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Accurate per-task energy estimation in multicore systems would allow performing per-task energy-aware
task scheduling and energy-aware billing in data centers, among other applications. Per-task energy es-
timation is challenged by the interaction between tasks in shared resources, which impacts tasks’ energy
consumption in uncontrolled ways. Some accurate mechanisms have been devised recently to estimate per-
task energy consumed on-chip in multicores, but there is a lack of such mechanisms for DRAM memories.
This paper makes the case for accurate per-task DRAM energy metering in multicores, which opens new
paths to energy/performance optimizations. In particular, the contributions of this paper are (i) an ideal
per-task energy metering model for DRAM memories; (ii) DReAM, an accurate, yet low cost, implementation
of the ideal model (less than 5% accuracy error when 16 tasks share memory); and (iii) a comparison with
standard methods (even distribution and access-count based) proving that DReAM is much more accurate
than these other methods.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream Architectures
(Multiprocessors); C.4 [Performance of Systems]: Measurement Techniques

General Terms: Design, Measurement, Energy Metering, Processor and Memory Architecture

Additional Key Words and Phrases: Multicore Architecture, Modeling and Simulation, Power Modeling,
Performance, Benchmark Characterization

1. INTRODUCTION
The energy demand and cost of computing systems have grown during the last years,
and the trend is expected to hold in the coming future [Beloglazov et al. 2011]. Con-
versely, computing hardware-related cost (e.g., servers) remains constant or even de-
creases in data centers, desktops and laptops. This leads to scenarios where energy
cost is as significant as hardware-related cost. For instance, energy already accounts
for 20% of the total cost of ownership in a large-scale computing facility [Hamilton
2009]. This cost virtually doubles if we also include the cost of the cooling infrastruc-
tures needed to dissipate the heat induced by such a high energy consumption. There-
fore, energy-related cost is as relevant as the cost of servers in data centers. Similar
examples can be found for home computers whose energy cost during their lifetime is
in the same order of magnitude than the computer itself (e.g. 500$) and it is expected
to grow due to the foreseen energy cost increase [Beloglazov et al. 2011].

As processor design moves towards multi-threaded and many-core processors, in
which an increasing number of different applications run simultaneously in the same
processor, providing per-task energy metering becomes critical. Accurately metering
the energy consumed by each task would provide several benefits, including the fol-
lowing: First, the amount of hardware resources allocated to a given task (e.g., cores,
memory space) impact both its execution time and energy consumption. If per-task en-
ergy can be accurately estimated, one may optimize not only each task’s performance,
but its energy consumption or a combined energy-delay metric; Second, per-task en-
ergy metering can be used by the operating system (OS) to better schedule tasks so
that energy consumption is minimized while still completing tasks when needed; And
third, traditionally, data centers charge users based on the resources they are allo-
cated. The increasing fraction of energy-related costs in data centers and the need for
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Fig. 1. Memory power of some SPEC CPU 2006 benchmarks running alone on an Intel Sandy Bridge server,
with 8 cores and a 64GB DDR3 memory running at 1.6GHz. Power is obtained using the Running Average
Power Limit (RAPL) interfaces [Intel Corp. 2012a]. FitPC external multimeter is used to measure wall
power. We correlate wall power data with the data collected from the hardware energy counters using time
stamps. Representative benchmarks were selected based on previous characterization studies [Phansalkar
et al. 2007; Jaleel 2007].

more accurate billing pushes for new billing approaches based on the actual energy
consumption of each task rather than on the nominal resources allocated or on simply
distributing energy evenly among the running applications [Jimenez et al. 2011].

While energy can be easily estimated or measured in systems with no shared re-
sources (e.g., single-core processors), the advent of multicores challenges accurate per-
task energy metering due to shared resources. Some efforts have been done to split
energy across hardware components (e.g., cores, caches, memory) and, to understand
how on-chip hardware resources are shared [Bircher and John 2007; McCullough et al.
2011; David et al. 2010]. Those proposals rely on the use of performance monitoring
counters (PMCs) or system events (such as OS system calls).

In that respect, despite memory power keeps increasing, reaching 30-50W in high-
performance computers [Bircher and John 2007; David et al. 2011], there is a lack of
understanding of how energy is consumed per-task in memory [Aggarwal et al. 2008].
This is aggravated by the fact that memory power profiles across tasks may vary sig-
nificantly. For instance, a variation of up to 36% in memory power consumption is
observed across different SPEC CPU 2000 workloads (from 33.9W to 46.4W) when
running 4 instances of the same benchmark in each workload [Bircher and John 2007].

To elaborate on the need of accurate per-task memory energy metering, we perform
an experiment with several representative SPEC CPU 2006 benchmarks running on
an Intel Sandy Bridge server. In our experiments, memory represents between 24.6%
and 33.9% of the total wall power. It is comparable to the entire processor socket power:
on average, DRAM memory only consumes 6.3% less power than the processor. Thus,
memory power accounts for a significant portion of the total power consumption in
modern computing systems. Figure 1 shows the average memory power consump-
tion of each benchmark when executing in isolation on the system. Different tasks
incur different power consumption, with the maximum variation being 54%, between
482.sphinx3 and 462.libquantum (from 25.7W to 40.4W). Hence, libquantum-like and
sphinx3-like workloads executing for the same amount of time would incur signifi-
cantly different energy consumption. However, to the best of our knowledge, no mech-
anism has been proposed to measure accurately the memory energy consumed by each
task in multicore architectures.
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This paper proposes, for the first time, an ideal method to fairly distribute the energy
consumed in DRAM memories to concurrent running tasks and an efficient implemen-
tation of such method. Our approach relies on tracking both, the activity incurred by
running tasks and the memory bank states they induce. Then, energy is attributed
fairly to tasks based on their memory behavior. We show that an accurate, yet low
cost, implementation of the ideal model is feasible. Overall, the contributions of this
work are as follows:

— We propose an ideal per-task energy metering model for DRAM memories, including
those based on close-page and open-page policies, as needed for performance/energy
optimization, task scheduling and billing in multicore systems. To the best of our
knowledge, it is the first reference model against which per-task energy metering
mechanisms in DRAM memories can be compared to.

— We devise DReAM, an accurate, yet low cost, implementation of the ideal model. DReAM
requires few counters and registers to be set up in the memory controller to gather
the required information. Our results show that such implementation is within a 5%
average error with respect to the ideal model.

— We compare DReAM with two other energy metering approaches: (i) Evenly Splitting
(ES) energy across co-running tasks, and (ii) splitting energy Proportionally To mem-
ory Accesses (PTA), a simplified DReAM method that further trades accuracy and cost.
Our results show that DReAM is far more accurate than ES and PTA with negligible
hardware overhead.

— We characterize the SPEC CPU 2006 benchmark suite in terms of DRAM energy
consumption. Our characterization allows identifying those properties of the appli-
cations that impact DRAM energy consumption the most, so that suitable scheduling
algorithms can be devised.

The rest of this paper is organized as follows. Section 2 provides background on
memory energy consumption and existing approaches for energy metering. Section 3
presents our approach to perform ideal per-task memory energy metering. DReAM, our
efficient hardware implementation of the ideal model, is described in Section 4. Next,
DReAM accuracy is evaluated in Section 5. In Section 6 we use DReAM to characterize
DRAM energy consumption of the SPEC CPU 2006 benchmark suite. Finally, Section 7
draws the main conclusions of this work.

2. BACKGROUND AND RELATED WORK
2.1. Previous Energy Metering Approaches
In recent years, there has been an increasing interest for energy metering in differ-
ent environments from data centers [Kansal et al. 2010; Bertran et al. 2012; Jimenez
et al. 2011] to smartphones [Pathak et al. 2011; Carroll and Heiser 2010; Nokia Corp.
2007; Chung et al. 2011]. In previous proposals, however, the focus is on providing
accurate energy metering for single-core architectures or multicore architectures in
which a single (multi-threaded) application is executed. These scenarios are relatively
easy to handle since, when an application is scheduled on the CPU, it accounts for
the whole energy consumption of the system (e.g., using a simple meter). Many pro-
posals [Bircher and John 2007; McCullough et al. 2011; David et al. 2010] use PMCs
or system events (such as OS system calls) to break down the energy consumption of
the system across its components (e.g., memory, processor, etc.). Those power models
use a set of PMCs and predefined weights derived through correlation. In many cases,
the results of the power model are compared against approaches using circuit-based
mechanisms such as current sense resistors. Some Intel servers model DRAM power
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per channel, but they are unaware of per-task interactions in each channel as well as
DRAM bank state interactions across requests [Intel Corp. 2012b].

However, with the increasing number of computing cores in processor architectures,
managing shared hardware resources on-chip becomes challenging [Nesbit et al. 2008].
Furthermore, the number and heterogeneity of the tasks that will coexist in a com-
puting system will significantly increase. In this evolving scenario, it is of prominent
importance performing accurate per-task energy metering and accounting [Liu et al.
2013b]. Given a workload composed by n tasks T1, T2, . . . , Tn running in a system with
n cores, per-task energy metering consists in tracking the energy that a given task, Ti,
consumes during a given period of time. Per-task energy accounting consists in deriving
for a given task Ti, the energy that Ti would have consumed if it had run in isolation
with a fair share of the hardware resources. Since energy accounting builds upon en-
ergy metering [Liu et al. 2013b], per-task energy metering is the first challenge to
address.

Recently, Shen et al. [Shen et al. 2013] proposed a request-level OS mechanism to
meter power consumption to each server request based on PMCs [Bellosa 2000]. The
authors consider both active and maintenance power and attribute it to the respon-
sible server requests. Similarly, Kestor et al. [Kestor et al. 2013] estimate the energy
of moving data along the memory hierarchy by designing a set of micro-benchmarks.
However, both approaches cannot take into account the impact of inter-task interfer-
ence unless appropriate solutions provide accurate per-task energy metering in multi-
cores, as stated by the authors in [Shen et al. 2013]. Liu et al. [Liu et al. 2013a] have
recently provided the hardware layer that delivers accurate Per-Task Energy Meter-
ing (PTEM) for on-chip resources (cores, caches, etc.), attributing the energy to run-
ning tasks according to their hardware utilization. Our proposal in this paper, DReAM,
complements PTEM providing such support for DRAM memories, thus delivering the
hardware support needed by [Shen et al. 2013; Kestor et al. 2013]. In particular, we
make the first proposal of (i) an idealized reference per-task memory energy metering
model and (ii) the hardware support to accurately measure per-task memory energy
consumption in multicores with multiple tasks executing concurrently.

2.2. Breaking Down Energy Consumption
DRAM memory energy variation across workloads can be large [Bircher and John
2007; David et al. 2011] and is likely to increase in the future as system manufactur-
ers pay increasing attention to energy efficiency [Barroso and Holzle 2007]. We break
DRAM memory energy consumption down into three components: dynamic, refresh
and background.

Dynamic energy corresponds to the energy spent to perform those useful activities
that circuits are intended to do triggered by the running programs. For instance, the
energy spent to retrieve data from memory on a read operation or the termination
power due to terminating signals of other ranks on the same channel.

Refresh energy corresponds to the energy consumed to refresh periodically all mem-
ory contents. Unlike SRAM memory cells, DRAM cells are unable to retain contents
indefinitely. Instead, DRAM cells discharge over time and eventually, they lose their
contents. Therefore, they must be read and written back at a given minimum frequency
to keep their contents. Although this has some implications in energy consumption (to
read/write memory contents) and bandwidth (refresh operations may delay program’s
accesses), DRAM cells are smaller and less power-hungry than SRAM ones, so they
are used to implement main memory.

Background energy includes maintenance and leakage energy. Maintenance energy
corresponds to the energy consumed due to useless activities not triggered by the pro-
gram(s) being run. For instance, DRAM memory may stay in a higher energy consump-
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tion state during idle cycles so that it can quickly react and serve a new access. Alter-
natively, it may remain in a much lower power mode with lower maintenance power
dissipation, but it may take longer to serve a new access due to the time required to
transition to an active mode. Leakage energy corresponds to the energy wasted due
to imperfections of the technology used to implement the circuit. Note that if circuits
are implemented with perfect technology, no leakage power would be dissipated. This
energy is referred to as static or leakage energy indistinctly in other works [Weste and
Eshraghian 1988]. For the sake of clarity, we make use of the term background energy
to refer to all energy consumed except dynamic and refresh energy.

3. METERING PER-TASK ENERGY CONSUMPTION
In this section we present an idealized model for per-task DRAM energy metering
without considering hardware cost. The result of this model is later used as the ref-
erence for DReAM model to meter per-task energy with a low-cost implementation. We
assume a multicore architecture where an on-chip memory controller serves as the
bridge to the off-chip memory. Next we describe the memory model considered in this
paper, how energy is consumed in the different memory blocks, and our models to split
energy among different tasks.

3.1. Memory Model
We focus on DDRx SDRAM as it is one of the most common memory technologies. A
DDRx SDRAM memory system is composed by a memory controller and one or more
DRAM devices. The memory controller controls the off-chip memory system acting as
the interface between the processor and DRAM devices.

A memory rank consists of multiple devices, which in turn consist of multiple banks
that can be accessed independently. Each bank comprises rows and columns of DRAM
cells (organized in arrays) and a row-buffer to cache the most recently accessed rows
in the bank. Rows are loaded into the row-buffer using a row activate command (ACT).
Such command opens the row by moving the data from the DRAM cells to the row-
buffer sense amplifiers. Once a bank is open, any read/write operation (R/W) can be
issued. Finally, a precharge command (PRE) closes the row-buffer, storing the data
back into the row. The memory controller can use two different policies to manage the
row-buffer: close-page that precharges the rows immediately after every access, and
open-page that leaves the rows in the row-buffer open for potential future accesses to
the same rows. The memory controller uses a First Ready, First Come First Serve (FR-
FCFS) policy. In this policy, all memory requests arriving from all cores are buffered in
arrival order in the memory controller, and dispatched to the memory system depend-
ing on the states of the banks they access.

Different models can be adopted to access memory. Those models determine which
ranks, devices, banks and arrays are accessed on each operation. We adopt the same
model as DRAMsim2, which in turn models Micron DDR2/3 memories [Rosenfeld et al.
2011]. In this model, all devices in a rank are accessed upon every access. In each
device, all arrays of exactly one bank are accessed. Each array provides the specified
row to the sense amplifier on every access, where a number of contiguous columns are
accessed over successive cycles to serve an incoming access. In our model, we use a
single rank, 8 devices per rank, 8 banks per device and 8 arrays per bank. In one cycle,
one bank per device is accessed, thus providing 64 bits in total for the rank. A burst of
8 cycles provides 64 bytes on every access to memory, therefore matching the cache line
size for the last level cache (LLC) in the processor. In our model, each rank connects to
the memory controller through a logically independent channel. In each channel, the
commands are ordered sequentially, and the data transfer occurs as determined by the
burst length timing parameter.
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Table I. Memory commands, timing, power states and background power breakdown for a
read operation in close-page mode.

Command T0 − ACT READ PRE −
T1 −

Timing T0 − tXP tRCD tRTP tRP −

State

Bank0

PD S

A

S PDBank1
SBank2

Bank3
Rank PPD PS PA PS PPD

Power T0
PPD

2
PS − PPD

2
PA − PPD

2
PS − PPD

2
PPD

2

T1
PPD

2

Under this configuration, all devices are always in the same power state, which is
equivalent to consider the power state at rank level. In each device, those banks being
accessed – if any – can be in a higher-power state.

We build our model upon Micron DDR2/3 power model, which provides temperature-
independent data. However, in practice energy consumption can be affected by tem-
perature. If such temperature-dependent data were available, per-temperature-range
energy constants should be used accordingly as already pointed out by Liu et al. [Liu
et al. 2013a] to track per-task energy consumption considering temperature variations.

3.2. Memory Energy Consumption
The energy model for the main memory is based on the current profiles provided by
Micron [Micron 2007] and it splits energy consumption into dynamic, refresh and back-
ground energy. This is analogous to the methodology used in [Deng et al. 2011], where
the same data from Micron is used as input. Micron energy model determines the back-
ground electric current level, and so the background power dissipation of each rank,
similarly to the methodology introduced in [Vogelsang 2010]. Devices can be in three
different states: Power Down (PD), Standby (S), and Active (A). In each state, power
dissipation is PPD, PS and PA, respectively. PD state is the one with the lowest power
dissipation. Note that PD refers to disabling the clocking in the memory system. This
process, which may take several cycles, is carried out by the memory controller. How-
ever, memory contents are preserved at all times. Also the Micron model determines
the electric current level caused by each command, and so their energy, except for the
ACT and PRE commands, whose energy is not segregated. We have used a similar ap-
proach to the one introduced in [Chandrasekar et al. 2011] to separate the energy of
those commands when needed, for example, under open-page policy.

Table I shows the effect on memory of a read command. We observe that the device
is in PD state when the memory controller is not processing any request. Note that in
our configuration all devices in the rank are in the same state and therefore, rank and
device states match. When the memory controller receives a memory access request
from task 0 (T0), it sends a clock enable (CKE) signal to transition the rank from PD
to S state. The device stays in S state as long as all banks are powered up and idle.
This includes the time the device is waiting for the memory controller to send those
commands corresponding to the requests in the memory controller’s queues. During
the S state, background power is higher than in PD state (PS > PPD). S state lasts
tXP , as depicted in Table I. Eventually, some banks are activated so that the device
as well as some banks transition to A state. Note that in this model, when the ACT
command is issued the device (and so the rank) switches to S state, and whenever the
corresponding bank has been activated, the device switches to A state. The device and
the accessed banks (Bank0 in the example) are in A state during part of the activation
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period (tRCD) and while the read/write command is served (tRTP in the example for a
read command). Note that there is another timing constraint: each bank can only be
precharged after tRAS . Therefore, in the case when tRAS > (tRCD + tRTP ), the bank
stays in A state at least for tRAS after being activated. While in A state, the device
incurs the highest power dissipation, PA, with PA > PS . Once the only command being
processed is the PRE command, the device and accessed banks transition to S state.
When no command is executed and no memory access request exists in the memory
controller buffer for a certain time interval, the memory controller returns the device
to PD state.

Most modern memory controllers implement open-page and/or close-page policies.
They differ on how the data array row-buffer is managed (for how long the row-buffer
keeps open). Next, we present how per-task energy is metered under both policies.

3.3. Per-Task Energy Metering for Close-Page
Our idealized model relies on the fact that background power dissipation of a device
depends solely on its current state, which can be induced by different, concurrent ac-
cesses. Therefore, our model attributes background energy to each task based on the
state it imposes on memory. As reported in [Deng et al. 2011], background energy ac-
counts for over 50% of the memory energy consumed by programs. Memory occupancy
is discarded as input for the model since background energy does not depend on it.
Thus, distributing background energy according to resource utilization is crucial to
meter per-task memory energy accurately.

(1) During PD, only background power is consumed. Such energy is constantly con-
sumed during a given period of time, independent from the percentage of capacity
used by a task. If a task runs alone, all this power is assigned to it. Thus, when
running multiple tasks, the powerdown background power cannot be attributed
to any specific task since no task has any memory activity during PD. Hence, we
divide background power evenly across all tasks running in the system.

(2) Whenever a DRAM device switches from PD to S state, the extra background power
incurred due to S state (i.e. PS−PPD) is distributed uniformly across all tasks with
in-flight commands that force the DRAM devices to stay in S state.

(3) When a DRAM device is in A state (active), the extra power incurred (i.e. PA − PS)
is distributed evenly across all tasks enforcing A state.

For instance, Table I shows the case where one task, T0, issues a read command (first
row) while another task, T1, issues no command. Let us assume that those are the only
tasks using the memory system. During the whole period, T1 is responsible only for
half of the PPD power (last row), while T0 is responsible for half of the PPD and all PS

and PA extra power (penultimate row).
When multiple commands are processed in parallel, we follow the same principle

of attributing power to those tasks that impose the memory chip to be on a given
state. In the example in Table II, we show a particular case where both T0 and T1
issue commands in parallel. First, the device is in PD state. Eventually, T0 makes the
device transition to S, so T0 is responsible for the extra background power. Then, the
device transitions to A state and T1 starts its activate command. Both tasks are equally
responsible for PPD and PS power, but only T0 is responsible for PA power. Later, T1 also
enforces memory to be in A state so that the total power must be uniformly distributed
across both tasks. Finally, as commands finish, tasks T0 and T1 stop enforcing high-
power states and power dissipation is attributed only to those tasks imposing each
particular state.

Regarding refresh operations, according to the JEDEC standard of DDR2/3 SDRAM
memory [JEDEC Solid State Technology Association 2012], it is required to issue eight
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Table II. Memory commands, timing, power states and background power breakdown for several operations in
close-page mode.

Comm. T0 − ACT READ PRE −
T1 − ACT READ PRE −

Timing T0 − tXP tRCD tRTP tRP −
T1 − tRRD tRCD tRTP tRP . . .

State

Bank0

PD S

A S

S PDBank1
S

A
Bank2 S
Bank3
Rank PPD PS PA PS PPD

Power T0
PPD

2
PS− PPD

2
PA− PS

2
PA
2

PS
2

PPD
2

T1
PPD

2
PS
2

PA
2

PA− PS
2

PS
2

PS− PPD
2

PPD
2

Table III. Memory commands, timing, power states and background energy breakdown
when a hit in the row buffer occurs in open-page mode.

Comm. T0 − ACT READ − −
T1 − − READ −

Timing T0 − tXP tRCD tRTP −
T1 − tRTP −

State

Bank0

PD

S A
Bank1

SBank2
Bank3
Rank PPD PS PA

Power T0
PPD

2
PS− PPD

2
PA − PPD

2
PPD

2

T1
PPD

2
PA − PPD

2

refresh commands during a given time window. Thus, the memory controller has some
flexibility to schedule those refresh commands minimizing interference on tasks’ com-
mands. The refresh energy is guaranteed to be constant in the memory system during
a given period of time, regardless of the activities of running tasks. Given that refresh
commands occur in all banks simultaneously, they cannot happen in parallel with any
other command. Thus, both dynamic and background energy incurred during refresh
is accounted as refresh energy. Although refresh energy is not triggered by the execu-
tion of tasks, it is consumed as long as the system is powered up. Thus, tasks running
in the system are assumed to be responsible for the system being up, and so refresh
energy is evenly split across those tasks.

3.4. Per-Task Energy Metering for Open-Page
As opposed to the close-page policy, in open-page, ACT/PRE commands may not be
needed by a memory access, since banks remain open after being accessed. However,
energy consumed by open banks is still attributed to those tasks that opened the
banks. Regarding background energy, the same principle as for close-page is followed:
attributing the energy to tasks based on the state they impose to memory.

As in close-page policy, devices are powered up and activated (A state) to execute
commands. However, once the corresponding read/write operation finishes, those de-
vices remain open in A state. This is illustrated in the example in Table III that reflects
the case of a row-buffer hit. The task that opened the bank (T0 in the example) is re-
sponsible for the extra background energy of the activated devices (after the first tRTP ).
Eventually, another access to the open banks can occur. If this is the case, no precharge
command is needed. Since T1 read access is a row-buffer hit, it can directly read data
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Table IV. Memory commands, timing, power states and background energy break-
down for multiple interleaved accesses from two tasks accessing the same bank in
open-page mode.

Comm. T0 READ − READ − PRE
T1 − READ −

Timing T0 tRTP − tRTP − tRP
T1 − tRTP −

State

Bank0 A S
Bank1 S
Bank2 S
Bank3 S
Rank PA PS

Power T0 PA − PPD
2

PPD
2

PA − PPD
2

PS − PPD
2

T1
PPD

2
PA − PPD

2
PPD

2

from the row buffer. Consequently, T1 becomes responsible for the extra background
energy, while T0 is only responsible for half of the PD energy.

Analogously, the same principle also applies when multiple accesses are interleaved,
as shown in Table IV. In this particular case, T0 has already opened one bank (Bank0),
which imposes the A state to the rank and the corresponding bank. Eventually, T1
accesses the same rows which incurs a row-buffer hit. During this process, the extra
background energy attribution switches like in the previous example. Then, after T1
finishes its operation, T0 accesses the same rows which incurs another row-buffer hit.
Thus, the attribution of extra background energy switches back to T0 again. Whenever
the page is closed, T0 is also responsible for the precharging dynamic energy, which
should have been attributed to T1 if T0 had not accessed the open bank. The main
reason why we distribute the extra background energy this way is that, when the
bank is firstly opened, it is impossible to predict its future accesses, thus the activation
energy is attributed to the first user. Similarly, the precharging energy is attributed
to the last user, who triggered the PRE command. Regarding background energy, we
also assume that the last task imposing a particular device state accounts for the extra
energy. Although our choice is, to some extent, arbitrary, we regard it as fair.

In summary, activate and read/write dynamic energy is attributed to the task per-
forming the access, whereas precharge energy is attributed to the last task accessing
such row. Note that on a refresh command all banks need to be closed, and so precharge
energy for open pages is attributed to the last task accessing each of them. Other than
that, energy distribution is analogous for close-page and open-page policies.

3.5. Ideal Per-Task Energy Metering Model
We generalize the memory energy consumed by each task as follows.

1) The background (bg) energy attributed to a task can be generalized as follows for
both open- and close-page policies:

Emem
bg (Ti) = PPD × ExecT ime(Ti)/NT +

ExecTime(Ti)∑
j=0

(
(PS − PPD)×

δSi,j

NT
S,j

)
+
ExecTime(Ti)∑

j=0

(
(PA − PS)×

δAi,j

NT
A,j

)
(1)

In the first addend each running task is metered an even part of PPD, where
ExecT ime(Ti) stands for the execution time of task i in cycles and NT for the num-
ber of tasks running in the processor – not necessarily the maximum number of tasks
allowed in the processor. The second and third addends meter PS − PPD and PA − PS
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for tasks enforcing those states. NT
S,j and NT

A,j correspond to the number of tasks im-
posing S and A states respectively in cycle j; and δSi,j and δAi,j indicate if the task i
makes memory be in S and A state respectively, in cycle j. In other words, for instance,
for close-page δAi,j is 1 if task i is executing a read, write or activate (last tRCD cycles)
command in cycle j, and 0 otherwise; and δSi,j is 1 if task i is executing a precharge or
activate (first tXP cycles) command or if it has pending commands in the memory con-
troller while all banks are idle in cycle j, and 0 otherwise. Note that, as stated before,
memory occupancy is not considered for metering energy to tasks since the memory re-
gions not used by the task under consideration cannot be turned off when idle. Hence,
background power remains the same regardless of the memory space used.

2) Dynamic energy for a task depends on the number of commands it performs, as
shown in the following equation:

Emem
dyn (Ti) = Emem

read ×NRD(Ti) + Emem
write ×NWR(Ti)

+ Emem
ACT ×NACT (Ti) + Emem

PRE ×NPRE(Ti)
(2)

where Emem
read , Emem

write, Emem
ACT and Emem

PRE stand for the energy of each command, and
NRD(Ti), NWR(Ti), NACT (Ti) and NPRE(Ti) stand for the number of memory internal
commands executed by task i.

3) Refresh operations may have some side effects such as delaying some commands
issued by running tasks. However, this fact does not alter the energy model. Also, re-
fresh commands consume some energy to access the corresponding rows. Since refresh
operations are distributed evenly over time at a fixed rate and they are not originated
by any particular task, their energy is evenly split across all running tasks. Thus,
refresh energy per task is as follows:

Emem
refr (Ti) = Emem

refr ×NRef × ExecT ime(Ti)/NT (3)

where Emem
refr corresponds to the dynamic and background energy of a refresh com-

mand. NRef corresponds to the average number of refresh operations performed per
cycle.

4. DREAM, A PRACTICAL APPROACH TO PER-TASK ENERGY METERING
Implementing the exact computation of the idealized energy model is expensive — if at
all feasible — due to the large number of events to be tracked, the frequency at which
they must be tracked, and the lack of information that the processor has about the
memory state. On the other hand, metering memory energy evenly among running
tasks or proportionally to the number of accesses that they perform requires minor
changes to current architectures. However, these approaches exhibit low estimation
accuracy as shown later in Section 5.2. Therefore, we propose DReAM, our per-task en-
ergy metering approach that trades off energy metering accuracy and implementation
complexity.

In DReAM memory model, dynamic and refresh energy can be easily tracked as in
the idealized model. This requires the memory vendor to provide the dynamic energy
per access type, namely Emem

read , Emem
write, Emem

ACT and Emem
PRE for tracking dynamic energy

and Emem
refr for tracking refresh energy, as well as the average number of refresh oper-

ations per cycle (NRef ). These parameters are already provided by chip vendors like
Micron for DDR2/3 memories [Micron 2007], so our model imposes no change to cur-
rent DDR2/3 memories. In the memory controller, we only require per-task activity
counters, namely NRD(Ti), NWR(Ti), NACT (Ti) and NPRE(Ti). Total background en-
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Table V. DReAM hardware requirements.

Block Memory Vendor Extra Logic
Memory Ememread , Ememwrite, NRD , NWR, NACT , NPRE ,

EmemACT , EmemPRE , NRD(Ti), NWR(Ti),
EmemPD , Ememrefr , NACT (Ti), NPRE(Ti),

NRef IntMem cycle counter

ergy, Emem
bg,total can be obtained by metering memory energy consumption [David et al.

2010] and subtracting dynamic and refresh energy. The PD background power is con-
stant and hence easy to track. The remaining background energy, Emem

rem , is due to
active and standby periods (i.e. Emem

bg,total = Emem
PD + Emem

rem ).
Our model distributes Emem

PD uniformly across all tasks, while Emem
rem is distributed

based on access frequencies per task. To that end, we divide the execution into in-
tervals of IntMem processor cycles and track the number of memory accesses sent to
the memory controller (in a per-task basis) in the current interval. Thus, background
energy is obtained as follows:

Emem
bg, total(Ti) =

PmemPD × ExecT ime(Ti)

NT
+

ExecTime(Ti)
IntMem∑
j=0

NTi
acc,j

NTOTacc
j

× Emem
rem,j (4)

where Pmem
PD is the PD background power, NTi

acc,j tracks the number of memory ac-
cesses of task i during interval j, and NTOTacc

j tracks the total number of memory
accesses in interval j. Emem

rem,j is the non-power-down background energy in interval j,
obtained by subtracting all other sources of energy consumption from the total energy
measured in the interval. Sensitivity to the sampling interval (IntMem) is studied in
the evaluation section.

Putting it All Together
DReAM requires little hardware overhead, since DReAM mostly requires setting up
a reduced set of counters similar to the PMCs currently available in most high-
performance processors. DReAM support does not interfere the execution of programs
since it is not in any critical path. Table V summarizes those parameters required from
the memory vendor and the extra logic (i.e. counters) that must be set up. Counters
with the “(Ti)” suffix must be replicated for each task. Thus, the number of required
counters is dictated by the number of tasks that run simultaneously in the chip.

Regarding the interface with the software, the OS is responsible for keeping track
of the energy consumed by every task running in the system. DReAM exports a special
register, called Memory Energy Metering Register (MEMR), that acts as the interface
between DReAM and the OS. The OS can access that register to collect the energy es-
timates made by DReAM. This typically happens when a context switch takes place.
At that moment, the OS reads the MEMR using the hardware-thread index (or CPU
index) for the task that is being scheduled out (Tout). Then, the OS aggregates the en-
ergy consumption value read in the task struct for Tout. Right after the new task (Tin)
is scheduled in, the memory state may remain at a particular state due to an access
triggered by the task that has been scheduled out. Although, DReAM attributes back-
ground energy consumption to Tin, this occurs during few cycles (in the order of tens
or hundreds of cycles). Under a processor frequency of 2GHz, 500 cycles are equivalent
to 0.25µs, while context switches occur at much higher granularity, every 10-100ms.

As in [Liu et al. 2013a], the time the OS spends working on behalf of a given task
is attributed to the calling task. The remaining energy consumed by the OS can be

Author copy, Vol. V, No. N, Article A, Pub. date: January YYYY.



A:12

Table VI. System Configuration.

Main memory
Size 8GB
Frequency 933MHz
Row-buffer policy Close-page or open-page
Address mapping scheme Shared bank
Power-down mode Fast
Supply voltage 1.35V
Technology 65nm

Core details
Core count 1, 4, 16 cores, single-threaded
Fetch, decode, issue, 2 instructions/cycle
commit bandwidth
Issue queues size 32/32/32 entries for

INT/FP/Load-store queues
Register file 80 INT, 80 FP
Instruction & data L1 32KB, 4-way, 32B/line (2 cycles hit)
Instruction & data TLB 256 entries fully-associative (1 cycle hit)

Last-level Cache (LLC)
Size 256KB/core

256KB (1 core), 1MB (4 cores), 4MB (16 cores)
Other parameters 16-way, 64B/line (3 cycles hit)

evenly attributed to all running tasks. In any case, DReAM provides the hardware sup-
port needed to attribute OS energy to tasks as required.

5. EVALUATION
5.1. Experimental Setup
We use MPsim [Acosta et al. 2009], an enhanced version of SMTSim [Tullsen
et al. 1995] to model the processor. Off-chip main memory is modeled with DRAM-
sim2 [Rosenfeld et al. 2011], a cycle-accurate memory system simulator for DDR3
memories including a memory controller and DRAM memory. DRAMsim2 has been
connected to MPsim so that last level cache (LLC) misses are propagated to the
memory controller, which manages those memory requests. DRAMsim2 implements
a power model based on Micron memories.

We consider three CMP processor configurations with 1, 4 and 16 single-threaded
cores. The LLC is partitioned with 256KB 16-way per core. Therefore, the LLC size is
256KB, 1MB, and 4MB for 1, 4, and 16 cores, respectively. These configurations have
been chosen to discount the effect of on-chip inter-task interferences due to shared
resources (e.g., shared LLC cache), thus allowing to consider the effects of the inter-
ferences within the memory system only [Aggarwal et al. 2008]. Details about the
configuration can be found in Table VI.

For the DRAM memory we model an 8GB memory as it is large enough to support the
workloads used in this paper. DRAM memory is single-rank with 8 devices per rank, 8
banks per device and 8 arrays per bank. We have evaluated close-page and open-page
DRAM memory row-buffer management policies, but differences are negligible: since
many current DRAM memories have a low-power mode, the open banks under open-
page policy quickly transition to power down state when there is no incoming request.
In this case, open-page policy performs similarly to close-page in most of the cases.
Thus, we only report results for one of the policies: close-page.

Average power consumption for the 8GB setup is 5.4W, 8.6W and 18.8W for 1-thread,
4-thread and 16-thread workloads respectively. For a setup of 64GB (results not shown
in this paper) power increases by a 2x-3x factor (e.g., 14.7W for 1-thread workloads).
Note that this is around half the power consumption reported in Section 1, which is
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consistent since our setup is less aggressive than that of the particular server used
in the real experiment. In particular, we assume a processor operating at 2GHz and
DRAM operating at 1GHz, whereas the CPU of the server used operates at 3.2GHz and
its memory at 1.6GHz. Nevertheless, our proposal is orthogonal to those parameters.

5.1.1. Benchmarks. We use traces collected from the whole SPEC CPU 2006 bench-
mark suite using the reference input set [Henning 2006]. Each trace contains 100
million instructions, selected using the SimPoint methodology [Sherwood et al. 2001].
Using these benchmarks, we generate different workloads with different number of
benchmarks. Running all N-task combinations is infeasible as the number of combina-
tions is too high. Hence, we classify benchmarks into two groups depending on their
memory access frequency. Benchmarks in the high-frequency group (denoted H) are
those presenting a memory access frequency higher than 5 accesses per 1,000 cycles
when running in isolation, that is: mcf, milc, lbm, libquantum, soplex, gcc, bwaves,
leslie3d, astar, bzip2, zeusmp, sphinx3 and omnetpp. The rest of the benchmarks ac-
cess with low frequency (denoted L). From these two groups, we generate 3 workload
types denoted L, H and X depending on whether all benchmarks belong to group L, H
or a combination of both.

We generate 8 workloads per group and processor setup, except for the 1-core setup
where all benchmarks run in isolation. Benchmarks in each workload are randomly
picked out from all benchmarks of the corresponding type. In the case of X, half of
the benchmarks belong to L and the other half to H. We do not put any constraint
on whether benchmarks can repeat in a particular workload since the random selec-
tion of benchmarks is always performed out of the corresponding (original) group of
benchmarks.

5.1.2. Metrics. In order to evaluate the accuracy of DReAM, we use as reference the
ideal model. In each experiment, we measure the off estimation or prediction error of
each model with respect to the ideal model, which is computed as follows, where N is
the number of tasks in a workload.

WldPredError =

∑N
i=1 |Energyideali − Energymodeli |

Energymeasured
(5)

We then take the average WldPredError across all benchmarks in each workload
analyzed in each processor setup.

5.2. DReAM Energy Estimation
In this section we show the accuracy of DReAM with respect to the ideal model presented
in Section 3. We also include the ES model that uniformly splits energy across all
running tasks regardless of their activity and memory behavior, together with a simple
PTA model that splits energy across tasks proportionally to their memory accesses.

5.2.1. DReAM Sampling Interval (IntMem). The memory energy consumption prediction
of DReAM varies with different sample period (interval) lengths. When choosing the
interval length, we seek for a reasonable tradeoff between accuracy and hardware cost.
Figure 2 shows the average WldPredError for each task in a particular workload. This
workload belongs to group X and runs in a 4-core configuration. We explore sampling
periods from 128 to 500K processor cycles. Trends for most workloads are similar, so
we have used this particular one to illustrate the sensitivity of DReAM to the particular
sampling period.

As expected, higher sampling frequency increases accuracy. However, discrepancy
between short and long sampling periods is not huge (from 4.6% to 7.4% average Wld-
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Fig. 2. Per-task DRAM memory energy prediction of a 4-core workload soplex+sjeng+gcc+namd with differ-
ent sampling intervals.

PredError). Some meaningful average WldPredError increase is observed when mov-
ing from a 512-cycles sampling interval to a 1024-cycles interval. Further increasing
the interval size until reaching half million cycles has little impact on accuracy since
deviation from the ideal model quickly flattens1. Thus, we have chosen two different
interval sizes with different accuracy/cost tradeoff: 512 and 500K cycles sampling in-
tervals.

5.2.2. DRAM Energy Consumption Prediction. Next we evaluate the off estimation for
4-core and 16-core processor setups with respect to the ideal model. Note that the ideal
model is the only reference model as no existing hardware provides accurate per-task
DRAM energy metering.

Figure 3 shows the result for the 24 workloads (8 of each type) for the 4-core setup.
We observe that, in general, the ES model is highly inaccurate averaging over 45%
prediction error across all workloads. Prediction is more accurate for L and H work-
loads than for X ones. This is expected since benchmarks in L and H workloads are
more homogeneous, so their individual power consumption is also more homogeneous
than in X workloads. In some particular workloads, the prediction error is even below
10%. Nevertheless, ES model prediction error is very high in general, ranging from
30% to 85% for most workloads. For X workloads, the prediction error is always above
58%. PTA model improves the estimation accuracy, with an average prediction error
around 23%. PTA accuracy is high for H workloads (the errors are all under 10%)
since the large number of accesses of H benchmarks makes energy more proportional
to the number of accesses (dynamic energy becomes dominant). However, benchmarks
in L group infrequently access memory, so their memory energy is mainly background
energy, which PTA fails to predict accurately. This fact is particularly noticeable for
workload w4 where, although all tasks have few memory accesses and so, their energy
is dominated by PD background energy, the fact that one task has a number of ac-
cesses relatively much higher than the others makes it account for most of the energy,
thus producing very high error prediction. Conversely, in this workload the ES model
is far more accurate than PTA since energy is quite homogeneous across tasks in the
workload. Our DReAM model improves prediction accuracy significantly over both ES
and PTA. When the sample period granularity is 512 cycles, the prediction error is al-

1Longer sampling period is also applicable, however, DReAM aims to provide the estimation at a finer granu-
larity than the operating system quantum to offer a flexible use.
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Fig. 3. Per-task DRAM energy prediction error for 4-core workloads.

Fig. 4. Per-task DRAM energy prediction error for 16-core workloads.

ways below 10%, and 3.9% on average. If the sampling period increases to 500K cycles,
the prediction error may reach 14.0% at most for one particular workload, and 6.1%
on average. As shown, DReAM successfully predicts the energy consumed by each task
consistently across workloads. In particular, this holds (i) when PTA works well and
ES not (e.g., workload w12), (ii) when ES works well and PTA not (e.g., workload w4),
and (iii) when both PTA and ES work badly (e.g., workload w5).

Figure 4 shows results for the 16-core setup. First, we observe that ES and DReAM ac-
curacy remains similar to that of the 4-core setup. In contrast, PTA accuracy slightly
improves. The average prediction error across all workloads for the ES model rises to
53%. The increase is particularly noticeable for L workloads. Since total power for L
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workloads is relatively low, low deviations (in absolute numbers) become high in rel-
ative numbers. A similar effect occurs for DReAM, thus making L workloads to exhibit
the lowest prediction accuracy, followed by X workloads, where half of the benchmarks
are L benchmarks. Conversely, H workloads consume higher power and relative devia-
tions become less significant for all models. Trends for PTA are similar to those for the
4-core setup, thus exhibiting higher accuracy for H workloads, although accuracy for
the 16-core setup is higher. This is due to the fact that, with 4 cores, a large deviation
for one benchmark has significant impact on average results, but such average impact
becomes lower across 16 tasks. However, maximum error for individual benchmarks
in each workload still remains high. Nevertheless, PTA has an average prediction er-
ror around 17%, and around 32% for a particular workload. Opposedly, DReAM error is
below 5% on average (512-cycles interval) and always below 8% across all workloads.
Note that the gap between 512 and 500K cycles sampling intervals for DReAM is still
around 2%, as in the 4-core case. Our results prove that DReAM is far more accurate than
ES and PTA models across all workload types, and average prediction error remains
nearly the same for 4 and 16 cores, thus proving that DReAM scales well.

In conclusion, DReAM model greatly improves per-task DRAM energy estimation over
ES and PTA at low cost.

5.2.3. DReAM Area and Energy Overhead. DReAM requires some hardware support in the
form of counters to track memory activity. Those counters are in the memory controller,
which in general is on-chip, so the DRAM devices remain unchanged.

As shown in Table V, DReAM needs few counters (5 shared counters and 4 extra coun-
ters per thread). 32-bit counters suffice to track the corresponding events. Further, few
of those counters are accessed on a memory access and at the end of a sampling in-
terval. Although computing the energy consumed by each thread in a particular inter-
val involves few arithmetic operations, low-area and low-power arithmetic units (e.g.,
iterative multipliers [Santoro and Horowitz 1989] and dividers [Juang et al. 2008]
operating at low frequency) can be set up for that purpose. We have considered the
energy consumption for two different sampling intervals: 512 and 500K cycles. Area
and power overheads have been estimated with power models analogous to those of
Wattch [Brooks et al. 2000] built on top of CACTI 6.5 simulation tool [Muralimanohar
et al. 2009]. CACTI is a flexible tool modeling delay, energy (dynamic and leakage)
and area of cache memories and SRAM-based arrays. Results for 4-core and 16-core
configurations show that the total energy and area overhead for DReAM is largely be-
low 0.1% of the entire chip. If we compare DReAM energy overhead with DRAM energy
consumption, it is also largely below 0.1% of total DRAM energy consumption. Fur-
thermore, relative overheads do not change noticeably if the core count is increased,
which proves that DReAM scales well. Energy overheads for 512 cycles sampling inter-
vals are higher than for 500K intervals, but still under 0.1% for the whole chip. Due
to its higher accuracy and still low overheads, the sampling interval considered in the
rest of the paper is 512 cycles.

5.3. Metering Per-task Memory Energy for Multithreaded Applications Using DReAM
The support required by DReAM in the case of multithreaded applications is simple. In
fact, no hardware changes in the DReAM logic are actually required, but only on how
the OS handles the MEMR: The OS or the parallel runtime, simply needs to aggregate
the energy consumption estimates stored for all the threads belonging to the same
multi-threaded application, so EmeterApp =

∑N
i=1MEMRi where N is the number of

threads of the application. However, per-task energy can also be monitored individu-
ally and periodically during the execution, so that such information can be later used
to optimize the energy profile of the application. This is better illustrated through a
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Fig. 5. wrf power consumption evolution between two barriers in a 4-core setup.

particular example. The information provided helps understanding the effects in terms
of energy of unbalanced thread execution times.

In this section, we evaluate DReAM with real traces from a parallel HPC application
running on an actual supercomputer: wrf. The Weather Research and Forecasting (wrf)
model [Michalakes et al. 2004] is a mesoscale numerical weather prediction system de-
signed to serve both operational forecasting and atmospheric research needs. In this
experiment, we use the non-hydrostatic mesoscale model dynamical core. Simulating
all threads of the parallel MPI application implies a significant amount of simulation
time as these applications usually run for days or weeks on a supercomputer. We use
an automatic mechanism to choose the most representative computation regions to
be traced and simulated with a cycle-accurate simulator [Gonzalez et al. 2011]. This
simulation methodology uses non-linear filtering and spectral analysis techniques to
determine the internal structure of the trace and detect periodicity of applications.
Afterwards, we use a clustering algorithm to determine the most representative com-
putation bursts inside an iteration of the application.

We obtain 4 representatives for the 5 computation phases that compose the 64-
thread MPI application. We have used these reduced trace files to feed the cycle-
accurate architecture simulator described in Section 5.1. We simulate all threads shar-
ing the LLC cache (4 threads in this case study) in a CMP architecture (single-threaded
cores). When a thread finishes executing, it waits until all other threads have also fin-
ished.

Figure 5 shows the evolution of the per-task memory energy breakdown (using
DReAM) in the system between two barrier communications. Note that energy compo-
nents are stacked in the plot. At the beginning, all 4 threads dissipate dynamic, back-
ground and refresh power in memory. The memory power varies, and DReAM provides a
way to monitor their power separately. Eventually, T3 reaches the barrier and becomes
inactive. Thus, we attribute the powerdown background and refresh energy to the re-
maining 3 active tasks and stop accounting energy to T3 at this point. The behavior
when T1 and T2 reach the barrier is analogous to that of T3, but it takes longer for
them to reach the barrier. Upon their completion, we stop attributing the powerdown
and refresh energy to them. T0, after all other tasks complete, is responsible for all the
memory power and all memory energy is attributed to it.
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Fig. 6. All workloads power consumption comparison in a 4-core setup.

6. CASE STUDY: WORKLOAD CHARACTERIZATION WITH DREAM
In this section, we analyze how programs with different memory access profiles in-
teract in terms of memory power consumption. For that purpose, we use DReAM, our
proposed method for accurate per-task memory energy metering.

6.1. Workload as a Whole
We first analyze the different workloads paying attention to the power consumption of
the different types of benchmark rather than individual benchmarks.

Figure 6 shows the average2 memory power consumption of benchmarks in L, H
and X workloads under a 4-core setup, and the average memory power they would
consume if they ran in isolation. The figure has 4 sets of columns. From left to right:
L workloads, L benchmarks in X workloads, H benchmarks in X workloads, and H
workloads. For each set of columns, there are two columns labeled as ISO and WL.
WL column shows the average data per benchmark in the corresponding category. For
instance, the WL column in the L category shows the average memory power con-
sumption per benchmark for the 32 benchmarks in those workloads (8 workloads with
4 benchmarks each). The ISO column corresponds to the average power of those 32
benchmarks when run in isolation. Note that separating results across benchmarks in
workloads would not be possible without DReAM.

The first observation is that simultaneously running benchmarks in a multicore sys-
tem decreases their individual memory power consumption. This fact is particularly
noticeable for L benchmarks, whose average memory power decreases to less than half.
Power consumption of H benchmarks decreases as well, but less than for L bench-
marks. We also observe that those trends for L and H benchmarks hold independently
of whether they run with benchmarks with similar or different characteristics in terms
of memory access frequency.

The second observation is that, as expected, dynamic power (activate, precharge,
read and write) remains roughly constant regardless of whether benchmarks run in
isolation or simultaneously with other programs. However, background and refresh
power decrease remarkably since they are shared across benchmarks in the work-
load. In particular, L programs observe a significant reduction in terms of background
power when running with other programs since they keep memory in PD state most

2In fact, we use the harmonic mean for power in Figure 6 and 7 to take into account that slower (and lower
power) programs run longer. Otherwise, we could not compare power and memory energy per instruction
values fairly.
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Fig. 7. All workloads power consumption comparison in a 16-core setup.

Fig. 8. Average benchmark MEPI comparison in a 4-core setup.

of the time, and PD power is shared homogeneously across running tasks. Conversely,
H programs experience a lower relative reduction in terms of background power be-
cause background power during A and S states is their main source and typically few
programs trigger those high-power states simultaneously. Therefore, A and S states
account for most of the background energy and such energy is accounted quite often
to a single task (the one inducing the high-power state). This occurs because accesses
from different programs do not overlap often in time, and when they do, it is often
the case that they need the same bank and thus, occur serially. Therefore, background
energy due to A and S states is very similar in the workloads and in isolation.

Results for the 16-core setup, shown in Figure 7, resemble those for the 4-core setup
with two main differences: (1) average memory power per program further decreases
for the 16-core setup since power sources are shared across a larger number of pro-
grams; And (2) dynamic power (activate, precharge, read, write) decreases forH bench-
marks because energy for those operations remains constant, but since memory con-
tention increases execution time, power decreases.

This second effect can be better observed in Figure 9, where Memory Energy Per
Instruction (MEPI) across workloads is shown. MEPI of each benchmark for 16-task
workloads is lower than for executions in isolation, but the ratio is not as favorable
as in terms of power for H benchmarks. This is due to the longer execution time pro-
duced by bank conflicts, memory access contention and limitations on the number of si-
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Fig. 9. Average benchmark MEPI comparison in a 16-core setup.

Fig. 10. L type workload power consumption comparison in a 4-core setup.

multaneously opened banks [JEDEC Solid State Technology Association 2012], which
increases overall background and refresh energy, thus increasing MEPI.

Figures 8 and 9 show MEPI for 4-core and 16-core setups respectively. We observe
that MEPI ratios between WL and ISO remain the same as for power for all workload
types in the 4-core setup and L workloads in the 16-core setup. This occurs because the
impact in execution time due to memory contention is negligible. However, H work-
loads and H benchmarks in X workloads in the 16-core setup experience some MEPI
increment due to contention with concurrent memory requests as explained before.
Note that power and energy for H (L) workloads and H (L) benchmarks in X work-
loads differ simply because benchmarks have been picked randomly and therefore,
those sets contain different benchmarks (still of the same type). The same happens
when comparing the MEPI in isolation in different processor setups.

6.2. Per-Benchmark Analysis
In this section we further study the behavior of benchmarks individually in differ-
ent workloads. DReAM enables this study, which could not be done otherwise. For that
purpose, we picked the workload with the most varying behavior with respect to the
average case for each of the workload types (L, X and H) and core count (4 and 16),
for a total of 6 workloads. In many cases, the most-varying behavior workload does not
show big discrepancies with the average behavior for most of the benchmarks.

L Type Workloads. Figure 10 shows the power consumption in an L type work-
load with 4 cores. As shown before, power is reduced to less than half on average
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Fig. 11. L type workload power consumption comparison in a 16-core setup. Tn stands for task n in the
workload.

Fig. 12. H type workload power consumption comparison in a 4-core setup.

for L workloads in comparison with the ISO case. However, when we analyze bench-
marks individually, we observe that those benchmarks with higher memory access
frequency (gromacs and dealII) have higher WL case power consumption. This is ex-
pected since workloads are not fully homogeneous and discrepancies in the memory ac-
cess frequency lead to higher background power for those programs keeping the mem-
ory in a higher power state longer. The fact that PD state background power is very
low makes programs with a relatively higher memory access frequency increase their
background power noticeably in relative numbers. Therefore, they are responsible for
a larger fraction of the total energy consumption (and so of the power consumption).
Dynamic power remains basically the same for ISO and WL since energy per access is
constant and execution time barely changes.

Results for an L workload in a 16-core setup are shown in Figure 11. Trends are
analogous to those reported for the 4-core setup with the only difference that power re-
ductions are larger as already pointed out for the average results across all workloads.

H Type Workloads. Figure 12 shows the power consumption in anH type workload
on a 4-core setup. We can observe that, on average, power decreases moderately in the
WL case with respect to the ISO case. Analogously to the trends in L workloads, the
higher the memory access frequency, the lower the power reduction in the WL case
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Fig. 13. H type workload power consumption comparison in a 16-core setup. Tn stands for task n in the
workload.

since access frequency strongly correlates with background power. This is the case for
benchmark lbm, whose background power consumption decreases only by around 40%
instead of the average 55% for the whole workload. Note also that, although zeusmp
and gcc have nearly the same DRAM power in isolation, zeusmp experiences a more
significant reduction in power when running in the workload. A larger background
power in the case of zeusmp explains this different behavior. For a 16-core workload, we
also observe similar trends in Figure 13 to those in the average case. This is expected
because H workloads are much more homogeneous than the others (L and X) since
relative variations in access frequency across benchmarks is low (all of them access
memory at least 5 times every 1000 cycles in isolation). Again, we observe that power
in WL is much lower than in ISO, and such power decrease is much higher than for
the 4-core case.

X Type Workloads. Figure 14 shows a 4-core X workload. In this workload, bzip
and soplex are H programs whereas gromacs and gamess are L programs. Notably,
the same trends observed in pure H and L workloads still hold for each H and L
benchmark in X workloads. As expected, soplex is the program experiencing a lower
power reduction when moving from ISO to WL due to its high access frequency. In
the 16-core setup (see Figure 15), those trends still hold. Only T11 behaves differently
since its power reduction in WL is not as significant as for the other benchmarks with
similar access frequency. The reason is that this program accesses memory frequently
(therefore its dynamic power is high), but it does it in bursts, so that the amount of
time that DRAM devices are imposed to be at high power states (active or standby) is
relatively low, and it makes its ISO background power low (e.g., compared to that of
T10 or T12). Therefore, its relative background power reduction in the WL case cannot
be as significant as for other benchmarks with similar average access frequency but
with different access patterns.

We do not further discuss MEPI for those particular workloads since the conclusions
are similar as those for power.

6.3. Summary
We have shown that multicore architectures help reducing per-task memory power and
energy. Energy savings are more significant for those programs with lower memory ac-
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Fig. 14. X type workload power consumption comparison in a 4-core setup.

Fig. 15. X type workload power consumption comparison in a 16-core setup. Tn stands for task n in the
workload.

cess frequency on higher core count setups, and trends do not change across workloads.
Furthermore, exceptions do not deviate much from the average case, and when they
do, it is because of their access patterns (burst versus scattered).

We have also shown that the impact of memory contention highly correlates with
the access frequency of benchmarks. Our results show that high-access-frequency pro-
grams decrease their power at the expense of increasing their energy. Our study proves
that memory energy profiles are quite stable for applications despite programs running
simultaneously. Besides, it is preferable to run H programs with L programs to reduce
the negative impact of memory contention in terms of energy consumption (once dis-
counted LLC interferences). This information is very useful to perform task scheduling
on multicore setups.

7. CONCLUSIONS
Per-task energy metering is needed in multicores for a number of performance/energy
optimizations. So far such support has been only provided for on-chip resources, but
not for DRAM memories. In this paper, we propose, for the first time, an ideal model to
measure per-task DRAM memory energy and devise DReAM, an efficient and accurate
implementation of such ideal model. We show how DReAM achieves a prediction error
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between 3.9% and 4.7% with respect to the ideal model with negligible overhead for
4- and 16-core setups respectively. The error is largely below the error introduced by
approaches such as distributing energy evenly or proportionally to memory accesses.
Moreover, we illustrate how DReAM allows characterizing DRAM power and energy vari-
ations due to the interaction of programs with different energy profiles in multicores.
Such information enables efficient on-line power and energy estimation and energy-
aware task scheduling.
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