1,193 research outputs found

    Cross-layer design of multi-hop wireless networks

    Get PDF
    MULTI -hop wireless networks are usually defined as a collection of nodes equipped with radio transmitters, which not only have the capability to communicate each other in a multi-hop fashion, but also to route each others’ data packets. The distributed nature of such networks makes them suitable for a variety of applications where there are no assumed reliable central entities, or controllers, and may significantly improve the scalability issues of conventional single-hop wireless networks. This Ph.D. dissertation mainly investigates two aspects of the research issues related to the efficient multi-hop wireless networks design, namely: (a) network protocols and (b) network management, both in cross-layer design paradigms to ensure the notion of service quality, such as quality of service (QoS) in wireless mesh networks (WMNs) for backhaul applications and quality of information (QoI) in wireless sensor networks (WSNs) for sensing tasks. Throughout the presentation of this Ph.D. dissertation, different network settings are used as illustrative examples, however the proposed algorithms, methodologies, protocols, and models are not restricted in the considered networks, but rather have wide applicability. First, this dissertation proposes a cross-layer design framework integrating a distributed proportional-fair scheduler and a QoS routing algorithm, while using WMNs as an illustrative example. The proposed approach has significant performance gain compared with other network protocols. Second, this dissertation proposes a generic admission control methodology for any packet network, wired and wireless, by modeling the network as a black box, and using a generic mathematical 0. Abstract 3 function and Taylor expansion to capture the admission impact. Third, this dissertation further enhances the previous designs by proposing a negotiation process, to bridge the applications’ service quality demands and the resource management, while using WSNs as an illustrative example. This approach allows the negotiation among different service classes and WSN resource allocations to reach the optimal operational status. Finally, the guarantees of the service quality are extended to the environment of multiple, disconnected, mobile subnetworks, where the question of how to maintain communications using dynamically controlled, unmanned data ferries is investigated

    ActMesh- A Cognitive Resource Management paradigm for dynamic mobile Internet Access with Reliability Guarantees

    Get PDF
    Wireless Mesh Networks (WMNs) are going increasing attention as a flexible low-cost networking architecture to provide media Internet access over metropolitan areas to mobile clients requiring multimedia services. In WMNs, Mesh Routers (MRs) from the mesh backbone and accomplish the twofold task of traffic forwarding, as well as providing multimedia access to mobile Mesh Clients (MCs). Due to the intensive bandwidth-resource requested for supporting QoS-demanding multimedia services, performance of the current WMNs is mainly limited by spectrum-crowding and traffic-congestion, as only scarce spectrum-resources is currently licensed for the MCs' access. In principle, this problem could be mitigated by exploiting in a media-friendly (e.g., content-aware) way the context-aware capabilities offered by the Cognitive Radio (CR) paradigm. As integrated exploitation of both content and context-aware system's capabilities is at the basis of our proposed Active Mesh (ActMesh) networking paradigm. This last aims at defining a network-wide architecture for realizing media-friendly Cognitive Mesh nets (e.g., context aware Cognitive Mesh nets). Hence, main contribution of this work is four fold: 1. After introducing main functional blocks of our ActMesh architecture, suitable self-adaptive Belief Propagation and Soft Data Fusion algorithms are designed to provide context-awareness. This is done under both cooperative and noncooperative sensing frameworks. 2. The resulting network-wide resource management problem is modelled as a constrained stochastic Network Utility Maximization (NUM) problem, with the dual (contrasting) objective to maximize spectrum efficiency at the network level, while accounting for the perceived quality of the delivered media flows at the client level. 3. A fully distributed, scalable and self-adaptive implementation of the resulting Active Resource Manager (ARM) is deployed, that explicitly accounts for the energy limits of the battery powered MCs and the effects induced by both fading and client mobility. Due to informationally decentralized architecture of the ActMesh net, the complexity of (possibly, optimal) centralized solutions for resource management becomes prohibitive when number of MCs accessing ActMesh net grow. Furthermore, centralized resource management solutions could required large amounts of time to collect and process the required network information, which, in turn, induce delay that can be unacceptable for delay sensitive media applications, e.g., multimedia streaming. Hence, it is important to develop network-wide ARM policies that are both distributed and scalable by exploiting the radio MCs capabilities to sense, adapt and coordinate themselves. We validate our analytical models via simulation based numerical tests, that support actual effectiveness of the overall ActMesh paradigm, both in terms of objective and subjective performance metrics. In particular, the basic tradeoff among backbone traffic-vs-access traffic arising in the ActMesh net from the bandwidth-efficient opportunistic resource allocation policy pursued by the deployed ARM is numerically characterized. The standardization framework we inspire to is the emerging IEEE 802.16h one

    ActMesh- A Cognitive Resource Management paradigm for dynamic mobile Internet Access with Reliability Guarantees

    Get PDF
    Wireless Mesh Networks (WMNs) are going increasing attention as a flexible low-cost networking architecture to provide media Internet access over metropolitan areas to mobile clients requiring multimedia services. In WMNs, Mesh Routers (MRs) from the mesh backbone and accomplish the twofold task of traffic forwarding, as well as providing multimedia access to mobile Mesh Clients (MCs). Due to the intensive bandwidth-resource requested for supporting QoS-demanding multimedia services, performance of the current WMNs is mainly limited by spectrum-crowding and traffic-congestion, as only scarce spectrum-resources is currently licensed for the MCs' access. In principle, this problem could be mitigated by exploiting in a media-friendly (e.g., content-aware) way the context-aware capabilities offered by the Cognitive Radio (CR) paradigm. As integrated exploitation of both content and context-aware system's capabilities is at the basis of our proposed Active Mesh (ActMesh) networking paradigm. This last aims at defining a network-wide architecture for realizing media-friendly Cognitive Mesh nets (e.g., context aware Cognitive Mesh nets). Hence, main contribution of this work is four fold: 1. After introducing main functional blocks of our ActMesh architecture, suitable self-adaptive Belief Propagation and Soft Data Fusion algorithms are designed to provide context-awareness. This is done under both cooperative and noncooperative sensing frameworks. 2. The resulting network-wide resource management problem is modelled as a constrained stochastic Network Utility Maximization (NUM) problem, with the dual (contrasting) objective to maximize spectrum efficiency at the network level, while accounting for the perceived quality of the delivered media flows at the client level. 3. A fully distributed, scalable and self-adaptive implementation of the resulting Active Resource Manager (ARM) is deployed, that explicitly accounts for the energy limits of the battery powered MCs and the effects induced by both fading and client mobility. Due to informationally decentralized architecture of the ActMesh net, the complexity of (possibly, optimal) centralized solutions for resource management becomes prohibitive when number of MCs accessing ActMesh net grow. Furthermore, centralized resource management solutions could required large amounts of time to collect and process the required network information, which, in turn, induce delay that can be unacceptable for delay sensitive media applications, e.g., multimedia streaming. Hence, it is important to develop network-wide ARM policies that are both distributed and scalable by exploiting the radio MCs capabilities to sense, adapt and coordinate themselves. We validate our analytical models via simulation based numerical tests, that support actual effectiveness of the overall ActMesh paradigm, both in terms of objective and subjective performance metrics. In particular, the basic tradeoff among backbone traffic-vs-access traffic arising in the ActMesh net from the bandwidth-efficient opportunistic resource allocation policy pursued by the deployed ARM is numerically characterized. The standardization framework we inspire to is the emerging IEEE 802.16h one

    A Game Theory based Contention Window Adjustment for IEEE 802.11 under Heavy Load

    Get PDF
    The 802.11 families are considered as the most applicable set of standards for Wireless Local Area Networks (WLANs) where nodes make access to the wireless media using random access techniques. In such networks, each node adjusts its contention window to the minimum size irrespective of the number of competing nodes, so in saturated mode and excessive number of nodes available, the network performance is reduced due to severe collision probability. A cooperative game is being proposed to adjust the users’ contention windows in improving the network throughput, delay and packet drop ratio under heavy traffic load circumstances. The system’s performance evaluated by simulations indicate some superiorities of the proposed method over 802.11-DCF (Distribute Coordinate Function)

    Cross-Layer Optimization and Dynamic Spectrum Access for Distributed Wireless Networks

    Get PDF
    We proposed a novel spectrum allocation approach for distributed cognitive radio networks. Cognitive radio systems are capable of sensing the prevailing environmental conditions and automatically adapting its operating parameters in order to enhance system and network performance. Using this technology, our proposed approach optimizes each individual wireless device and its single-hop communication links using the partial operating parameter and environmental information from adjacent devices within the wireless network. Assuming stationary wireless nodes, all wireless communication links employ non-contiguous orthogonal frequency division multiplexing (NC-OFDM) in order to enable dynamic spectrum access (DSA). The proposed approach will attempt to simultaneously minimize the bit error rate, minimize out-of-band (OOB) interference, and maximize overall throughput using a multi-objective fitness function. Without loss in generality, genetic algorithms are employed to perform the actual optimization. Two generic optimization approaches, subcarrier-wise approach and block-wise approach, were proposed to access spectrum. We also proposed and analyzed several approaches implemented via genetic algorithms (GA), such as quantizing variables, using adaptive variable ranges, and Multi-Objective Genetic Algorithms, for increasing the speed and improving the results of combined spectrum utilization/cross-layer optimization approaches proposed, together with several assisting processes and modifications devised to make the optimization to improve efficiency and execution time
    • …
    corecore