the SH2 domain,
peptidase M13, subtilases and S-lactamases consist of 58,
24, 45 and 128 sequences, respectively. These alignments
also include gaps. The sequence alignment of the Ras-like
proteins was downloaded from the web page of an article
by Oliveira et al. [35]. The alignment was build with a
two-step alignment procedure [36]. First they classified
sequences into groups with approximately 90% pairwise
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sequence identity. Sequences within each subgroup were
aligned against the profile, then the groups were aligned,
excluding positions with low sequence identity. The posi-
tions with gaps were also excluded from the final align-
ment. We used only the first sequence of each subgroup in
order to avoid over-representation of profiles with many
very similar sequences. This was necessary because the
current maxZ score does not take the pairwise identity of
the sequences into account or otherwise weight the
sequences. The alignment of Ras-like proteins consists of
334 sequences.

Upper panels of the Figures 1, 2, 3 illustrate parts of the
alignments of the Ras-like proteins, SH2 domain, pepti-
dase M13, subtilase and flactamase families. The com-
plete alignments of the Ras-like proteins and SH2 domain
can be found as additional files (Additional files 1, 2, 3, 4,
5,6, 7, 8, 9). The figures were generated using MultiDisp
graphics program developed to visualize multiple
sequence alignments [37] (Riikonen et al., in prepara-
tion). The lower parts of the alignments include the maxZ,
MD and IC score values. The Blosum62 and grouping of
amino acids were used as a scoring matrix in the maxZ
score.

Effect of the scoring matrices

One advantage of the maxZ score is that it can consider
the physicochemical relationships of amino acids. The
user is able to choose an arbitrary scoring matrix or classi-
fication of the amino acids, which can be incorporated
into the calculation of the maxZ score. In addition to the
identity matrix, we demonstrate the use of three different
scoring matrices: Blosum62, Gonnet250 and PAM250
[26-28]. Additionally, we classify amino acids into six
physicochemically related groups as follows: hydropho-
bic {V, I, L, F, M, W, Y, C}, negatively charged {D, E}, pos-
itively charged {R, K}, conformational {G, P }, polar {N,
Q, S} and {A, T}. This classification has been used, for
example, by Shen and Vihinen [38]. Figure 1 shows the
scaled -log(p)-values for the Ras-like proteins using the
five different scoring schemata.

The residue positions in the alignment of Ras-like proteins
were divided into five groups according to the entropy
and variability [35]. The parameter values of the classifica-
tion algorithm were chosen such that the groups represent
the known structural and/or functional roles of the resi-
due positions. A rough overview of the categories is the
following:

¢ Box 11 contains positions with low entropy and varia-
bility. The positions in this group form a main functional
site.
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MultiDisp visualization of part of the Ras-like proteins (upper) and the corresponding scaled -log(p)-values
(lower). The curves show the p-values calculated using (red) Blosumé2, (green) Gonnet250, (black) PAM250, (magenta) iden-
tity scoring matrices and (blue) classification of the amino acids for the Ras-like proteins.
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MultiDisp visualization of the a) /B-stand, b) fD-stand and c) aB-helix of the SH2 domain (upper) and the cor-
responding conservation scores (lower). The curves show (red) the scaled -log(p)-values, (blue) Mean Distance and
(green) Information content scores for the alignment. Consensus sequence for the alignment positionsinc)isFPSLPELVE

HY.

® Box 12 consists of positions with low variability and
moderate entropy. These positions are located in the core
of the structure next to the residues in Box 11.

e Box 22 contains positions with moderate entropy and
variability. These residue positions are located in the core
structure but are not adjacent to the residues in the Box
11. The positions are involved in the structure of the pro-
tein, but also in signal transmission between the modula-
tors and the main functional site.

® Box 23 consists of the positions with high entropy and
moderate variability. These positions are located at the
surface or in the core of the protein and are involved in
modulator interaction.

® Box 33 contains highly variable positions with high
entropy. These positions are mainly located at the surface
of the protein.

For a more detailed description of the categories, see the
original paper [35]. Table 1 shows the median (lower and
upper quartile) values of the -log(p)-values of the maxZ
scores with different scoring matrices, along with MD and
IC scores in each of the five groups. As expected, all con-
servation scores decreased gradually when moving from
the positions with low entropy and variability to those
with high entropy and variability. The performance of the
MD and maxZ scores was very similar. The maxZ score
with groups of amino acids distinguished slightly better
than the other scores the moderately conserved positions
(Boxes 12-23) from the highly conserved positions (Box
11) and unconserved ones (Box 33) (Table 1, Figure 1).

In both Ras-like protein and SH2 domain examples, all
the scoring schemes tend to provide very similar results
(see Additional files 1, 2, 3, 4, 5, 6, 7, 8, 9 for Blosum62
and grouping of amino acids). The results with Blosum,
Gonnet and PAM matrices all rely heavily on the diagonal
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Figure 3

MultiDisp visualization of the a) I, b) Il, c) Il and d) IV motifs of the peptidase M13, e) I, f) Il and g) lll motifs of
the subtilase, and h) I and i) Il motifs of the f-lactamase families and the table of the conservation scores. MD =
information content scores and maxZ = scaled -log(p)-values for the alignment.

mean distance, IC =
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Table I: Median (lower and upper quartiles) of the -log(p)-values with different residue scoring schema together with the MD and IC

scores.

http://www.biomedcentral.com/1471-2105/7/484

Score BoxI | Box12 Box22 Box23 Box33

LogP Blosumé62 708 (708, 708) 611 (198, 708) 208 (161, 547) 120 (99, 177) 75 (47, 123)
LogP Gonnet 708 (708, 708) 190 (164, 708) 158 (131, 189) 98 (78, 136) 64 (56, 106)
LogP Indep 708 (708, 708) 202 (158, 708) 171 (108, 202) 75 (63, 113) 57 (35, 96)
LogP PAM 708 (212, 708) 201 (166, 708) 153 (125, 201) 94 (81, 133) 66 (56, 105)
LogP 6 groups 644 (631, 683) 312 (300, 333) 279 (241, 341) 216 (77, 240) 43 (26,91)
MD 92 (86, 97) 43 (29, 55) 34 (24, 42) 24 (19, 31) 20 (15, 25)
IC 57 (55, 59) 39 (34, 48) 31 (27, 35) 21 (19, 23) 13 (10, 19)

Box| | and Box33 represent positions with low and high entropy and variability, respectively. The three middle columns represent the moderately
conserved positions. More detailed description of the categories can be found in Oliveira et al. [35].

values of the scoring matrices. For instance, a position
with highly or moderately conserved leucine obtains a rel-
atively low maxZ score (Figure 1), whereas a position with
an unconserved cysteine may be also assigned as highly
conserved. This is especially critical when the Gonnet
scoring matrix is used. The results with six amino acid
groups differed most from the other scoring schemes since
this calculates the maxZ score for the amino acid classes
instead of single residues. The grouping of amino acids
tends to give high scores for the positions where the
majority of the residues belong to the same class. The use
of the identity matrix corresponds to the special case
where similarities among the symbols are ignored, and
the amino acids are handled as if they where unrelated.
The corresponding score is thus based solely on the rela-
tive frequencies of the residues and background probabil-
ities. The scoring based on the identity matrix shows quite
similar results with the Blosum62 and Gonnet matrices.
For some positions, however, the identity matrix fails to
detect the conserved positions. Similar behavior was seen
with the PAM matrix (Figure 1, position 10).

Comparisons with other scores

The results of the maxZ score were compared with those
of the MD and IC. Figures 2 and 3 show the MD and IC
scores together with the -log(p)-values of the maxZ scores
for the SH2 domain, peptidase M13, subtilase and Slacta-
mase family sequences. Scaling of the -log(p)-values was
performed using zero as a minimum. The maximum value
was obtained by calculating the -log(p)-values for each
possible invariant position and defining the 5% percentile
value to be the maximum. Blosum62 was used as a scor-
ing matrix in the maxZ score. The default multiple
sequence alignment parameters of ClustalX were used to
calculate the MD score.

SH2 domain SH2 domains are binding modules recog-
nizing phosphotyrosines and surrounding residues in
polypeptides and proteins [39,40]. Many SH2 domains
recognize especially residues +1 and +3 following the
phosphotyrosine and form binding pockets for these

amino acids [41]. All known SH2 domains share the same
architecture, consisting of a central antiparallel S-sheet
flanked by two a-helices. The central f-sheet (strands B, C
and D) forms the core of the structure and includes most
of the conserved residues.

All scores consider the positions forming the binding
pocket as highly conserved (> 0.4). These include invari-
ant SB5, which interacts with phosphotyrosine, and D4
and aA2 (data not shown), which form the binding
pocket for the phosphotyrosine [42] (Figure 2ab). Posi-
tion D6, which is also involved in forming the binding
pocket, obtains lower conservation score values (~ 0.2)
indicating moderate conservation. The binding pockets
for phosphotyrosine-following residues are formed by the
aB-helix, especially positions aB5 - 6 are involved in
forming the hydrophobic core for residue +3 [43]. Posi-
tions B2, aB9 and fSF3 are occupied with aromatic resi-
dues. The MaxZ and IC scores determine these five
positions as highly conserved, whereas the MD score (0.2
- 0.4) determines positions B9, and SF3 as moderately
conserved (Figure 2¢). The binding site for ligand residue
+1 includes positions D3 and £D5 [42]. While the maxZ
and IC scores determine position D5 as moderately con-
served, the MD score (< 0.2) rather considers that position
as unconserved (Figure 2b).

Peptidase family M13 Peptidase family M13, also known
as neprilysin family, consists of type II integral transmem-
brane proteins with short N-terminal cytoplasmic
domain, a hydrophobic transmembrane region, and a
large ectodomain containing a active site [44]. Three con-
served motifs characterize all known M13 endopeptidases
(the numbers are Pfam alignment positions): 1:9vNAfY?,
I1:63XXHEXXH- -XX73, III:147EXXXD151 (Figures 3abc).
Additionally IV:217HXXXXXR?23 is conserved in nepri-
lysins (Figure 3d).

All measures scored as highly conserved the residues H65,
H69, E147 which are ligands for Zn2+, and E66 and H217,
which are involved in catalysis (Figure 3bcd). The maxZ
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score values varied from 0.68 to 1 in the invariant posi-
tions occupied with different amino acids, whereas the
corresponding MD score values were more stable. This
was due to different diagonal values of the scoring matrix.
The similar behavior was found in the position 219 of the
motif IV, where proline was the most frequent residue.
The maxZ score determined that position as highly con-
served (0.84), whereas the other scores only considered it
as moderately conserved (0.38 and 0.52). For the other
important side-chains of N1, A2, D215, H217 and R223,
which have a role in substrate binding, the behavior of the
three scores was mostly very similar (Figure 3ad). The only
exception was the position D215, which was considered
as moderately conserved by the maxZ and IC scores (0.22
and 0.44), while the MD score considered it as uncon-
served. Another difference between the scores was in the
positions 70 and 71 of the motif II, where the IC score
could not determine these positions as inserts, but
obtained considerably high conservation score values.

Subtilisins Pfam subtilase is a family of serine proteases
consisting of S8 and S53 peptidase families of the
MEROPS database. The S8 peptidases are divided into two
subfamilies: S8A (e.g. subtilisin) and S8B (e.g. kexin). The
sequences in the S8 family have a catalytic triad Asp/His/
Ser. In the subfamily S8A, the active site residues occur (in
the Pfam alignments) in the motifs [:28D-T/SG3!,
II:254HGTH?257 and 1IL:87GTSMAXP%93, and in the sub-
family S8B in the motifs [:28D-DG3!, I1:254HGTR257,
I11:687GTSA/VA/SXP%?3 (Figure 3efg).

All positions of the catalytic triad Asp/His/Ser were con-
sidered as highly conserved by each of the conservation
scores. In the first motif, the maxZ and MD scores
obtained high conservation score values (0.70-0.90) for
the aspartic acid and glycine residues (Figure 3e). The
middle position had three possible side-chains in the first
motif, and hence, all scores determined that position as
moderately conserved (0.34-0.42). In the second maotif,
there were more differences between the conservation
scores: the maxZ score determined all the positions as
highly conserved (0.71-1), the MD score determined the
first three positions as highly conserved (0.74-1), whereas
the fourth position obtained much lower score (0.31)
(Figure 3f). The IC score determined only the first position
as highly conserved (0.84), whereas the other positions
obtained a slightly lower (0.49-0.63) conservation score
values. Hence, only the maxZ score considered the whole
motif as highly conserved. The MD score, on the contrary,
obtained rather low conservation score values for the
position 257, where subgroups S8A and S8B are con-
served in different amino acids. The third motif was a
good example of the behavior of the different scores in the
invariant positions (Figure 3g). While the MD score
obtained the highest score value 1 in all the invariant posi-
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tions, the maxZ and IC scores were dependent on the side-
chain. Nevertheless, the maxZ score determined all the
invariant positions as highly conserved (0.68-1), whereas
the IC score obtained somewhat lower scorings (0.49-
0.73).

fLactamases f-lactamase family of Pfam contains
sequences from many different groups including D-ala-
nyl-D-alanine carboxypeptidase B, aminopeptidase, alka-
line D-peptidase, animal D-Ala-D-Ala carboxypeptidase
homologues, the class A and C f-lactamases and eukaryo-
tic flactamase homologs. The family is very diverse out-
side the SXXK motif, S being the active side residue. For
the sequences belonging to the S12 peptidase (D-Ala-D-
Ala carboxypeptidase B) family in the MEROPS database,
the active site motif is [:120SXTK!23. It also has another
motif: I1:306YXN?308 (Figure 3hi).

All the scores determined the active site serine residue as
highly conserved and provided a very similar conservation
profile for the first motif (Figure 3h). In the second motif,
the maxZ and IC score correctly determined the highly
conserved position 306 with tyrosine/serine residues and
considered the other residues as moderately conserved,
while the MD score, on the contrary, failed to detect the
highly conserved position 306, where it gave only 0.21 as
a score value for that position (Figure 3i).

These results on the example families suggest that there
are three main differences between the maxZ, MD and IC
conservation scores. Firstly, since the maxZ score is
strongly affected by the diagonal value of the scoring
matrix used, it obtains slightly lower values for the posi-
tions occupied with very frequently occurring amino acids
and slightly higher value for more rarely occurring amino
acids than the other scores. For very frequently occurring
amino acids, see for example position aB5 of the SH2
domain (Figure 2c) with highly conserved leucine or posi-
tions II1: G687 and I11:S689 of the subtilase family (Figure
3g), which obtain a much lower maxZ than MD score. In
the opposite case, at positions aB8 - 9 of the SH2
domain, the high diagonal values of the scoring matrix for
histidine and tryptophan offer a much more reliable scor-
ing than the MD score (Figure 2¢). Similarly, the result of
the maxZ score for the position 11:306 of the flactamase
family indicates that the position may be functionally
important, whereas the result of the MC score indicates
the contrary (Figure 3i). The maxZ score also determines
different values for invariant positions with different
amino acids, whereas MD score always gives the score of
1 for invariant positions. Secondly, as the maxZ score is
entirely determined by the residue obtaining the greatest
Z-score value, it is not affected by the other residues whose
proportions may be very low, but a single conserved resi-
due can already define a position as conserved (see posi-
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tion FF3 in Figure 2c or position S/Y306 in Figure 3i).
Hence, the maxZ score may find important positions of
the alignment, which were not found by the other scores.
Thirdly, the maxZ and MD scores also consider gaps
resulting in zero or very low scores for the insert positions
of the alignment. The IC score, on the other hand, fails to
detect the insert positions.

Taken together, all three scores behaved in a rather similar
manner. The IC score does not take into account gaps, and
thus its use is relevant only when the alignment does not
include gaps. The maxZ and MD scores differ in some
positions, which generally depend on the similarity
matrix or grouping used with the maxZ score. For the Ras-
like proteins, the maxZ score with groups of amino acids
distinguishes slightly better than the other scores both the
moderately conserved positions (Boxes 12-23) from the
highly conserved positions (Box 11) and unconserved
ones (Box 33). However, the results of Table 1 cannot be
used to evaluate the IC score since entropy was used in the
classification. For the SH2 domains, on the one hand, the
maxZ score determines the positions forming the binding
pocket for the phosphotyrosine and surrounding mole-
cules mostly as highly conserved, but on the other hand,
it also correctly determines the more variable loops
between the a-helices and f-stands as unconserved. The
MD and IC scores also perform well, but sometimes the
MD score fails to detect the important positions, and the
IC score is not capable in detecting the loops between the
conserved structures.

Consensus sequence

As a by-product, the maxZ score also produces the consen-
sus sequence for the multiple sequence alignment.
According to formula (8), the consensus residue at each
alignment position is defined as the residue with the
greatest Z-score value. The legend of Figure 2 shows the
consensus sequence for the part of the SH2 domain.

Evaluating the AQ score for alignment quality

In this section, we evaluate the output of the alignment
programs using alignment quality (AQ) based on the
maxZ score and compare it to the sum of pairs (SP) and
the column score (CS) quality scores [1]. First, we study
the relationship between the individual AQ and SP scores.
Then we compare the quality scores of 7 alignment meth-
ods using BAIiBASE database [45]. Since the divergence
from the reference values was substantially constant over
different false discovery rate (FDR) values, the results are
presented at FDR = 0.05.

Comparison of individual AQ and SP scores

We build 7 test alignments for each set of sequences in the
BAIiBASE database and compared the results of the AQ
and SP scores. Figure 4 shows the scatterplot between the
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AQ and SP scores for the Mafft alignments (L-INS-i strat-
egy) in different reference sets. The Spearman rank corre-
lation coefficient between the AQ and SP scores was 0.53
for the L-INS-i alignments. The range of the correlation
coefficient in the 7 alignments was from 0.53 to 0.67. Fig-
ure 4 shows a clear relationship between the quality
scores. The three of the four outlying alignments on the
lower right corner of Figure 4 are from the reference set 40.
In these alignments, the SP scores also dramatically dif-
fered from the Column score values (CS = 0 in these align-
ments).

Alignment quality assessment

We compared the performance of the 7 alignment pro-
grams using five reference sets of the BAIiBASE database.
The first two reference sets of the BAIiBASE include equi-
distant sequences whose identity is less than 20% (ref 11)
or between 20 and 40% (ref 12). According to the AQ
score, the results on the reference set 11 indicate that
Probcons was the best method aligning on the average
80% of the conserved residues correctly (Figure 5). The L-
INS-i strategy of Mafft and Muscle also performed well
obtaining quality scores only 5-7% lower than that of the
Probcons. In the reference set 12, all the tested programs
performed rather well (Figure 5). The Probcons, Muscle,
L-INS-i and TCoffee obtained the highest alignment qual-
ity score values (94-96%). These methods did not differ
from each other, but they differed from all the other meth-
ods (Table 2). The quality score was the worst in the align-
ments produced by Dialign, Clustal, or FFT-NS-2 strategy
of Mafft showing 41-54% (ref 11) and 12-16% (ref 12)
divergence from the reference alignment. The result of the
SP score was very similar. The only relevant difference was
the Probcons showing significant difference to the other
programs in the both reference sets 11 and 12, even if the
absolute difference between the methods was very low:
the SP score of the Probcons and L-INS-i, for instance, dif-
fered from each other only 2%. The absolute CS scores
were in all programs approximately 20% (ref 11) and
10% (ref 12) lower than that of the AQ and SP scores. In
the reference set 12, the Probcons differed significantly
from the other methods. In the reference set 11, the Prob-
cons showed significant difference from all the other pro-
grams except the L-INS-i.

The aim of the reference set 20 is to test the ability of pro-
grams to align the sequence families having disrupted by
an "orphan" sequence. The reference set 30 consists of
subgroups of sequences whose residue identities between
the subgroups are less than 25%. According to the AQ and
SP measures, the quality of all alignments was very high in
the reference sets 20 and 30 (Figure 5). In the reference set
20, the median scores varied from 87% to 96% and from
92% to 97% in the AQ and SP scorings, respectively,
whereas the CS score obtained clearly lower scores varying
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Scatterplot between the AQ and SP scores for the Mafft (L-INS-i) alignments (r = 0.53). Four outlying alignments
on the bottom right corner are from the reference sets || and 40.

from 39% to 62%. In the reference set 30, the overall SP
(80-92%) and especially CP scoring (42-73%) was some-
what lower than that of the AQ scoring (92-98%). In the
AQ scoring, the L-INS-i and Clustal were slightly better
than the other methods aligning 96/98% (ref 20/ref 30)
of the conserved residues correctly. The Muscle and TCof-
fee scored almost as well and did not differ significantly
from the L-INS-i and Clustal (Table 2). In the reference set
30, additionally, the FFT-NS-2 and Probcons did not dif-
fer from the best scoring methods. The Dialign obtained

clearly the lowest quality scores (87% in ref 20 and 92%
in ref 30), and differed significantly from the other meth-
ods. In the reference set 20, the SP scoring of the Probcons
showed significantly better performance than the other
programs. The SP scores of the four best programs: Prob-
cons, L-INS-i, TCoffee and Muscle, were, however, within
the 1.2% range from each other. Another difference
between the AQ and the other scores was that while with
the AQ scoring the Clustal (96%) was among the four top
methods and the Probcons (90%) was the second worst
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show the 25% and 75% percentile values.

method, with the SP and CS scoring the Probcons
obtained the best results (97%/62%) and the Clustal
(93%/45%) was the second worse method differing sig-
nificantly from the better scoring methods (Table 2).

The reference set 40 contains sequences with N/C-termi-
nal extensions. In this reference set, the median AQ and
SP scores varied from 85% to 94% and the median CP
score from 49% to 68%. The L-INS-i obtained the best AQ
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Table 2: The alignment programs which obtained the highest AQ, SP and CS scores in different reference sets.

Top Programs

Reference set AQ SP CS
|1 Probcons, L-INS-i, Muscle ProbCons ProbCons, L-INS-i
12 Probcons, Muscle, L-INS-i, Tcoffee ProbCons ProbCons
20 L-INS-i, Clustal, Muscle, Tcoffee ProbCons ProbCons, L-INS-i
30 L-INS-i, Clustal, TCoffee, FFT-NS-2, Muscle, Probcons  L-INS-i, Probcons, Muscle, TCoffee L-INS-i, Probcons, TCoffee, Muscle
40 L-INS-i, TCoffee L-INS-i, Probcons, TCoffee L-INS-i, TCoffee, Probcons
50 L-INS-i, TCoffee, Probcons, Muscle, FFT-NS-2, Clustal TCoffee, Probcons, L-INS-i L-INS-i, TCoffee, Probcons, Muscle

The programs have no statistically significant differences between each other in the particular set. Statistical analyses were performed using

Wilcoxon signed rank test.

scores aligning 94% of the conserved residues correctly
(Figure 5). The differences between the L-INS-i and the
other methods, except the TCoffee, were statistically sig-
nificant (Table 2). The performance of the three quality
scores were very similar; the only difference was that with
the SP and CS scorings the quality of the Probcons align-
ments were comparable with the quality of the L-INS-i
and TCoffee alignments.

In the last reference set, the alignment includes sequences
with internal insertions. In this reference set, the L-INS-i
and TCoffee obtained approximately 5 to 6% better
results than the other methods aligning more than 91% of
the conserved residues correctly when the AQ scoring was
used (Figure 5). The differences were, however, statisti-
cally significant only with respect to the Dialign (Table 2).
According to the SP score, the TCoffee, Probcons and L-
INS-i differentiated between the lower scoring methods
FFT-NS-2, Muscle, Dialign and Clustal, even if the differ-
ences in the median values were very low. In the CP score,
the result was similar to that of the SP score. The only dif-
ference was the Muscle, which ranked among the four best
programs.

To summarize, in the BAIiBASE database the L-INS-i,
Probcons, Muscle, TCoffee and Clustal all produced align-
ments with very high quality, whereas the FFT-NS-2 and
Dialign performed generally worse than the other meth-
ods. The overall best method was the L-INS-i which was
among the significantly best methods in all six reference
sets (Table 2). The Probcons performed best in the refer-
ence sets 11 and 12, whereas in the other sets, the L-INS-i
was the best scoring method. In the SP score, the Probcons
differed significantly from the other methods in the refer-
ence sets 11-20 and was among the best scoring methods
in all reference sets. The CS score results in much lower
values than the other scores, but the ranking of the meth-
ods was very near to that of the SP score. In both scores,
the Probcons, L-INS-, TCoffee and in some references
Muscle produced the best alignments, whereas the Clus-
tal, FFT-NS-2 and Dialign performed worse.

Discussion

In this paper, we have introduced a novel approach to
objective alignment quality scoring. Unlike most of the
existing methods, the proposed AQ score is not heuristic
but is based on statistical theory. The score is mathemati-
cally motivated and its asymptotic properties are well
known. The AQ score does not handle all alignment posi-
tions equally but concentrates on conserved positions
only. In the present work, the AQ score is calculated with
respect to the reference alignment. The future aim is to use
the conserved alignment positions without the reference
alignment. The proportion of conserved residues ConsAA
can be used to assess the quality of the alignments also
when the reference alignment is not available. Our pre-
liminary results show a strong correlation between the
predicted and reference alignment based AQ score values
(data not shown here).

The proposed scoring method is based on integrating the
statistical hypotheses testing methods into the profile
analysis framework. The attraction of profile analysis lies
in the convenient treatment of the symbol frequency vec-
tor, which allows not only the incorporation of any classi-
fication or symbol similarity matrix but also the
possibility to consider the influence of gaps and weights
in a very simple manner [6]. Hence a score based on pro-
file analysis immediately fulfills the six criteria set as
requirements of a good conservation score by Valdar [17].
A drawback of the current maxZ score is that the sequence
weighting is not taken into consideration. Weighting the
profiles with an appropriate value would allow the evolu-
tionary relationships of the sequences in the multiple
sequence alignment to be considered.

The AQ score is based on comparing the number of con-
served alignment positions between the test and the refer-
ence alignments, as assessed with the maxZ score, so that
the dependency between the alignment positions is also
considered. The multiple comparison problem is handled
by using false discovery rate when choosing the conserved
positions. To estimate the significance of the observed
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maxZ scores, we used the IS method. In genetics applica-
tions, the IS method has previously been successfully
applied to the binomial distribution [46,47]. The applica-
tion of the IS method to multinomial distribution is, how-
ever, not a trivial task because the parameter space is
multidimensional. We used a mixture distribution as a
sampling distribution for the multinomial distribution.
With the help of simulations, we sought for the appropri-
ate parameter values of the mixture distribution and
approximated the number of the samples needed for the
proper estimation of the significance values (see Addi-
tional file 10).

In addition to developing an alignment quality scoring
framework, our second objective was to test the alignment
quality of commonly used multiple sequences alignment
programs. We evaluated the quality of 7 alignment meth-
ods. The overall performance of the L-INS-i strategy of
Mafft was the best. The Probcons worked best with groups
of equi-distant sequences having residue identity less than
20% (ref 11) or 20-40% (ref 12). The L-INS-i and Clustal
performed best with the reference set that consists of fam-
ilies aligned with a highly divergent "orphan" sequence
(ref 20) or groups of equi-distant distantly related
sequences (ref 30). The L-INS-i and TCoffee worked best
when the sequences contained N/C-terminal extensions
(ref 40) or internal insertions (ref 50). It should be noted,
however, that the differences between the most of the
alignment methods were negligible; in addition to the L-
INS-i, also the Probcons, Muscle, TCoffee and Clustal pro-
duced alignments with very high quality. The Dialign and
FFT-NS-2 strategy of Mafft, on the contrary, performed
clearly worse than the other methods. The comparison
between the Mafft and Muscle was potentially biased
because the Muscle was run using default settings. Run-
ning the Muscle with the most accurate options would
probably have affected the results.

We evaluated the quality of the alignment software using
the BAIiBASE 3 database. Previous studies using the BAli-
BASE database have been performed for the database ver-
sion 2 [12,13,3,10,1]. The drawback of that database is
that some of the reference alignments consist of a few
sequences only. In the version 3, the reference sets have
more sequences and therefore the current database suits
better for statistical scoring of the alignment quality. The
results are rather similar to those obtained in the previous
studies using the SP or CP scores or modified versions of
them [12,13,3,10,1]. In our study, the performance of
Mafft is better than reported earlier. This is because the
previous results have been obtained using the NW-NS-i
strategy, whereas we used the L-INS-i, the most accurate
strategy of Mafft at the moment (see Mafft web page for
more details [48]). Another difference was in the perform-
ance of Probcons: Do et al. [12] showed that in the refer-
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ence sets 20-50, Probcons outperformed the other
methods, while with our AQ scoring, the performance of
the Probcons was poorer than that of the L-INS-i and
TCoffee.

Conclusion

We have presented a statistical approach to alignment
quality scoring. The quality is characterized on the basis of
conserved position information only, which is defined by
using the modified Z score in conjunction with the profile
analysis framework. The significance tests based on the
importance sampling method define the conserved posi-
tions and false discovery rate correct the error caused by
multiple testing. The final AQ score accounts for the resi-
due frequency over the conserved alignment positions.

We have compared the AQ scores of the 7 alignment
methods using the BAliBASE as a benchmarking database.
The results indicates that even if the L-INS-i obtained the
best overall result, there are no great differences between
the best scoring alignment methods: L-INS-i, Probcons,
Muscle, TCoffee and Clustal whereas the FFT-NS-2 and
Dialign usually scored worse. The comparison of the AQ
and SP scores gave similar results indicating that the AQ
score is a reliable method for assessing the quality of the
multiple sequence alignments.

Methods

The maximum Z-score

Let us assume that the occurrences of symbols at each
alignment position are sampled from a discrete distribu-
tion with ), B, ..., ff;as the true symbol probabilities. For
DNA sequences J = 4 (bases A, C, G, and T), and for pro-
tein sequences J = 20 (amino acids A, C,..., Y). The statis-
tical properties of the alignment are then completely
characterized by the multinomial distribution model. In
particular, the probability of a position with observed

symbol frequencies n,, n,, .., n; is proportional to the
product:

I
]P’(nl,nz,...,nj |‘81,ﬁ2,...,ﬁ])NHﬁj1. (1)

j=1
The probability vector f = (5, f,, ..., f};) must satisfy the
: P J -
stochastic constraints: £ > 0 and 2j=1 ﬁj =1. Let N be

the number of sequences in the alignment and

n= 2{:1 n; the actual number of symbols observed at

the position, that is, the number of gaps subtracted from
N. By maximizing the likelihood function (1) subject to
the stochastic constraints, it can be easily shown that the
maximum likelihood (ML) estimator b of the vector S is
given in the form of the observed relative frequencies
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~ n;
b = pM" =7’, j=1,2..J. (2)

According to the properties of multinomial distribution,
the expectation vector and the covariance matrix of the
estimate are £ and X, respectively, where

Bi(6; - Bj) . .
l.}:%, ij=12,.]. (3)

The Kronecker's delta function is defined by ;= 1 and J
=0 foralli=j.

Given an appropriate symbol similarity matrix C, the
entries of the profile f = Cb are expressed as linear combi-
nations

]
fiZijCij:Cinr (4)
i1

where the vector ¢; = (Cij)§=1 denotes the ith row of C

related to the symbols i = 1, 2, ..., J. The degree of posi-
tional conservation is calculated with respect to a prede-
fined background distribution f° = ( [510 , ﬁﬁ’ feeer ﬂ}) ) under
the null hypothesis H,: f= /. The theoretical expectation

vector and covariance matrix of the profile under H; are

E(f)=CB° and Cov(f)=czC’, (5)
where the entries of %0 are defined as in (3) with f

replaced by ﬁ]O After standardizing the individual pro-

files (4) with the corresponding quantities (5), the final Z-
score takes the form

Zi="2—L7 i=12.,] (6)

7
[ T$0
CiZCi

The statistic maps the residues of an alignment position
onto a real number according to the observed symbol fre-
quencies and their similarities among the symbol classes.

. e e _ 20
If we use binary symbol similarities ¢; =(J;)j=;, we
obtain a special case of the Z-score where the similarities
among the symbols are ignored. Generally, ¢; can have any

fixed form appropriate for the study. In the present appli-
cation, the score we propose for the positional conserva-
tion analysis is obtained by selecting the maximal Z;-value
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over the symbol classes i = 1, 2, ..., J. We call this statistic
the maximum Z-score and abbreviate it as maxZ:

maxZ= max Z;. (7)
i=1,2,...]

We assume that a single conserved symbol class can
already define the position as conserved. The symbol class
obtaining the maximum Z-score, i.e.

Cons = argmax;_,, ;Z; (8)

defines the consensus residue for the particular alignment
position.

The significance of the observed maxZ score

Once the maxZ-statistic has been evaluated, the next ques-
tion concerns its significance, namely, whether the
observed value of the maxZ-statistic is large enough to jus-
tify the rejection of H, at a particular position. In this sec-

tion, the problem of identifying conserved positions of a
multiple alignment is considered as a statistical hypo-
thesis testing problem. This consists of testing the null

hypothesis H, : g = [3]() against the alternative H, : 2

[3](-),]' =1, 2,... J, where at least one inequality is proper.

The problems caused by multiple comparisons within the
position can be avoided by using the maxZ-statistic (7) as
a test statistic, instead of the individual Z;-scores (6). Our

aim is to test whether the observed value of maxZ is signif-
icantly larger than that which would be likely to arise
under H, due to random variation. The significance p of

the observed value maxZ is formally defined by the tail
probability function P(maxZ) = 1 - P(maxZ|H,). The
smaller the p-value, the more extreme the maxZ-statistic
and the stronger the evidence against H,. When the exact

null distribution P(maxZ|H,) is not available, it is essen-

tial to have widely applicable procedures that provide
good approximation. Two approaches to approximate the
theoretical null distribution are described below.

Monte Carlo (MC) approximation is perhaps the most
frequently used non-parametric method for estimating
the significance of an observed test statistic [49]. In the
MC method, the samples are generated from the back-
ground distribution, and the null distribution is approxi-
mated through the cumulative sample distribution
function. In the other words, the significance of the maxZ
score is obtained by calculating the proportion of samples
whose maxZ score is greater or equal to the observed
maxZ value. However, because of the 20 dimensional
parameter space, even with very large sample sizes, the
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probability of obtaining such an observation is very near
to zero. Therefore the MC procedure is very ineffective and
results in zero p-values with alignment positions which
are only moderately conserved.

Importance sampling (IS), also referred as the weighted
bootstrap re-sampling method, is a variant of the ordinary
MC method [7,50]. Let us denote by y = ny, n,, ..., n; the
sample of symbol frequencies from the multinomial dis-
tribution g° under H, and y,,, the observed symbol fre-
quencies at one alignment position. Define #(y) as an
indicator function t(y) = Itmax z(y)>max Z(y,,)} - The gen-

eral idea of the importance sampling is to draw samples
from any such distribution g* where all realizations which
are possible in g0 are also possible in g*. By choosing g*(y)
o« t(y)£°(y) as an IS distribution and taking infinitely many
samples from g*, the exact observed significance level is

given by
P(maxZ(y) > max Z(yo)) = Z%g ‘().
=0
F 0]

Since this is an expectation of t(y)-=—— with respect to

8 ()
g*, we can approximate the observed significance level by
taking K samples from g* and calculating an empirical tail
probability function

Z( )g()’l (9)

Prg(max Z(y) 2 max Z(yops)) =

This gives us an IS estimate of the observed significance
level.

A possible drawback to using the simulated distribution is
that the p-value can be zero in the highly conserved posi-
tions. Hence several highly conserved positions may
obtain the same score, and they cannot be distinguished
from each other. In order to avoid this, we used the fol-
lowing approximation for the significance value:

P(max Z(y) = max Z(yops))
= P(max Z(y) = max Z(yop,)) + P(max Z(y) > max Z(yops))

= P(Yops ) + P(max Z(y) 2 max Z(Y,ps )i ¥ # Yobs)-

In other words, the probability of an observed value is
separated from the probability of other sampled observa-
tions. Therefore, even if none of the sampled maxZ values
are greater than the observed maxZ value, the correspond-
ing p-value is nonzero.
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Importance sampling distribution In order to avoid the
problems of the MC procedure, it is natural to define the
IS distribution such that it also gives observations from
the upper tail of the maxZ distribution. We chose as an
importance sampling distribution a mixture of the multi-
nomial distribution

0 0 0
g* = [P’(nl,nz,...,nj | Bl ,ﬂz,...,ﬁ] ,0(,8)

Hl lﬁ

”10 N0
l-o
T Y

where 0 <a < 1,

(10)
H] 1ﬁ]k 4

nlk n]

B

e+(l—-€)—,
(1-e)%

ﬁl

i=j
Bij =
(1- 8)

i#j,

and n;;, denotes the jth symbol frequency in the kth mix-
ture. N otice that the number of the mixture components
is the same as the number of the symbols plus one, i.e. K
+1=J+1.

The IS distribution consists of K + 1 mixture components
and two parameters ¢ and «. The first component ensures
that some samples are drawn from the background distri-
bution. The other K components correspond to the sym-
bols, such that the probability of one symbol is high (= )
and the probabilities of the other symbols are propor-
tional to their background probabilities. The mixture
parameter « determines which part of the samples are
drawn from the background distribution and which from
the other distributions. The shape parameter ¢ determines
the weight for one of the symbols in each of the K mixture
distributions.

This particular distribution was chosen for two reasons:
first, if we choose a large enough & we can draw extreme
observations from the 20 dimensional parameter space,
and thus obtain large maxZ values; second, the use of mix-
ture parameter « gives us a good coverage of the parame-
ter space thereby ensuring that the process converges in a
reasonable time. This is very important because the tests
are made separately for each alignment position, and
therefore the number of simulations made should be as
low as possible.

Importance sampling procedure The following proce-
dure summarizes the calculation of the observed signifi-
cant levels using the importance sampling method.
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1. Calculate observed maxZ value maxZ(y,,) using for-
mula (7).

2. Choose parameter values « and ¢ for the IS distribution
g* in formula (10) and the number of the samples S. Ini-
tialize ratio r = 0.

3. Generate a sample from distribution g* in formula (10)
with the chosen « and &

4. Calculate maxZ(y) value for the sampled observation
using formula (7).

5. If maxZ(y) > maxZ(y,,), calculate ratio r = r + g°(y;)/g*
(y;). Otherwise do nothing.

6. Repeat the stages 3-5 S times.
7. Calculate the p-value according to the ratio r/S.
8. Output the -log(p) values.

Parameter values In the evaluation of the maxZ score,
parameter values @ = 0.4 and ¢ = 0.7 were used for the
alignments with N < 100, and « = 0.4, ¢ = 0.8 for the
remaining alignments. In the evaluation of the AQ score,
a = 0.4 and ¢ = 0.7 were used for all benchmarking data-
sets. The number of the sample was S = 40,000 when eval-
uating the maxZ score, and S = 10,000 when calculating
the quality of the alignments. After ensuring the sufficient
accuracy of the procedure, the number of the samples was
decreased in the alignment quality calculations, as there
the objective was to define the number of the significant
positions rather than the exact p-values. This enabled us to
speed up the quality comparisons. The choice of the
parameter values has been described in detail in the sup-
plementary material (see Additional file 10). For the back-
ground distribution g, we used the distribution of amino
acids in the full alignment under investigation.

The alignment quality (AQ) score

This section describes how the positional significance lev-
els can be used to derive the alignment quality (AQ) score
for the entire multiple sequence alignment. In the previ-
ous section, the conserved positions of the multiple
sequence alignment were detected by the statistical hypo-
thesis testing procedure. The significance tests were per-
formed simultaneously at each alignment position. This
simultaneous testing for the family of hypotheses causes a
large multiple comparison problem which must be con-
sidered when deriving the quality score for the entire
alignment.

Traditionally, these kinds of multiple comparison prob-
lems are solved by controlling the Family-Wise-Error-rate

http://www.biomedcentral.com/1471-2105/7/484

(FWE), i.e., the probability that at least one hypothesis is
erroneously rejected [51]. Control of the FWE, however,
decreases the probability of detecting the truly uncon-
served positions. Moreover, as several positions in the
multiple sequence alignment can be considered to be con-
served, a more natural approach is to control the False
Discovery Rate (FDR), i.e., the expected proportion of the
erroneously rejected null hypotheses. Controlling the
expected proportion of rejected null hypotheses from the
total number of the rejected hypotheses was first intro-
duced by Benjamini and Hochberg [8].

Controlling the FDR led us to derive the alignment quality
score following the Benjamini+Yekutieli's procedure [52].
More precisely, we use the following step-up procedure
for controlling the FDR among arbitrarily dependent test
statistics:

1. Calculate p-values for each alignment position. Let P,
<P < ... P,y be the ordered list of the p-values.

2. Calculate j* = max{j : P; < X }, where 0 <q < 1 is any
m

fixed FDR and m is the length of the multiple sequence
alignment.

3. If positive j* exists, choose positions associated with
Py Pay s Pj+) as conserved.

With the help of the number of the conserved positions j*,
we obtain the proportion of conserved residues ConsAA
by dividing the number of residues in the conserved posi-
tions by the number of residues in the whole alignment

]‘*
i=1 "

ConsAA =

(11)

i=1"
Here n; denotes the number of residues at the position i.

By comparing the ConsAAs calculated from the test and
reference alignments, we can define the alignment quality
AQ score as

AQ = [1 - (|ConsAA,,; - ConsAA,|/ConsAA,,)] * 100.
(12)

The AQ score addresses to the question how many percent
the test ConsAA is from the reference ConsAA. It is pre-
sumed that the higher the AQ value the better is the qual-
ity of the alignment. Note that the AQ score does not
require the conserved positions to be the same in the test
and reference alignments, only the number of the con-
served residues counts.
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Multiple sequence alignment programs

We compared the alignment quality of six multiple
sequence alignment programs which have been widely
used in bioinformatics: Clustal [9], TCoffee [10], Dialign2
[11], ProbCons|[12], Muscle [13], and Mafft [14,15]. We
used the default settings of the programs (Table 3). Out of
7 possible alignment strategies with Mafft, we chose L-
INS-i, the most accurate method at the moment, and FFT-
NS-2, the default method.

Benchmarking database

We used the BAIiBASE 3.0 database to test the alignment
quality of the alignment programs. The BAIiBASE is built
for comparing alignment programs [45]. The database
contains 218 multiple protein sequence alignments
which have been divided into 5 reference sets. The refer-
ence set 1 includes equi-distant sequences, whose identity
is less than 20% (ref 11) or between 20 and 40% (ref 12).
The 2nd reference set consists of families aligned with a
highly divergent "orphan" sequence. The 3rd reference set
includes subgroups of sequences whose residue identity
between the subgroups is less than 25%. The sequences of
the 4th reference set contains N/C-terminal extensions.
The 5th reference set consists of sequences with internal
insertions.

Each alignment in the BAIiBASE has two versions: one
with full-length sequences and another with truncated
sequences containing the sequences corresponding to the
homologous regions only. We used only the truncated
sequences, except in reference set 4, which only contains
the full-length sequences. The BAIiBASE annotates relia-
bly aligned regions as core blocks. As in most of the stud-
ies using BAliBASE, we compared the alignment programs
using the core block sequences only.

The BALIBASE provides a program called bali_score for
calculating the SP and CS quality measures for the test
alignment [1]. We used both of these scores for bench-
marking.

Comparison procedure
In order to compare the quality of the alignments, the
alignment programs were used to align each family in the

Table 3: Alignment programs and parameters used.

Program Version  Parameters (strategy)
Clustal[9] 1.83 default
TCoffee[10] 2.66 default
Dialign2[1 1] 2.2.1 default
Probcons [12] 1.10 default
Muscle[13] 3.52 default

Maffe[14, 15]
Maffe[14, 15]

5.667
5.667

-localpair -maxiterate 1000 (L-INS-i)
default (FFT-NS-2)

http://www.biomedcentral.com/1471-2105/7/484

BAIiBASE database. The significance of the observed maxZ
score was calculated for each alignment position. The pro-
portion of conserved residues ConsAA was then calculated
using 15 different FDRs varying from 0.01 to 0.15. The AQ
score was calculated using the core blocks of each align-
ment. The core blocks of the new alignments were deter-
mined to consist of positions including one or more
residues in the core block of the reference alignment.
Additionally, the SP and CS scores were calculated for the
core blocks using bali_score program.

The AQ, SP and CS scores were calculated for the 7 test
alignments and the BAIiBASE reference alignments for
each set of sequences in the five reference sets. The results
are presented as medians within each reference because
the distributions of the AQ score values in the references
were skewed. The statistical significance of the differences
between the alignment programs were tested at FDR =
0.05 using Wilcoxon signed rank test. This test statistic
was chosen because the same sequences were used in each
method, and hence the scores could not be considered to
be independent. The Bonferroni correction was used
within each reference set to correct the effect of making
multiple tests simultaneously. In the results section, the
corrected p-values less than 0.05 were considered as statis-
tically significant. For comparison of the relationship
between the individual AQ and SP scores, we calculated
the Spearman rank correlation coefficient separately for
each 7 alignment methods.
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Additional File 1

MultiDisp visualization and conservation scores for the Ras-like pro-
tein positions 1-31. PNG formatted figure includes MultiDisp visualiza-
tion of the Ras-like protein positions 1-31 (upper) and the corresponding
conservation scores (lower). The curves show (red) the scaled -log(p)-val-
ues with Blosum62 scoring matrix, (magenta) the scaled -log(p)-values
with grouping of amino acids, (blue) Mean Distance and (green) Infor-
mation content scores for the alignment.
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Additional File 2

MultiDisp visualization and conservation scores for the Ras-like pro-
tein positions 32-62. As Additional file 1, but for the Ras-like protein
positions 32-62.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-484-S2.png|

Additional File 3

MultiDisp visualization and conservation scores for the Ras-like pro-
tein positions 63-92. As Additional file 1, but for the Ras-like protein
positions 63-92.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-484-S3.png]

Additional File 4

MultiDisp visualization and conservation scores for the Ras-like pro-
tein positions 93-122. As Additional file 1, but for the Ras-like protein
positions 93-122.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-484-S4.png]

Additional File 5

MultiDisp visualization and conservation scores for the Ras-like pro-
tein positions 123-152. As Additional file 1, but for the Ras-like protein
positions 123-152.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-484-S5.png|

Additional File 6

MultiDisp visualization and conservation scores for the SH2 domain
positions 1-27. PNG formatted figure includes MultiDisp visualization
of the SH2 domain positions 1-27 (upper) and the corresponding conser-
vation scores (lower). The curves show (red) the scaled -log(p)-values
with Blosum62 scoring matrix, (magenta) the scaled -log(p)-values with
grouping of amino acids, (blue) Mean Distance and (green) Information
content scores for the alignment.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-484-S6.png]

Additional File 7

MultiDisp visualization and conservation scores for the SH2 domain
positions 28-55. As Additional file 6, but for SH2 domain positions 28—
55.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-484-S7.png|

Additional File 8

MultiDisp visualization and conservation scores for the SH2 domain
positions 56-82. As Additional file 6, but for SH2 domain positions 56—
82.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-484-S8.png|

Additional File 9

MultiDisp visualization and conservation scores for the SH2 domain
positions 83-109. As Additional file 6, but for SH2 domain positions
83-109.

Click here for file
|http://www.biomedcentral.com/content/supplementary/1471-
2105-7-484-S9.png]

Additional File 10

Tuning the importance sampling procedure. PDF file describes the sim-
ulation procedure for finding the appropriate parameter values of the
importance sampling procedure.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1471-
2105-7-484-S10.pdf]
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