370 research outputs found

    Structural Properties of Twisted Reed-Solomon Codes with Applications to Cryptography

    Full text link
    We present a generalisation of Twisted Reed-Solomon codes containing a new large class of MDS codes. We prove that the code class contains a large subfamily that is closed under duality. Furthermore, we study the Schur squares of the new codes and show that their dimension is often large. Using these structural properties, we single out a subfamily of the new codes which could be considered for code-based cryptography: These codes resist some existing structural attacks for Reed-Solomon-like codes, i.e. methods for retrieving the code parameters from an obfuscated generator matrix.Comment: 5 pages, accepted at: IEEE International Symposium on Information Theory 201

    MWS and FWS Codes for Coordinate-Wise Weight Functions

    Full text link
    A combinatorial problem concerning the maximum size of the (hamming) weight set of an [n,k]q[n,k]_q linear code was recently introduced. Codes attaining the established upper bound are the Maximum Weight Spectrum (MWS) codes. Those [n,k]q[n,k]_q codes with the same weight set as Fqn \mathbb{F}_q^n are called Full Weight Spectrum (FWS) codes. FWS codes are necessarily ``short", whereas MWS codes are necessarily ``long". For fixed k,q k,q the values of n n for which an [n,k]q [n,k]_q -FWS code exists are completely determined, but the determination of the minimum length M(H,k,q) M(H,k,q) of an [n,k]q [n,k]_q -MWS code remains an open problem. The current work broadens discussion first to general coordinate-wise weight functions, and then specifically to the Lee weight and a Manhattan like weight. In the general case we provide bounds on n n for which an FWS code exists, and bounds on n n for which an MWS code exists. When specializing to the Lee or to the Manhattan setting we are able to completely determine the parameters of FWS codes. As with the Hamming case, we are able to provide an upper bound on M(L,k,q) M(\mathcal{L},k,q) (the minimum length of Lee MWS codes), and pose the determination of M(L,k,q) M(\mathcal{L},k,q) as an open problem. On the other hand, with respect to the Manhattan weight we completely determine the parameters of MWS codes.Comment: 17 page

    Binary Linear Codes With Few Weights From Two-to-One Functions

    Get PDF
    In this paper, we apply two-to-one functions over b F 2n in two generic constructions of binary linear codes. We consider two-to-one functions in two forms: (1) generalized quadratic functions; and (2) (x 2t +x) e with gcd(t, n)=gcd(e, 2 n -1)=1. Based on the study of the Walsh transforms of those functions or their variants, we present many classes of linear codes with few nonzero weights, including one weight, three weights, four weights, and five weights. The weight distributions of the proposed codes with one weight and with three weights are determined. In addition, we discuss the minimum distance of the dual of the constructed codes and show that some of them achieve the sphere packing bound. Moreover, examples show that some codes in this paper have best-known parameters.acceptedVersio

    On a question of Babadi and Tarokh

    Full text link
    In a recent remarkable paper, Babadi and Tarokh proved the "randomness" of sequences arising from binary linear block codes in the sense of spectral distribution, provided that their dual distances are sufficiently large. However, numerical experiments conducted by the authors revealed that Gold sequences which have dual distance 5 also satisfy such randomness property. Hence the interesting question was raised as to whether or not the stringent requirement of large dual distances can be relaxed in the theorem in order to explain the randomness of Gold sequences. This paper improves their result on several fronts and provides an affirmative answer to this question

    Characterisation of a family of neighbour transitive codes

    Get PDF
    We consider codes of length mm over an alphabet of size qq as subsets of the vertex set of the Hamming graph Γ=H(m,q)\Gamma=H(m,q). A code for which there exists an automorphism group X≤Aut(Γ)X\leq Aut(\Gamma) that acts transitively on the code and on its set of neighbours is said to be neighbour transitive, and were introduced by the authors as a group theoretic analogue to the assumption that single errors are equally likely over a noisy channel. Examples of neighbour transitive codes include the Hamming codes, various Golay codes, certain Hadamard codes, the Nordstrom Robinson codes, certain permutation codes and frequency permutation arrays, which have connections with powerline communication, and also completely transitive codes, a subfamily of completely regular codes, which themselves have attracted a lot of interest. It is known that for any neighbour transitive code with minimum distance at least 3 there exists a subgroup of XX that has a 22-transitive action on the alphabet over which the code is defined. Therefore, by Burnside's theorem, this action is of almost simple or affine type. If the action is of almost simple type, we say the code is alphabet almost simple neighbour transitive. In this paper we characterise a family of neighbour transitive codes, in particular, the alphabet almost simple neighbour transitive codes with minimum distance at least 33, and for which the group XX has a non-trivial intersection with the base group of Aut(Γ)Aut(\Gamma). If CC is such a code, we show that, up to equivalence, there exists a subcode Δ\Delta that can be completely described, and that either C=ΔC=\Delta, or Δ\Delta is a neighbour transitive frequency permutation array and CC is the disjoint union of XX-translates of Δ\Delta. We also prove that any finite group can be identified in a natural way with a neighbour transitive code.Comment: 30 Page
    • …
    corecore