1,115 research outputs found

    High-Integrity Performance Monitoring Units in Automotive Chips for Reliable Timing V&V

    Get PDF
    As software continues to control more system-critical functions in cars, its timing is becoming an integral element in functional safety. Timing validation and verification (V&V) assesses softwares end-to-end timing measurements against given budgets. The advent of multicore processors with massive resource sharing reduces the significance of end-to-end execution times for timing V&V and requires reasoning on (worst-case) access delays on contention-prone hardware resources. While Performance Monitoring Units (PMU) support this finer-grained reasoning, their design has never been a prime consideration in high-performance processors - where automotive-chips PMU implementations descend from - since PMU does not directly affect performance or reliability. To meet PMUs instrumental importance for timing V&V, we advocate for PMUs in automotive chips that explicitly track activities related to worst-case (rather than average) softwares behavior, are recognized as an ISO-26262 mandatory high-integrity hardware service, and are accompanied with detailed documentation that enables their effective use to derive reliable timing estimatesThis work has also been partially supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under grant TIN2015-65316-P and the HiPEAC Network of Excellence. Jaume Abella has been partially supported by the MINECO under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717. Enrico Mezzet has been partially supported by the Spanish Ministry of Economy and Competitiveness under Juan de la Cierva-IncorporaciĂłn postdoctoral fellowship number IJCI-2016- 27396.Peer ReviewedPostprint (author's final draft

    Contention-aware performance monitoring counter support for real-time MPSoCs

    Get PDF
    Tasks running in MPSoCs experience contention delays when accessing MPSoC’s shared resources, complicating task timing analysis and deriving execution time bounds. Understanding the Actual Contention Delay (ACD) each task suffers due to other corunning tasks, and the particular hardware shared resources in which contention occurs, is of prominent importance to increase confidence on derived execution time bounds of tasks. And, whenever those bounds are violated, ACD provides information on the reasons for overruns. Unfortunately, existing MPSoC designs considered in real-time domains offer limited hardware support to measure tasks’ ACD losing all these potential benefits. In this paper we propose the Contention Cycle Stack (CCS), a mechanism that extends performance monitoring counters to track specific events that allow estimating the ACD that each task suffers from every contending task on every hardware shared resource. We build the CCS using a set of specialized low-overhead Performance Monitoring Counters for the Cobham Gaisler GR740 (NGMP) MPSoC – used in the space domain – for which we show CCS’s benefits.The research leading to these results has received funding from the European Space Agency under contracts 4000109680, 4000110157 and NPI 4000102880, and the Ministry of Science and Technology of Spain under contract TIN-2015-65316-P. Jaume Abella has been partially supported by the Ministry of Economy and Competitiveness under Ramon y Cajal postdoctoral fellowship number RYC-2013-14717.Peer ReviewedPostprint (author's final draft

    Securing Real-Time Internet-of-Things

    Full text link
    Modern embedded and cyber-physical systems are ubiquitous. A large number of critical cyber-physical systems have real-time requirements (e.g., avionics, automobiles, power grids, manufacturing systems, industrial control systems, etc.). Recent developments and new functionality requires real-time embedded devices to be connected to the Internet. This gives rise to the real-time Internet-of-things (RT-IoT) that promises a better user experience through stronger connectivity and efficient use of next-generation embedded devices. However RT- IoT are also increasingly becoming targets for cyber-attacks which is exacerbated by this increased connectivity. This paper gives an introduction to RT-IoT systems, an outlook of current approaches and possible research challenges towards secure RT- IoT frameworks

    Parallel symbolic state-space exploration is difficult, but what is the alternative?

    Full text link
    State-space exploration is an essential step in many modeling and analysis problems. Its goal is to find the states reachable from the initial state of a discrete-state model described. The state space can used to answer important questions, e.g., "Is there a dead state?" and "Can N become negative?", or as a starting point for sophisticated investigations expressed in temporal logic. Unfortunately, the state space is often so large that ordinary explicit data structures and sequential algorithms cannot cope, prompting the exploration of (1) parallel approaches using multiple processors, from simple workstation networks to shared-memory supercomputers, to satisfy large memory and runtime requirements and (2) symbolic approaches using decision diagrams to encode the large structured sets and relations manipulated during state-space generation. Both approaches have merits and limitations. Parallel explicit state-space generation is challenging, but almost linear speedup can be achieved; however, the analysis is ultimately limited by the memory and processors available. Symbolic methods are a heuristic that can efficiently encode many, but not all, functions over a structured and exponentially large domain; here the pitfalls are subtler: their performance varies widely depending on the class of decision diagram chosen, the state variable order, and obscure algorithmic parameters. As symbolic approaches are often much more efficient than explicit ones for many practical models, we argue for the need to parallelize symbolic state-space generation algorithms, so that we can realize the advantage of both approaches. This is a challenging endeavor, as the most efficient symbolic algorithm, Saturation, is inherently sequential. We conclude by discussing challenges, efforts, and promising directions toward this goal

    Multicore-optimized wavefront diamond blocking for optimizing stencil updates

    Full text link
    The importance of stencil-based algorithms in computational science has focused attention on optimized parallel implementations for multilevel cache-based processors. Temporal blocking schemes leverage the large bandwidth and low latency of caches to accelerate stencil updates and approach theoretical peak performance. A key ingredient is the reduction of data traffic across slow data paths, especially the main memory interface. In this work we combine the ideas of multi-core wavefront temporal blocking and diamond tiling to arrive at stencil update schemes that show large reductions in memory pressure compared to existing approaches. The resulting schemes show performance advantages in bandwidth-starved situations, which are exacerbated by the high bytes per lattice update case of variable coefficients. Our thread groups concept provides a controllable trade-off between concurrency and memory usage, shifting the pressure between the memory interface and the CPU. We present performance results on a contemporary Intel processor

    Predictable migration and communication in the Quest-V multikernal

    Full text link
    Quest-V is a system we have been developing from the ground up, with objectives focusing on safety, predictability and efficiency. It is designed to work on emerging multicore processors with hardware virtualization support. Quest-V is implemented as a ``distributed system on a chip'' and comprises multiple sandbox kernels. Sandbox kernels are isolated from one another in separate regions of physical memory, having access to a subset of processing cores and I/O devices. This partitioning prevents system failures in one sandbox affecting the operation of other sandboxes. Shared memory channels managed by system monitors enable inter-sandbox communication. The distributed nature of Quest-V means each sandbox has a separate physical clock, with all event timings being managed by per-core local timers. Each sandbox is responsible for its own scheduling and I/O management, without requiring intervention of a hypervisor. In this paper, we formulate bounds on inter-sandbox communication in the absence of a global scheduler or global system clock. We also describe how address space migration between sandboxes can be guaranteed without violating service constraints. Experimental results on a working system show the conditions under which Quest-V performs real-time communication and migration.National Science Foundation (1117025

    DReAM: An approach to estimate per-Task DRAM energy in multicore systems

    Get PDF
    Accurate per-task energy estimation in multicore systems would allow performing per-task energy-aware task scheduling and energy-aware billing in data centers, among other applications. Per-task energy estimation is challenged by the interaction between tasks in shared resources, which impacts tasks’ energy consumption in uncontrolled ways. Some accurate mechanisms have been devised recently to estimate per-task energy consumed on-chip in multicores, but there is a lack of such mechanisms for DRAM memories. This article makes the case for accurate per-task DRAM energy metering in multicores, which opens new paths to energy/performance optimizations. In particular, the contributions of this article are (i) an ideal per-task energy metering model for DRAM memories; (ii) DReAM, an accurate yet low cost implementation of the ideal model (less than 5% accuracy error when 16 tasks share memory); and (iii) a comparison with standard methods (even distribution and access-count based) proving that DReAM is much more accurate than these other methods.Peer ReviewedPostprint (author's final draft
    • …
    corecore