3 research outputs found

    Transport layer protocols and architectures for satellite networks

    Get PDF
    Designing efficient transmission mechanisms for advanced satellite networks is a demanding task, requiring the definition and the implementation of protocols and architectures well suited to this challenging environment. In particular, transport protocols performance over satellite networks is impaired by the characteristics of the satellite radio link, specifically by the long propagation delay and the possible presence of segment losses due to physical channel errors. The level of impact on performance depends upon the link design (type of constellation, link margin, coding and modulation) and operational conditions (link obstructions, terminal mobility, weather conditions, etc.). To address these critical aspects a number of possible solutions have been presented in the literature, ranging from limited modifications of standard protocols (e.g. TCP, transmission control protocol) to completely alternative protocol and network architectures. However, despite the great number of different proposals (or perhaps also because of it), the general framework appears quite fragmented and there is a compelling need of an integration of the research competences and efforts. This is actually the intent of the transport protocols research line within the European SatNEx (Satellite Network of Excellence) project. Stemming from the authors' work on this project, this paper aims to provide the reader with an updated overview of all the possible approaches that can be pursued to overcome the limitations of current transport protocols and architectures, when applied to satellite communications. In the paper the possible solutions are classified in the following categories: optimization of TCP interactions with lower layers, TCP enhancements, performance enhancement proxies (PEP) and delay tolerant networks (DTN). Advantages and disadvantages of the different approaches, as well as their interactions, are investigated and discussed, taking into account performance improvement, complexity, and compliance to the standard semantics. From this analysis, it emerges that DTN architectures could integrate some of the most efficient solutions from the other categories, by inserting them in a new rigorous framework. These innovative architectures therefore may represent a promising solution for solving some of the important problems posed at the transport layer by satellite networks, at least in a medium-to-long-term perspective. Copyright (c) 2006 John Wiley & Sons, Ltd

    Mécanismes d'optimisation multi-niveaux pour IP sur satellites de nouvelle génération

    Get PDF
    L'objectif de cette thèse est de fournir aux réseaux satellitaires géostationnaires des outils d'amélioration de performances dans un contexte contraint, lié au support de communication qui présente une qualité variable. Les défis s'étendent de la couche d'accès au support (l'ordonnancement) à la couche transport (le comportement du TCP étant sensible au délai de propagation dans les réseaux géostationnaires). Nous faisons appel aux mécanismes cross-layer qui mettent en place des interactions entre entités protocolaires non adjacentes du modèle OSI offrant ainsi une adaptation immédiate au changement des conditions dans le réseau. Nous employons à ce but une technique cross-layer informant l'entité protocolaire TCP du débit disponible, permettant d'éviter des conséquences telles que la chute du débit et des pertes liées à la congestion des files d'attente. Nous mettons en oeuvre ce mécanisme au niveau d'un élément sensible du réseau géostationnaire, le proxy TCP. L'intérêt des techniques cross-layer a été mis en évidence au niveau de l'ordonnanceur présent au sein de la gateway d'un réseau DVB-S2/DVB-RCS. Ainsi, ils contribuent à la maximisation de la capacité du système, à l'assurance des contraintes de qualité de service, à l'équité de l'allocation de ressources, etc. Enfin, nous présentons une solution possible d'architecture cross-layer. Nous proposons des caractéristiques demandées pour une architecture cross-layer afin d'assurer l'évolutivité, la modularité et la co-existence avec l'architecture standard existante. ABSTRACT : The main objective of this thesis is to provide tools of improving performance of geostationary satellite networks, operating in a constrained environment mainly due to the variable quality of radio links. There are protocol layers being challenged by such characteristics, such as the medium access protocol and the transport layer protocol (TCP behaviour is impacted by the long propagation delay in geostationary satellite networks). We employ cross-layer mechanisms implementing interaction between non-adjacent protocol layers defined by the OSI architecture aiming at providing a rapid adaptation to changes in network state. We provide a cross-layer technique informing TCP protocol of the available network rate, thus preventing consequences such as TCP rate drop or loss due to buffer overflow. This mechanism is to be implemented in a sensible network element, such as a TCP proxy. Data link layer scheduler can benefit from the advantages of employing cross-layer mechanisms, especially at the gateway of a DVB-S2/DVB-RCS satellite network. The improved scheduler allows an efficient use of network resources and helps insuring quality of services constraints, resource allocation fairness, etc. Finally, we propose a cross-layer architecture along with in-demand characteristics able to offer an inter-operability with the existing architecture, an easy up-grade and design
    corecore