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Binary linear codes with few weights from
two-to-one functions
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Abstract—In this paper, we apply two-to-one functions
over F2n in two generic constructions of binary linear
codes. We consider two-to-one functions in two forms: (1)
generalized quadratic functions; and (2) (x2t + x)e with
gcd(t, n) = gcd (e, 2n − 1) = 1. Based on the study of
the Walsh transforms of those functions or their variants,
we present many classes of linear codes with few nonzero
weights, including one weight, three weights, four weights,
and five weights. The weight distributions of the proposed
codes with one weight and with three weights are determined.
In addition, we discuss the minimum distance of the dual of
the constructed codes and show that some of them achieve
the sphere packing bound. Moreover, examples show that
some codes in this paper have best-known parameters.

Index Terms—Binary linear codes, two-to-one functions,
3-weight linear codes, 1-weight linear codes

I. INTRODUCTION

LET q be a power of a prime p, Fq be the finite field
of q elements and F∗q be its multiplicative group.

An [n, k, d] linear code C over Fq is a k-dimensional
subspace of Fnq with minimum (Hamming) distance d.
It is sometimes said to be optimal (with respect to the
Hamming bound) when its minimum distance d achieves
the maximum possible value for given parameters n
and k [1]. Given an [n, k, d] linear code C over Fq ,
its dual is an [n, n − k] linear code defined by C⊥ ={
x ∈ Fnq : x · c = 0,∀c ∈ C

}
, where x · c =

∑n
i=1 xici
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is the Euclidean inner product. Let Ai denote the number
of codewords with Hamming weight i in a code C of length
n. The weight enumerator of C is defined as 1 + A1z +
A2z

2 + · · ·+Anz
n. The sequence (1, A1, A2, · · · , An) is

called the weight distribution of C. A code C is said to
be a t-weight code if the number of nonzero Ai in the
sequence (A1, A2, · · · , An) is equal to t. Linear t-weight
codes with small values of t have found applications in
secret sharing schemes [2, 3], authentication codes [4],
association schemes [5], strongly regular graphs [6], etc.
In particular, one-weight codes are closely connected to
the theory of Steiner systems and designs [7].

Known linear codes with good properties are con-
structed largely by two generic approaches [2, 8, 9]. The
first approach defines linear codes over Fq with a function
f from Fqn to itself by

Cf =
{

(Trn(ax+ bf(x)))x∈Fqn
: a, b ∈ Fqn

}
or

Cf =
{

(Trn(ax+ bf(x)))x∈F∗
qn

: a, b ∈ Fqn
}

when f(0) = 0, where n is a positive integer and Trn(·) is
the trace function from Fqn to Fq . This generic construc-
tion has a long history and pertains to Delsarte’s Theorem
[10]. It also provides a coding-theory characterisation of
APN functions, almost bent functions, and bent functions
[11], and of the cross-correlation between m-sequences
and their d-decimations when f(x) is a power function xd

[12]. The second generic construction, initiated by Ding
and Niederreiter [8], defines a linear code of length ` over
Fq with a subset D = {d1, d2, · · · , d`} ⊆ Fqn as

CD = {(Trn(xd1),Trn(xd2), · · · ,Trn(xd`)) : x ∈ Fqn} .

When the defining set D is properly chosen, the code
CD can have good or optimal parameters. The above
construction is generic in the sense that all linear codes
could be produced by selecting proper defining sets D.
Researchers have proposed new families of linear codes
with few weights by considering defining sets derived from
the support and image of certain functions over Fqn , see
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[9, 13–20]. Interested readers may refer to a recent survey
by Li and Mesnager in [21] and references therein for
good or optimal linear codes constructed from these two
generic approaches.

Nonlinear functions over finite fields play important
roles in cryptography, combinatorics and sequence design.
In coding theory, they have been utilized in the above
two constructions to derive a number of good or optimal
linear codes. Very recently Mesnager and Qu in [22] made
a systematic study of two-to-one functions over arbitrary
finite fields, motivated by their close connection to special
important primitives in symmetric cryptography. Later, Li
et al. studied two-to-one functions over finite fields with
characteristic 2 and proposed some two-to-one trinomials
and quadrinomials [23].

Constructing linear codes from two-to-one functions,
to the best of our knowledge, began in [13, 24] where
o-monomials and APN functions are discussed in the
context. In this paper we will conduct a more com-
prehensive study of two-to-one functions in constructing
binary linear codes with few weights. Two forms of
two-to-one functions from F2n to itself are considered.
The first form is the generalized quadratic polynomial
f(x), for which there exists a positive integer e with
gcd(e, 2n−1) = 1 such that f(xe) is a quadratic function
over F2n . The second form is the function (x2t

+x)e with
gcd(t, n) = gcd(e, 2n − 1) = 1. Among the generalized
quadratic polynomials, of particular interest are those with
few possible ranks because they can produce linear codes
with few weights. Hence some two-to-one functions in
[23] and two newly constructed two-to-one polynomials
are considered. As a result, we obtain many classes of 1-
weight, 3-weight, 5-weight binary linear codes by the two
generic constructions. For the second form (x2t

+ x)e,
we provide an interesting connection between the weight
distribution of linear codes and the Walsh spectrum of the
Boolean function Trn(xe). The connection enables us to
derive many classes of 3-weight, 4-weight and 5-weight
binary linear codes from known works on sequence design
and cryptographically strong functions. Moreover, with the
help of the Pless power moments, the weight distributions
of the proposed 1-weight and 3-weight linear codes are
determined. We do not manage to determine the weight
distribution of those 5-weight linear codes in this paper.
In the end, based on experimental results, we propose
some open problems for the weight distributions of the
constructed linear codes.

The remainder of this paper is organized as follows.
Section 2 introduces some basic foundations and auxiliary
results. Section 3 first recalls some known two-to-one
functions in [23] and then investigates the parameters

of binary linear codes constructed from those two-to-one
functions. In Section 4, we construct two new classes of
two-to-one functions and propose 3-weight linear codes
from them. In Section 5, we discuss the properties of linear
codes from the two-to-one functions of the form (x2t

+x)e.
Finally, Section 6 concludes our work in the paper.

II. PRELIMINARIES

This section presents basic notation, definitions and
auxiliary results for the subsequent sections. Throughout
this paper, we will restrict our discussion to finite fields
with characteristic 2.

Let n be a positive integer. For m | n, let Trnm(·)
denote the relative trace function from F2n onto F2m , i.e.,

Trnm(x) = x + x2m

+ · · · + x2(
n
m
−1)m

for any x ∈ F2n .
Particularly, when m = 1, we use Trn(·) to denote the
absolute trace function from F2n onto F2. For any set E,
we denote by #E the cardinality of E. For any function
f , Im(f) denotes the image set of f . The statement that
f vanishes on a given set V means that f(x) = 0 for any
x ∈ V .

A. Binary codes from two-to-one functions

Let f be a mapping from F2n to itself with f(0) = 0.
Recall that the Walsh transform of f at (a, b) ∈ F2n×F2n

is given by

Wf (a, b) =
∑
x∈F2n

(−1)Trn(ax+bf(x)). (1)

Here we add the case that b = 0 in the definition for
convenience. The multiset

{∗ Wf (a, b) : a, b ∈ F2n ∗}

is called the Walsh spectrum of f .
In the first generic construction, the binary linear code

from f is given by

Cf =
{
ca,b = (Trn(ax+ bf(x)))x∈F∗

2n
: a, b ∈ F2n

}
.(2)

Note that the restriction f(0) = 0 implies Trn(ax +
bf(x)) = 0 for any a, b ∈ F2n when x = 0. Hence
the code Cf is commonly considered in the literature over
the code Cf in the first generic construction. It is clear
that Cf in (2) has length 2n − 1 and dimension at most
2n. For determining the dimension of Cf , it suffices to
compute the number of a, b ∈ F2n such that the function
Trn(ax+ bf(x)) vanishes on F2n since the code is linear.
Equivalently, the dimension of Cf is equal to 2n − dK1

,
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where dK1
is the dimension of the F2-vector space K1

defined as

{(a, b) ∈ F2
2n :

∑
x∈F2n

(−1)Trn(ax+bf(x)) = 2n}. (3)

The Hamming weight of a codeword ca,b in Cf is given
by

wt(ca,b) = #{x ∈ F∗2n : Trn(ax+ bf(x)) = 1}

= 2n−1 − 1

2

∑
x∈F2n

(−1)Trn(ax+bf(x))

= 2n−1 − 1

2
Wf (a, b). (4)

Therefore, the weight distribution of Cf can be directly
derived from the Walsh spectrum of f . Namely, if a value
of Wf (a, b) occurs X times in the Walsh spectrum of f ,
then there are X/2dK1 codewords in Cf with Hamming

weight 2n−1 − 1

2
Wf (a, b). In particular, when the Walsh

transforms of f take only three nontrivial values ( 6= 2n)
v1, v2, v3 for a ∈ F2n and b ∈ F∗2n , the value distribution
of Wf (a, b) can be calculated by solving the following
equations derived from the first three power moment
identities [25]:

X0 +X1 +X2 +X3 = 22n

v0X0 + v1X1 + v2X2 + v3X3 = 22n

v2
0X0 + v2

1X1 + v2
2X2 + v2

3X3 = 23n,

(5)

where Xi is the occurrences of Wf (a, b) = vi’s, i =
0, 1, 2, 3 in the Walsh spectrum of f with (X0, v0) =
(2dK1 , 2n). Then the weight distribution of Cf can be
determined accordingly.

Carlet, Charpin and Zinoviev [11] pointed out that the
dual code of Cf has minimum distance 5 if and only if
f(x) is an APN function.

In the second construction, let D(f) = {f(x) : x ∈
F2n}\{0} = {d1, d2, . . . , d`} and define the binary linear
code CD(f) as

{cb = (Trn(bd1), . . . ,Trn(bd`)) : b ∈ F2n}. (6)

It is clear that the code CD(f) has length ` = #D(f) and
dimension at most n. Furthermore, in order to determine
the dimension of CD(f), we need to compute the number
of b ∈ F2n such that Trn(bf(x)) = 0 for any x ∈ F2n

since the code is linear. Equivalently, the dimension of
CD(f) is equal to n−dK2

, where dK2
is the dimension of

the F2-vector space K2 defined as

{b ∈ F2n :
∑
x∈F2n

(−1)Trn(bf(x)) = 2n}. (7)

For any b ∈ F2n , the Hamming weight of a codeword cb
in CD(f) is given by

wt(cb) = # {1 ≤ i ≤ ` : Trn(bdi) = 1}

=
1

2

#D(f)−
∑

d∈D(f)

(−1)Trn(bd)

 .

According to the above formula, the weight distribution of
the linear code CD(f) is essentially the value distribution
of a partial exponential sum, which is generally intractable
if f is not properly chosen.

A function f : F2n → F2n is said to be two-to-one over
F2n if #f−1(a) = 2 for any a ∈ Im(f). For a two-to-one
function f(x) over F2n with f(0) = 0, the linear code
CD(f) has length #D(f) = 2n−1 − 1 and the Hamming
weight of its codeword is given by

wt(cb) =
1

2

#D(f)− 1

2

∑
x∈F2n

(−1)Trn(bf(x)) + 1


= 2n−2 − 1

4

∑
x∈F2n

(−1)Trn(bf(x)). (8)

From (7) and (8), one sees that the dimension and the
weight distribution of CD(f) heavily depend on the value
of

Wf (0, b) =
∑
x∈F2n

(−1)Trn(bf(x)), b ∈ F2n . (9)

For simplicity, we will write Wf (0, b) as Wf (b). In par-
ticular, if Wf (b) takes only three nontrivial values ( 6= 2n)
v1, v2 and v3 for b ∈ F∗2n , then the code CD(f) has three
nonzero weights, namely, wi = 2n−2−vi/4 for i = 1, 2, 3.
Note that the dual of CD(f) has Hamming weight no less
than 3 as shown in Theorem 1. Denote by Ai the number
of codewords with weight wi in CD(f). The first three
Pless power moments [1, Th. 7.3.1] lead to the following
system of equations:

A1 +A2 +A3 = 2n − 1

w1A1 + w2A2 + w3A3 = `2n−1

w2
1A1 + w2

2A2 + w2
3A3 = `(`+ 1)2n−2,

(10)

where ` = 2n−1 − 1. Therefore, the weight distribution
of CD(f) can be determined from the above system of
equations when it is shown to have only three nonzero
weights.

The above discussion shows that for a two-to-one map-
ping f , the parameters of the linear codes Cf in (2) and
CD(f) in (6) depend on the investigation of the Walsh
transform of f . Ding in [13, 24] had a similar observation.
Here we provide the discussion for self-completeness. In
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addition, it is clear that the number of nonzero weights in
CD(f) is no more than that of Cf . Therefore, we will focus
on the two-to-one functions of which the Walsh transforms
have few different values.

At the end of this subsection, we consider the parame-
ters of the dual codes of CD(f) in (6).

Theorem 1. Let f be a two-to-one mapping over F2n with
f(0) = 0 and CD(f) be defined as in (6). Let C⊥D(f) be the
dual code of CD(f) and dK2

be defined as in (7). Then
C⊥D(f) is a

[
2n−1 − 1, 2n−1 − 1− n+ dK2

]
binary code

with the minimum distance d⊥D(f) satisfying 3 ≤ d⊥D(f) ≤
4. Particularly, when dK2 = 1, the equality of the sphere
packing bound can be achieved. Moreover, d⊥D(f) = 3 if
and only if there exist three distinct elements x1, x2, x3 ∈
F∗2n such that f(xi) 6= f(xj) for 1 ≤ i < j ≤ 3 and
f(x1) + f(x2) + f(x3) = 0.

Proof. According to the above discussion, the linear code
CD(f) has length 2n−1 − 1 and dimension n− dK2

. Then
length and dimension of C⊥D(f) can be trivially determined
by definition. Thus it suffices to consider the minimum
distance.

It is clear that d⊥D(f) 6= 1. By definition d⊥D(f) = 2
implies there exist two distinct elements d1, d2 ∈ Im(f)
satisfying d1 + d2 = 0, which is a contradiction. Thus
d⊥D(f) ≥ 3. In addition, suppose d⊥D(f) ≥ 5, then we have

2∑
i=0

(
2n−1 − 1

i

)
(2− 1)i = 22n−3 − 2n−2 + 1 > 2n−dK2 ,

which contradicts the sphere packing bound. Thus 3 ≤
d⊥D(f) ≤ 4. Particularly, when dK2

= 1, the equality of
the sphere packing bound can be achieved, namely,

1∑
i=0

(
2n−1 − 1

i

)
(2− 1)i = 2n−1 = 2n−dK2 .

Moreover, by definition d⊥D(f) = 3 if and only if there
are three distinct elements d1, d2, d3 ∈ Im(f) such that
d1 + d2 + d3 = 0, i.e., there exist three distinct elements
x1, x2, x3 ∈ F∗2n such that f(xi) 6= f(xj) for 1 ≤ i <
j ≤ 3 and f(x1) + f(x2) + f(x3) = 0.

We need to recall some useful results on the Walsh
transforms of quadratic functions.

B. Quadratic functions and Walsh transforms
Let Q be a quadratic function from F2n to itself, i.e.,

it has algebraic degree 2, and let ϕ(x) = Trn(Q(x)). For
the associated bilinear mapping Bϕ(x, y) = ϕ(x + y) +
ϕ(x) + ϕ(y), its kernel Vϕ is given by

{y ∈ F2n : Bϕ(x, y) = 0 for ∀x ∈ F2n}.

The rank of ϕ is defined by Rank(ϕ) = n − dimF2
(Vϕ).

Observe that ∑
x∈F2n

(−1)Trn(Q(x))

2

=
∑
x∈F2n

(−1)Trn(Q(x))
∑
y∈F2n

(−1)Trn(Q(y))

=
∑

x,y∈F2n

(−1)Trn(Q(x+y)+Q(y))

=
∑
y∈F2n

(−1)Trn(Q(y))
∑
x∈F2n

(−1)Trn(Q(x+y)+Q(x)+Q(y))

= 2n
∑
y∈Vϕ

(−1)Trn(Q(y)).

By the definition of the kernel Vϕ, it is readily seen that
ϕ(y) = Trn(Q(y)) is linear over Vϕ. Then one has∑
x∈F2n

(−1)ϕ(x) =

{
±2

n+d
2 , if ϕ vanishes on Vϕ,

0, otherwise,
(11)

where d is the dimension of Vϕ over F2.
For a quadratic function f from F2n to itself, define

ϕa,b(x) = Trn(ax+ bf(x))

and
ϕb(x) = Trn(bf(x)).

The bilinear mapping of ϕa,b(x) is the same as that of
ϕb(x) for any nonzero b in F2n . Therefore, the Walsh
transform of f at (a, b) can be given, similar to (11), as
below:

Wf (a, b) =
∑
x∈F2n

(−1)ϕa,b(x)

=

{
±2

n+db
2 , if ϕa,b vanishes on Vϕb

,

0, otherwise,

(12)

where db is the dimension of the kernel Vϕb
of the bilinear

mapping ϕb over F2.
In Sections 3 and 4, we will discuss the properties of

linear codes defined as in (2) and (6) from generalized
quadratic functions. The Walsh transform of quadratic
functions f in (12) will be heavily used in the discussion.

C. Factorization of low-degree polynomials

The following lemma describes the factorization of a
cubic polynomial over F2n . If f factors over F2n as a
product of three linear factors we write f = (1, 1, 1), if f
factors as a product of a linear factor and an irreducible
quadratic factor we write f = (1, 2) and finally if f is
irreducible over F2n we write f = (3).
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Lemma 1. [26] Let f(x) = x3 + ax + b ∈ F2n [x] and
b 6= 0. Let t1, t2 denote the solutions of t2 + bt+ a3 = 0.
Then the factorizations of f(x) over F2n are characterized
as follows:
(1) f = (1, 1, 1) if and only if Trn

(
a3/b2

)
= Trn(1),

t1, t2 are cubes in F2n (n even), F22n (n odd);
(2) f = (1, 2) if and only if Trn

(
a3/b2

)
6= Trn(1);

(3) f = (3) if and only if Trn
(
a3/b2

)
= Trn(1), t1, t2

are not cubes in F2n (n even), F22n (n odd).

Lemma 2. [26] Let f(x) = x3 + ax + b ∈ F2n [x] and
b 6= 0. Let t be one solution of t2 + bt+ a3 = 0 and ε be
one solution of x3 = t. Then r = ε + a

ε is a solution of
f(x) = 0.

Lemma 3. [27] Let f(x) = x4 + a2x
2 + a1x + a0 with

ai ∈ F2n and a0a1 6= 0. Let f1(y) = y3 + a2y + a1

and r1, r2, r3 denote roots of f1(y) = 0 when they exist
in F2n . Set wi = a0

r2i
a21

. Then f = (1, 1, 2) if and only if
f1 = (1, 2) and Trn(w1) = 0.

III. BINARY LINEAR CODES FROM KNOWN
TWO-TO-ONE TRINOMIALS AND QUADRINOMIALS

In this section, we will propose several binary codes
with few weights, which are constructed from known two-
to-one functions. We first recall some two-to-one functions
recently obtained in [23].

Lemma 4. [23] Let n = 2m with m being an odd
positive integer and ω ∈ F22\F2. Then the function
f(x) = x

2n−1+2m−1
3 + x2m

+ ωx is two-to-one over F2n .

Lemma 5. [23] Let n = 2m + 1. Then the following
quadrinomials are all two-to-one over F2n :
(1) f(x) = x2m+1+2 + x2m+1

+ x2 + x;
(2) f(x) = x2m+1+2 + x2m+1+1 + x2 + x;
(3) f(x) = x2m+2+4 + x2m+1+2 + x2 + x;
(4) f(x) = x2n−2m+1+2 + x2m+1

+ x2 + x.

Lemma 6. [23] Let n = 3m. Then the following quadri-
nomials are two-to-one over F2n :
(1) f(x) = x22m+1 + x2m+1

+ x2m+1 + x with m 6≡ 1
(mod 3);

(2) f(x) = x22m+2m

+ x22m+1 + x2m+1 + x.

Below we shall investigate the parameters of the con-
structed linear codes Cf and CD(f). According to different
forms of n in Lemmas 4 - 6, we divide them into three
subsections.

A. The case n = 2m

The following binary linear code is derived from the
two-to-one polynomial in Lemma 4.

TABLE I
THE WEIGHT DISTRIBUTION OF THE CODES Cf IN THEOREM 2

Weight Multiplicity
0 1

2n−1 − 2m 24m−3 + 23m−2 − 22m−3 − 2m−2

2n−1 3 · 24m−2 + 22m−2 − 1
2n−1 + 2m 24m−3 + 2m−2 − 23m−2 − 22m−3

TABLE II
THE WEIGHT DISTRIBUTION OF THE CODES CD(f) IN THEOREM 2

Weight Multiplicity
0 1

2n−2 − 2m−1 2n−3 + 2m−2

2n−2 3 · 2n−2 − 1
2n−2 + 2m−1 2n−3 − 2m−2

Theorem 2. Let f(x) = x
2n−1+2m−1

3 +x2m

+ωx ∈ F2n [x]
with n = 2m, where m > 1 is odd and ω ∈ F22\F2.
Define two linear codes Cf and CD(f) as in (2) and (6),
respectively. Then,

(1) Cf is a [2n − 1, 2n] binary linear code with weight
distribution in Table I.

(2) CD(f) is a
[
2n−1 − 1, n

]
binary linear code with

weight distribution in Table II.

Proof. We first compute the Walsh transforms Wf (a, b)
and Wf (b) defined as in (9), for any a, b ∈ F2n . It is
obvious that Wf (a, b) = 2n when a = b = 0. Below we
consider the cases where (a, b) 6= (0, 0).

Let f1(x) = f(x2m+2+2) = x + x2m+1+4 + ωx2m+2+2

and Q(x) = ax2m+2+2 +bf1(x) = bx+bx2m+1+4 +(bω+
a)x2m+2+2. Since gcd

(
2m+2 + 2, 2n − 1

)
= 1, which is

clear by the Euclidean algorithm, the Walsh transform

Wf (a, b) =
∑
x∈F2n

(−1)
Trn

(
ax2m+2+2+bf

(
x2m+2+2

))

=
∑
x∈F2n

(−1)Trn(Q(x)).

Note that the bilinear form of ϕa,b(x) = Trn(Q(x)) is
given by

Bϕa,b
(x, y) =ϕa,b(x+ y) + ϕa,b(x) + ϕa,b(y)

=Trn

(
by4x2m+1

+ (bω + a)y2x2m+2

+

by2m+1

x4 + (bω + a)y2m+2

x2
)

=Trn

(
La,b(y)x2m+2

)
with

La,b(y) = ∆2y8 + ∆2m

y2 and ∆ = b2
m

ω2 + b+ a2m

.
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Let ker(La,b) = {y ∈ F2n : La,b(y) = 0} . From (11), we
have

Wf (a, b) =

{
±2

n+2
2 , if ϕa,b vanishes on ker(La,b),

0, otherwise.

Now we discuss the values of ϕa,b(x) where x ∈
ker(La,b). When ∆ = 0, we have La,b(y) = 0 for any
y ∈ F2n . When ∆ 6= 0, by computation we have

ker(La,b) =
{

0, y0, y0ω, y0ω
2
}
,

where y0 = ∆
2m−1−1

3 . Moreover,

ϕa,b(y0) = Trn

(
by0 + by2m+1+4

0 + (a+ ωb)y2m+2+2
0

)
= Trn

(
by0 +

(
b+ a2m

+ ω2b2
m
)
y2m+1+4

0

)
= Trn

(
by0 + ∆

2n−1
3

)
.

Similarly, we have

ϕa,b(y0ω) = Trn

(
ωby0 + ω2∆

2n−1
3

)
.

and

ϕa,b(y0ω
2) = ϕa,b(y0) + ϕa,b(y0ω).

In the following, we assume a = 0 and will show that
there exist some (not all) b’s ∈ F2n such that ϕ0,b vanishes
on ker(L0,b), which implies

Wf (b) ∈
{

0,±2
n+2
2

}
.

It is well-known that for any elements b ∈ F2n , there
exist unique b1, b2 ∈ F2m such that b = b1 + b2ω since m
is odd. Plugging b = b1 + b2ω into the expression of ∆,
we get

∆ = b2
m

ω2 + b = (b1 + b2ω
2)ω2 + b1 + b2ω = b1ω

and
y0 = ∆

2m−1−1
3 = (b1ω)

2m−1−1
3 .

Furthermore, we have

ϕ0,b(y0) = Trn((b1 + b2ω)(b1ω)
2m−1−1

3 + b
2n−1

3
1 ω

2n−1
3 )

and

ϕ0,b(y0ω) = Trn((b1 + b2ω)(b1ω)
2m−1−1

3 ω + b
2n−1

3
1 ω

2n+5
3 ).

It suffices to show that there exist some (not all) b1, b2 ∈
F2m such that ϕ0,b(y0) = ϕ0,b(y0ω) = 0. Next, we only
prove the case m ≡ 0 (mod 3). The proofs of the other
two cases are similar.

When m ≡ 0 (mod 3), since m is odd, we can assume
that m = 3(2l+1) with some integer l. Then 2m−1 − 1 =

26l+2− 1 = 4× 82l− 1 and thus 2m−1− 1 ≡ 3 (mod 9),
i.e., 2m−1−1

3 ≡ 1 (mod 3). Similarly, we have 2n−1
3 ≡ 0

(mod 3). Plugging these congruence equations into the
expressions of ϕ0,b(y0) and ϕ0,b(y0ω), we get

ϕ0,b(y0) = Trn

(
b

2m−1+2
3

1 ω + b
2m−1−1

3
1 b2ω

2 + b
2n−1

3
1

)
= Trm

(
b

2m−1+2
3

1 + b
2m−1−1

3
1 b2

)
,

and

ϕ0,b(y0ω) = Trn

(
b

2m−1+2
3

1 ω2 + b
2m−1−1

3
1 b2 + b

2n−1
3

1 ω2

)
= Trm

(
b

2m−1+2
3

1 + b
2n−1

3
1

)
= Trm

(
b

2m−1+2
3

1

)
+ 1.

Since gcd
(

2m−1+2
3 , 2m − 1

)
= 1, p(b1) = b

2m−1+2
3

1

permutes F2m and then there must exist some b1 ∈ F2m

such that ϕ0,b(y0ω) = 0. Moreover, it is clear that p(b2) =

b
2m−1+2

3
1 + b

2m−1−1
3

1 b2 permutes F2m for any b1 ∈ F∗2m .
Thus for any b1 ∈ F2m satisfying ϕ0,b(y0ω) = 0, there
exist some b2 ∈ F2m such that ϕ0,b(y0) = 0 or 1. In other
words, there exist some (not all) b1, b2 ∈ F2m such that
ϕ0,b vanishes on ker(L0,b).

Therefore, we have Wf (b) ∈ {0,±2
n+2
2 } and obvi-

ously, Wf (a, b) ∈ {0,±2
n+2
2 } for (a, b) 6= (0, 0).

With the analysis of possible values of Wf (a, b) and
Wf (b), we are now ready to determine the parameters of
Cf and CD(f) in the following.

(1) For the linear code Cf , since Wf (a, b) = 2n

if and only if a = b = 0, it follows from (3) that
the dimension is 2n. Moreover, for any a, b ∈ F2n ,
Wf (a, b) ∈

{
0, 2n,±2

n+2
2

}
. Let

v1 = −2
n+2
2 , v2 = 0, v3 = 2

n+2
2 .

According to (5), we can obtain the occurrences of
Wf (a, b) = vi’s, i = 1, 2, 3 in the Walsh spectrum of
f and then the desired weight distribution of Cf in Table
I follows directly from (4).

(2) For the linear code CD(f), since Wf (b) = 2n

if and only if b = 0, it follows from (7) that the
dimension of CD(f) is n. Note that for any b ∈ F2n ,
Wf (b) ∈

{
0, 2n,±2

n+2
2

}
. By (8), the weights of the

codewords cb in CD(f) satisfy

wt(cb) ∈
{

2n−2, 0, 2n−2 − 2
n−2
2 , 2n−2 + 2

n−2
2

}
.
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TABLE III
THE WEIGHT DISTRIBUTION OF THE CODES CD(f) IN THEOREM 3

Weight Multiplicity
0 1

2n−2 − 2m−1 2n−2 + 2m−1

2n−2 2n−1 − 1
2n−2 + 2m−1 2n−2 − 2m−1

Denote

w1 = 2n−2 − 2
n−2
2 , w2 = 2n−2, w3 = 2n−2 + 2

n−2
2 .

The desired weight distribution of CD(f) in Table II can
be easily obtained by solving (10) accordingly.

Example 1. Take m = 3. In Theorem 2 the code Cf is
a [63, 12, 24] binary linear code with weight enumerator
1 + 630z24 + 3087z32 + 378z36 and the code CD(f) is
a [31, 6, 12] binary linear code with weight enumerator
1 + 10z12 + 47z16 + 6z20. They are consistent with the
weight distributions in Tables I and II. According to the
code table [28], the linear code Cf has the best-known
parameters.

B. The case n = 2m+ 1

From the four classes of two-to-one functions in Lemma
5, this subsection presents five classes of 3-weight linear
codes, two classes of 1-weight linear codes and one class
of linear codes with at most five weights.

Theorem 3. Let n = 2m+ 1 and f(x) = x2n−2m+1+2 +
x2m+1

+x2 +x. Define two linear codes Cf and CD(f) as
in (2) and (6), respectively. Then,
(1) Cf is a [2n − 1, 2n] binary linear code with at most

five weights.
(2) CD(f) is a

[
2n−1 − 1, n

]
binary linear code with

weight distribution in Table III.

Proof. Since gcd (2m + 1, 2n − 1) = 1, we have that
Wf (a, b) equals∑

x∈F2n

(−1)Trn(ax2m+1+bf(x2m+1))

=
∑
x∈F2n

(−1)
Trn

(
(a2+b+b2)x2m+1+2+bx2m+1+1+bx2m+2

)

,
∑
x∈F2n

(−1)ϕa,b(x).

Similar to the proof of Theorem 2 and by (12), we have
Wf (0, 0) = 0 and for (a, b) 6= (0, 0),

Wf (a, b) =

{
±2

n+da,b
2 , if ϕa,b vanishes on ker(La,b),

0, otherwise,

where da,b is the dimension of ker(La,b) and

La,b(y) =b4y8 +
(
b2

m+2

+ b4 + b2 + a4
)
y4+(

b2
m+2

+ b2
m+1

+ b2 + a2m+2
)
y2 + b2

m+1

y.

From the expression of La,b, it is obvious that da,b ≤
3. Moreover, since n + da,b must be even and n is odd,
da,b ∈ {1, 3}. Hence the Walsh transform

Wf (a, b) ∈
{

2n, 0, ±2
n+1
2 , ±2

n+3
2

}
.

Next, we will show that the Walsh transform Wf (b) = 0
when d0,b = 3. Namely, there exists some y0 ∈ ker(L0,b)
such that ϕ0,b(y0) = 1. In this case, we have

L0,b(y) = b4y8 +
(
b2

m+2

+ b4 + b2
)
y4 +(

b2
m+2

+ b2
m+1

+ b2
)
y2 + b2

m+1

y.

Denote

ϕ0,b(y) = Trn

(
b(y2m+1+2 + y2m+1+1 + y2m+2 + y2m+1)

)
.

Let z = y2 + y. Then we have

L0,b = b4z4 + b2z2 + b2
m+2

z2 + b2
m+1

z

= (b2z2 + b2
m+1

z)2 + b2z2 + b2
m+1

z.

If d0,b = 3, i.e., the number of solutions of L0,b = 0
equals 8, then the equation

(b2z2 + b2
m+1

z)2 + b2z2 + b2
m+1

z = 0 (13)

has 4 solutions in F2n since y and y + 1 correspond
to the same z = y2 + y. Clearly, from (13), we have
b2z2 + b2

m+1

z = 0 or b2z2 + b2
m+1

z = 1. From
b2z2 + b2

m+1

z = 0, we get two solutions z0 = 0 and
z1 = b2

m+1−2 in F2n . Similarly, we also obtain two
solutions z = z2, z3 from b2z2 + b2

m+1

z = 1. Thus
if d0,b = 3, y2 + y = zi for i = 0, 1, 2, 3 exactly
has two solutions in F2n . Namely, Trn(zi) = 0 for
i = 0, 1, 2, 3. Particularly, Trn(z1) = Trn(b2

m+1−2) = 0.
Therefore, there exists some element y0 ∈ F2n such that
b2

m+1−2 = y2
0 + y0, i.e., b = 1

(y20+y0)2m+1 . Note that such
y0 belongs to ker(L0,b) and is what we need. Indeed,

ϕb(y0) =Trn

(
b(y2m+1+2

0 + y2m+1+1
0 + y2m+2

0 + y2m+1
0 )

)
=Trn

(
y2m+1+2

0 + y2m+1+1
0 + y2m+2

0 + y2m+1
0

(y2
0 + y0)2m+1

)
=Trn(1) = 1.

Hence, Wf (b) = 0 when the dimension of ker(L0,b) is 3.
Next, we consider the parameters of Cf and CD(f),

respectively.
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TABLE IV
THE WEIGHT DISTRIBUTION OF THE CODES CD(f) IN THEOREM 4

Weight Multiplicity
0 1

2n−1 − 2m 24m + 23m − 22m−1 − 2m−1

2n−1 24m+1 + 22m − 1
2n−1 + 2m 24m + 2m−1 − 23m − 22m−1

TABLE V
THE WEIGHT DISTRIBUTION OF THE CODES Cf IN THEOREM 5

Weight Multiplicity
0 1

2n−1 − 2m 24m−1 + 23m−1 − 22m−1 − 2m−1

2n−1 24m + 22m − 1
2n−1 + 2m 24m−1 + 2m−1 − 23m−1 − 22m−1

(1) For the linear code Cf , since Wf (a, b) = 2n if and
only if (a, b) = (0, 0), the dimension is 2n from (3).
Moreover, the possible Hamming weights of codewords
in Cf are given by

wt(ca,b) ∈
{

0, 2n−1, 2n−1 ± 2
n−1
2 , 2n−1 ± 2

n+1
2

}
.

(2) For the linear code CD(f), Wf (b) = 2n if and
only if b = 0, which means that the dimension of
CD(f) is n according to (7). Since for any b ∈ F2n ,
Wf (b) ∈

{
2n, 0,±2

n+1
2

}
, by (8), the weights of the

codewords cb in CD(f) satisfy

wt(cb) ∈
{

2n−2, 0, 2n−2 − 2
n−3
2 , 2n−2 + 2

n−3
2

}
.

Then the desired weight distribution of CD(f) can be
obtained by solving (10) accordingly.

The linear codes in the following two theorems are from
quadratic two-to-one quadrinomials. These proofs can be
easily obtained from (12) and thus we omit them here.

Theorem 4. Let n = 2m + 1 and f(x) = x2m+1+2 +
x2m+1

+x2 +x. Define two linear codes Cf and CD(f) as
in (2) and (6), respectively. Then,
(1) Cf is a [2n − 1, 2n] binary linear code with weight

distribution in Table IV.
(2) CD(f) is a

[
2n−1 − 1, n

]
binary linear code with

weight distribution in Table III.

Theorem 5. Let n = 2m + 1 and f(x) = x2m+1+2 +
x2m+1+1 +x2 +x or f(x) = x2m+2+4 +x2m+1+2 +x2 +x.
Define two linear codes Cf and CD(f) as in (2) and (6),
respectively. Then,
(1) Cf is a [2n − 1, 2n− 1] binary linear code with weight

distribution in Table V.

TABLE VI
THE WEIGHT DISTRIBUTION OF THE CODES Cf IN THEOREM 6

Weight Multiplicity
0 1

2n−1 − 22m−1 24m−1 + 23m−1 − 22m−1 − 2m−1

2n−1 25m + 22m − 24m − 1
2n−1 + 22m−1 24m−1 + 2m−1 − 23m−1 − 22m−1

(2) CD(f) is a
[
2n−1 − 1, n− 1

]
binary linear code with

weight enumerator 1 + (2n−1 − 1)z2n−2

.

Example 2. When m = 3, the code Cf in Theorem 4 is a
[127, 14, 56] binary linear code with weight enumerator

1 + 4572z56 + 8255z64 + 3556z72.

Referring to the code table [28], the linear code is optimal.

Example 3. When m = 3, the code Cf in Theorem 5 is a
[127, 13, 56] binary linear code with weight enumerator

1 + 2268z56 + 4159z64 + 1764z72.

Referring to the code table [28], the linear code Cf has
the best-known parameter. When m = 3, the code CD(f) in
Theorem 5 is a [63, 6, 32] binary linear code with weight
enumerator 1 + 63z32. Referring to the code table [28],
the linear code CD(f) is optimal.

C. The case n = 3m

In this subsection, we consider binary linear codes from
the first two-to-one polynomial in Lemma 6. The second
one will be generalized in Section 4 and the corresponding
linear code will be discussed later.

Theorem 6. Let n = 3m with m ≡ 0 (mod 3) and
f(x) = x22m+1 + x2m+1

+ x2m+1 + x. Define two linear
codes Cf and CD(f) as in (2) and (6), respectively. Then,

(1) Cf is a [2n − 1, 5m] binary linear code with weight
distribution in Table VI.

(2) CD(f) is a
[
2n−1 − 1, n− 1

]
binary linear code with

weight enumerator 1 + (2n−1 − 1)z2n−2

.

Proof. We shall compute the value Wf (a, b) for any a, b ∈
F2n . Clearly, Wf (0, 0) = 2n and

Wf (a, 1) =
∑
x∈F2n

(−1)
Trn

(
ax+x22m+1+x2m+1

+x2m+1+x
)

=
∑
x∈F2n

(−1)Trn(ax),
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which equals 2n if a = 0 and 0 otherwise. Moreover, if
b ∈ F2m\F2, then

Wf (a, b) =
∑
x∈F2n

(−1)
Trn

((
a2

m+1
+b+b2

)
x2m+1

)
,

which equals 2n if a2m+1

+ b + b2 = 0 and 0 otherwise.
Next, we assume b ∈ F2n\F2m . For (a, b) 6= (0, 0), let
ϕa,b(x) = Trn(ax + bf(x)) and ϕb(x) = Trn(bf(x)).
According to (12), a routine calculation gives

Wf (a, b) =

{
±22m, if ϕa,b vanishes on ker(Lb),

0, otherwise,

where Lb(y) = (b+ b2
m

)y + (b2
m

+ b2
2m

)y22m

and

ker(Lb) =
{

(b2
m

+ b2
2m

)η : η ∈ F2m

}
.

For any x = (b2
m

+ b2
2m

)η ∈ ker(Lb) with η ∈ F2m ,

ϕa,b(x) = Trn
(
Ua,bη

2
)

= Trm
(
Trnm(Ua,b)η

2
)
.

where

Ua,b = a2(b+ b2
m

)2m+1

+ (b+ b2
m

)22m+2m+1

+(b+ b2
m

)22m+1

(b2
m+1

+ b).

Obviously, Trn(ax+ bf(x)) = 0 if and only if

a2 = (b+b2
m

)22m−2m+1+(b+b2
m

)22m+1−2m+1

(b2
m+1

+b).

Thus for any a ∈ F2n , b ∈ F2n\F2m ,

Wf (a, b) ∈
{

0,±22m
}
.

As for Wf (b), we need the following claim which will be
shown at the end of the proof.

Claim. For any b ∈ F2n\F2m , Trnm(Ub) 6= 0, where
Ub = U0,b.

According to the above claim, it is clear that Wf (b) = 0
for any b ∈ F2n\F2m .

Next, we consider the parameters of Cf and CD(f),
respectively.

(1) For the linear code Cf , since Wf (a, b) = 2n if and
only if b ∈ F2m and a2m+1

+ b + b2 = 0, by (3), the
dimension of K1 = {a, b ∈ F2n : Wf (a, b) = 2n} is m
and thus the dimension of Cf is 2n−m = 5m. Moreover,
for any a, b ∈ F2n , Wf (a, b) ∈

{
0, 2n,±22m

}
. Let

v1 = −22m, v2 = 0, v3 = 22m.

By computing (5), we can get the occurrences of
Wf (a, b) = vi’s, i = 1, 2, 3 in the Walsh spectrum of
f and then by (4), the desired weight distribution of Cf
can be obtained.

(2) For the linear code CD(f), since there are two b’s
(0 and 1) such that Wf (b) = 2n and (2n − 2) b’s such
that Wf (b) = 0, by (7), the dimension of CD(f) equals
n − 1. Moreover, by (8), we know that the weights of
the codewords cb in CD(f) satisfy wt(cb) ∈ {0, 2n−2}.
Furthermore, the stated weight enumerator follows.

Finally, we prove the claim, i.e., for any b ∈ F2n\F2m ,
Trnm(Ub) 6= 0. A direct computation yields

Trnm(Ub) =b3 + b3·2
m

+ b3·2
2m

+ b2
2m+1+2m

+ b2
2m+2 + b2

m+1+1. (14)

For any b ∈ F2n\F2m , define
b+ b2

m

+ b2
2m

= α

b2
m+1 + b2

2m+1 + b2
2m+2m

= β

b2
2m+2m+1 = γ

and g(x) = x3 + αx2 + βx + γ ∈ F2m [x]. Then it is
clear that g(x) = (x+ b)

(
x+ b2

m) (
x+ b2

2m
)

and g(x)

is irreducible on F2m . Let u = b2
2m+1+2m

+ b2
2m+2 +

b2
m+1+1 and v = b2

2m+1+1 + b2
m+2 + b2

m+1+22m

. Then
we have

u+ v =
(
b+ b2

m
)(

b+ b2
2m
)(

b2
m

+ b2
2m
)

= (α+ b)
(
α+ b2

m
)(

α+ b2
2m
)

= g(α) = αβ + γ.

In addition, from the expanded form of(
b+ b2

m

+ b2
2m
)3

, we know that

b3 + b3·2
m

+ b3·2
2m

= α3 + u+ v = α3 + αβ + γ.

Moreover, since b, b2
m

, b2
2m

are the roots of g(x) in F2n ,
1
b ,

1
b2m

, 1
b22m

are the roots of

g
′
(x) =

1

γ
x3g

(
1

x

)
= x3 +

β

γ
x2 +

α

γ
x+

1

γ
.

in F2n . Similarly, we have

1

b3
+

1

b3·2m +
1

b3·22m =
β3

γ3
+
αβ

γ2
+

1

γ
=
β3 + αβγ + γ2

γ3
.

Furthermore,

uv = γ2 + γ(b3 + b3·2
m

+ b3·2
2m

)b3·(2
m+1)

+ b3·(22m+2m) + b3·(22m+1)

= γ2 + γ(α3 + αβ + γ) + γ3(
1

b3
+

1

b3·2m +
1

b3·22m )

= α3γ + αβγ + β3 + αβγ + γ2

= α3γ + β3 + γ2.
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Now we go back to the expression of Trnm(Ub), i.e., (14).
If Trnm(Ub) = 0, we have

u = b3 + b3·2
m

+ b3·2
2m

= α3 + αβ + γ

and then v = αβ + γ + u = α3. Thus uv = α6 + α4β +
α3γ = α3γ + β3 + γ2, namely,

α6 + α4β + β3 + γ2 = 0. (15)

Next, we show that under (15), g(x) = 0 has three
solutions in F2m , which is in contradiction with the
irreduciblity of g(x). Firstly, using x + α to replace x
in g(x) = 0 and simplifying it, we obtain

x3 + (α2 + β)x+ αβ + γ = 0. (16)

Moreover,

Trm

(
(α2 + β)3

(αβ + γ)2

)
= Trm

(
α6 + β3 + α4β + α2β2

(αβ + γ)2

)
= Trm(1),

where the last equality is derived from (15). Furthermore,
it is easy to get that the equation

t2 + (αβ + γ)t+ (α2 + β)3 = 0

has a solution t1 = (αβ+γ)ω, where ω3 = 1. Since m ≡
0 (mod 3), ω is a cube in F2m (m even), F22m (m odd).
In addition, αβ+γ =

√
(α2 + β)3 is also a cube in F2m .

Thus according to Lemma 1, (16) has three solutions in
F2m , which is a contradiction, and thus Trnm(Ub) 6= 0.

IV. BINARY LINEAR CODES FROM NEW TWO-TO-ONE
POLYNOMIALS

In this section, we construct two new classes of two-to-
one functions, of which the first one is a generalization
of (2) in Lemma 6. Then we also obtain some binary
linear codes Cf and CD(f) from these two new two-to-
one functions .

A. Two new classes of two-to-one functions

Theorem 7. Let n = km with k,m odd and f(x) =
Trnm

(
x2m+1

)
+ x. Then f(x) is two-to-one over F2n .

Proof. According to the definition of two-to-one func-
tions, it suffices to prove that for any a ∈ F2n , #f−1(a) ∈
{0, 2}. Namely, for any a ∈ F2n , f(x+a)+f(a) = 0 has
exactly two solutions in F2n . By simplifying the equation,
we have

Trnm

(
x2m+1 + ax2m

+ a2m

x
)

= x. (17)

This implies x ∈ F2m , and then (17) becomes x2 +x = 0,
which has exactly two solutions x = 0, 1.

Theorem 8. Let n = 3m with m odd and f(x) =
x22m+1+1 + x2m+1+1 + x4 + x3. Then f(x) is two-to-one
over F2n .

Proof. It suffices to prove that for any a ∈ F2n , the
equation f(x+ a) + f(a) = 0, i.e.,

x22m+1+1 + ax22m+1

+ x2m+1+1 + ax2m+1

+ x4 +

x3 + ax2 +
(
a22m+1

+ a2m+1

+ a2
)
x = 0, (18)

has exactly two solutions in F2n . In fact, since x = 0 is
clearly a solution of (18), we shall only show that (18)
has at most two solutions in F2n .

Let y = x2m

, z = y2m

, b = a2m

and c = b2
m

. Then
(18) becomes

xz2 + xy2 + x3 + x4 + a(x2 + y2 + z2)

+(a2 + b2 + c2)x = 0. (19)

Raising (19) to the 2m-th power and the 22m-th power,
we get

yx2 + yz2 + y3 + y4 + b(x2 + y2 + z2)

+(a2 + b2 + c2)y = 0 (20)

and

zy2 + zx2 + z3 + z4 + c(x2 + y2 + z2)

+(a2 + b2 + c2)z = 0, (21)

respectively. Let t = x+y+z and s = a+b+c. Computing
the summation of (19), (20) and (21), we obtain

t4 + t3 + st2 + s2t = 0.

Thus t = 0 or t3 + t2 + st+ s2 = 0.

If t = 0, plugging it into (19), we have x4 +sx = 0 and
thus x = 0 or x3 = s. It is clear that x = 0 is a solution
of (18). If x3 = s = a+ b+ c ∈ F2m , then x = s

1
3 ∈ F2m

and y = z = x ∈ F2m . Thus x = x+ y + z = t = 0.

If t3 + t2 + st+ s2 = 0, using (t1 + 1) to replace t, we
get

t31 + (s+ 1)t1 + s2 + s = 0. (22)

Since

Trm

(
(s+ 1)3

(s2 + s)2

)
= Trm

(
1

s
+

1

s2

)
= 0 6= Trm(1),

(22) has exactly one solution in F2m according to Lemma
1. Moreover, we can get the expression of the unique
solution by Lemma 2. For the equation u2 + (s2 + s)u+
(s+ 1)3 = 0, we have(

u

s2 + s

)2

+
u

s2 + s
=

1

s
+

1

s2
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and thus u = s + 1 is a solution and ε = (s + 1)
1
3 is a

solution of x3 = u since gcd(3, 2m−1) = 1. Furthermore,
r = ε+ a

ε = (s+ 1)
1
3 + (s+ 1)

2
3 is a solution of (22) and

thus
t̄ = r + 1 = ε+ ε2 + 1,

where ε = (s + 1)
1
3 , is the unique solution of t3 + t2 +

st+s2 = 0. Namely, x+y+z equals a constant. Plugging
x+ y + z = t̄ into (19), we get

x4 + (s2 + t̄2)x+ at̄2 = 0. (23)

Next, using Lemma 3, we will prove that the above
equation has two solutions in F2n . However, we will also
show that the two solutions can not satisfy x+ y + z = t̄
at the same time and thus (19) has at most one solution
in this case. Together with the zero solution, (19) has at
most two solutions in F2n and thus f(x) is two-to-one.

Recall that ε3 = s+1 and t̄ = ε+ε2+1. Since s2+ t̄2 =
ε6+ε4+ε2, if s2+t̄2 = 0, then ε = 0 clearly (ε2+ε+1 6= 0
due to m odd). Moreover, s = ε3 +1 = 1 and t = 1. Thus
if s = 1 and t = 1, (23) becomes x4 = a, which has
exactly one solution in F2n . In the following, we assume
that s2 + t̄2 6= 0. Let f1(r) = r3 + (s2 + t̄2). Then it is
clear that f1 = (1, 2), which means that f1 can factor as
a product of a linear factor and an irreducible quadratic
factor. Moreover,

r1 = (s2 + t̄2)
1
3 = (s2 + ε2 + ε4 + 1)

1
3 = (ε2 + ε4 + ε6)

1
3

is the unique solution of f1(r) = 0. Set w1 = at̄2
r21

(s2+t̄2)2 .
In addition,

Trn(w1) = Trn

(
a(ε+ ε2 + 1)2

(ε2 + ε4 + ε6)
4
3

)
= Trm

(
Trnm

(
at̄2

(ε2 + ε4 + ε6)
4
3

))
= Trm

(
st̄2

(ε2 + ε4 + ε6)
4
3

)
= Trm

(
(ε2 + ε+ 1)

4
3

ε
8
3

+
(ε2 + ε+ 1)

1
3

ε
2
3

)
= 0.

Thus according to Lemma 3, (23) has exactly two solutions
in F2n , denoted by x1, x2. Next, we show that the two
solutions cannot satisfy x + y + z = t̄ at the same
time. Clearly, there exist some α, β ∈ F2n such that (23)
becomes(

x2 + αx+ β
) (
x2 + αx+ α2 + β

)
= 0

and by comparing the coefficient of x, we know that α3 =
(s2+ t̄2) 6= 0. In addition, by the Vieta theorem, x1+x2 =
α 6= 0. Thus the two solutions cannot satisfy x+y+z = t̄

TABLE VII
THE WEIGHT DISTRIBUTION OF THE CODES Cf IN THEOREM 9

Weight Multiplicity
0 1

2n−1 − 2
n+m−1

2 2n−1 + 2
n+m

2
−1 − 2n−m−1 − 2

n−m
2

−1

2n−1 2n+m + 2n−m − 2n − 1

2n−1 + 2
n+m−1

2 2
n−m

2
−1 + 2n−1 − 2

n+m
2

−1 − 2n−m−1

TABLE VIII
THE WEIGHT DISTRIBUTION OF THE CODES CD(f) IN THEOREM 9

Weight Multiplicity
0 1

2n−2 − 2
n+m−4

2 2n−m−1 + 2
n−m−2

2

2n−2 2n − 2n−m − 1

2n−2 + 2
n+m−4

2 2n−m−1 − 2
n−m−2

2

TABLE IX
THE WEIGHT DISTRIBUTION OF THE CODES CD(f) IN THEOREM 10

Weight Multiplicity
0 1

2n−2 − 2
n+2m−3

2 2m−2 + 2
m−3

2

2n−2 2n − 2m−1 − 1

2n−2 + 2
n+2m−3

2 2m−2 − 2
m−3

2

at the same time.

B. Binary linear codes from these new two-to-one func-
tions

Theorem 9. Let n = km with k,m odd and f(x) =
Trnm

(
x2m+1

)
+ x. Define two linear codes Cf and CD(f)

as in (2) and (6), respectively. Then,

(1) Cf is a [2n − 1, n+m] binary linear code with weight
distribution in Table VII.

(2) CD(f) is a
[
2n−1 − 1, n

]
binary linear code with

weight distribution in Table VIII

Proof. The two-to-one function in this theorem is
quadratic and the proof is similarly obtained by the Walsh
spectrum of f , whose computation is not difficult. We omit
it here.

Theorem 10. Let n = 3m with m odd and f(x) =
x22m+1+1 + x2m+1+1 + x4 + x3. Define two linear codes
Cf and CD(f) as in (2) and (6), respectively. Then,

(1) Cf is a [2n − 1, 2n] binary linear code with 5 weights.
Moreover, the weights of the codewords cb in Cf
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satisfy

wt(cb) ∈
{

2n−1 − 2
n+2m−1

2 , 2n−1 + 2
n+2m−1

2 ,

2n−1 − 2
n+m−2

2 , 2n−1 + 2
n+m−2

2 , 2n−1, 0
}
.

(2) CD(f) is a
[
2n−1 − 1, n

]
binary linear code with

weight distribution in Table IX.

Proof. First of all, we shall determine the value Wf (a, b).
It is clear that when (a, b) = (0, 0), Wf (a, b) = 2n. Since
f is quadratic, according to (12) and by computing, we
have

Wf (a, b) =

{
±2

n+db
2 , if ϕa,bvanishes on ker(Lb),

0, otherwise,

where ϕa,b(x) = Trn(ax+ bf(x)),

Lb(y) = b2y22m+2

+b2
2m

y22m

+b2y2m+2

+b2
m

y2m

+b2y4+by

and db is the dimension of ker(Lb).
Next, we consider the equation Lb(y) = 0, i.e.,

b2Trnm(y)4 = Trnm(by). Since Trnm(y),Trnm(by) ∈ F2m ,
we have b ∈ F∗2m or Trnm(y) = Trnm(by) = 0.

Case 1: If b ∈ F∗2m , then the equation Lb(y) = 0
becomes Trnm(y) = 0 or 3

√
b−1. Thus in this case,

the number of solutions of Lb(y) is 22m+1. Namely,
db = 2m + 1. In the following, we show that there exist
some b ∈ F∗2m such that the restriction of Trn(bf(x))

on ker(Lb) =
{
y ∈ F2n : Trnm(y) = 0 or 3

√
b−1
}

is the

all-zero mapping or not, i.e., Wf (b) ∈
{

0,±2
n+2m+1

2

}
for b ∈ F∗2m . On one hand, if Trnm(y) = 0,

Trn(bf(y)) = Trn
(
b
(
yTrnm(y)2 + y4

))
= Trn(by4) = Trm

(
bTrnm

(
y4
))

= 0.

On the other hand, if Trnm(y) =
3
√
b−1,

Trn(bf(y)) = Trn
(
b(yTrnm(y)2 + y4)

)
= Trm

(
Trnm

(
byTrnm(y)2

)
+ Trnm(by4)

)
= Trm

(
bTrnm(y)3 + bTrnm(y)4

)
= Trm(1 + Trnm(y)) = 1 + Trm

(
3
√
b−1
)
.

Then Trn(bf(y)) = 0 if and only if Trm

(
3
√
b−1
)

= 1 and
thus the restriction of Trn(b(f(x))) on ker(Lb) is the all-
zero mapping if and only if Trm

(
3
√
b−1
)

= 1. Therefore

Wf (b) ∈
{

0,±2
n+2m+1

2

}
and then clearly Wf (a, b) ∈{

0,±2
n+2m+1

2

}
in this case.

Case 2: If b ∈ F2n\F2m , then

ker(Lb) = {y : y ∈ F2n and Trnm(y) = Trnm(by) = 0} .

For any b ∈ F2n\F2m , define
b+ b2

m

+ b2
2m

= α

b2
m+1 + b2

2m+1 + b2
2m+2m

= β

b2
2m+2m+1 = γ

and g(x) = x3 +αx2 +βx+ γ ∈ F2m [x]. Then it is clear
that g(x) = (x + b)

(
x+ b2

m) (
x+ b2

2m
)

and g(x) is
irreducible on F2m . Since g(x+ α) = x3 + (α2 + β)x+
αβ + γ is also irreducible, we have α2 + β 6= 0 and
αβ + γ 6= 0. In addition, for any fixed b ∈ F2n\F2m , it
is well-known that for any y ∈ F2n , there exist unique
y0, y1, y2 ∈ F2m such that y = y0 + y1b + y2b

2. Then
Trnm(y) = y0 + y1α+ y2α

2 = 0 and

Trnm(by) = Trnm
(
y0b+ y1b

2 + y2b
3
)

= Trnm
(
(y1 + y2α)b2 + (y0 + y2β)b+ y2γ

)
= αy0 + α2y1 +

(
γ + αβ + α3

)
y2

= 0.

Plugging y0 = y1α + y2α
2 into the above equation and

simplifying it, we obtain (γ+αβ)y2 = 0 and then y2 = 0
since γ + αβ 6= 0. Thus

ker(Lb) = {(α+ b)η : η ∈ F2m} .

Clearly, in this case, the dimension of ker(Lb) is m.
Moreover, for x ∈ ker(Lb),

Trn(ax+ bf(x))

= Trn
(
b(xTrnm(x)2 + x4) + ax

)
= Trn((b+ a4)x4)

= Trn
(
(b+ a4)(α+ b)4η4

)
= Trm

(
Trnm

(
(b+ a4)(α+ b)4

)
η4
)
.

Obviously, if a4 = b, the restriction of Trn(ax + bf(x))
on ker(Lb) is the all-zero mapping and thus Wf (a, b) =

±2
n+m

2 .

Moreover, if a = 0, then we have Trn(bf(x)) =
Trm

(
Trnm

(
b(α+ b)4

)
η4
)

= Trm
(
Ubη

4
)
, where

Ub = Trnm(b(α4 + b4)) = α5 + b5 + b5·2
m

+ b5·2
2m

.

In the following, we will show that Ub 6= 0 for any b ∈
F2n\F2m . If there exists some b ∈ F2n\F2m such that
Ub = 0, then by simplifying it, we get

(b+ b2
m

)(b+ b2
2m

)(b2
m

+ b2
2m

)
(
α2 + β

)
= 0,

which is impossible since b 6∈ F2m and α2 + β 6= 0. Thus
for any b ∈ F2n\F2m , Ub 6= 0 and then the restriction of
Trn(bf(x)) on ker(Lb) cannot be the all-zero mapping.
Thus Wf (b) = 0.
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In conclusion, for any a, b ∈ F2n ,

Wf (a, b) ∈
{

0, 2n,±2
n+2m+1

2 ,±2
n+m

2

}
.

However, for any b ∈ F2n ,

Wf (b) ∈
{

0, 2n,±2
n+2m+1

2

}
.

Next, we consider the parameters of Cf and CD(f),
respectively.

(1) For the linear code Cf , since Wf (a, b) = 2n if
and only if (a, b) = (0, 0), by (3), the dimension of Cf
is 2n. Moreover, since for any a, b ∈ F2n , Wf (a, b) ∈{

0, 2n,±2
n+2m+1

2 ,±2
n+m

2

}
, by (4), the weights of the

codewords cb in Cf satisfy

wt(cb) ∈
{

2n−1 − 2
n+2m−1

2 , 2n−1 + 2
n+2m−1

2 ,

2n−1 − 2
n+m−2

2 , 2n−1 + 2
n+m−2

2 , 2n−1, 0
}
.

(2) For the linear code CD(f), Wf (b) = 2n if and
only if b = 0, which means that the dimension of
CD(f) is n according to (7). Since for any b ∈ F2n ,
Wf (b) ∈

{
0, 2n,±2

n+2m+1
2

}
, by (8), the weights of the

codewords cb in CD(f) satisfy

wt(cb) ∈
{

2n−2, 0, 2n−2 − 2
n+2m−3

2 , 2n−2 + 2
n+2m−3

2

}
.

In the following, we determine the weight distribution
of CD(f). Define

w1 = 2n−2−2
n+2m−3

2 , w2 = 2n−2, w3 = 2n−2+2
n+2m−3

2 .

Then solving (10) gives the desired weight distribution.

Remark 1. In Theorems 5 - 6, the linear codes CD(f)

has the same parameters as the shortened Hadamard codes,
which are locally decodable codes that provide a way to
recover parts of the original message with high probability,
while only looking at a small fraction of the received
word. This property gives rise to applications in the
computational complexity theory and in the CDMA com-
munication system. The dual codes of CD(f) are the binary
Hamming codes with parameters [2n−1 − 1, 2n−1 − n, 3].

Remark 2. In [21] there are several other classes of two-
to-one quadratic polynomials. The experimental results
show that we can obtain 3-weight or 5-weight binary linear
codes as well from generalized quadratic polynomials. Due
to the similarities of the parameters of those codes and
the proofs, we choose some representatives of them that
are more difficult and omitted the others in this paper. In
addition, the linear code Cf in Theorem 3 appears to be
a 3-weight code by numerical results. Nevertheless, we

did not manage to prove it by the techniques used in this
paper. We cordially invite interested readers to determine
the weight distribution of the linear codes Cf in Theorem
3 and Theorem 10.

Problem 1. Determine the weight distributions of the
linear codes Cf in Theorem 3 and Theorem 10.

According to the experimental results, we also have the
following open problem.

Problem 2. Let n = 2m + 1 and f(x) = x3·2m+1

+
x2m+2+1+x2m+1+1+x. Prove that f(x) is two-to-one over
F2n . Moreover, when m ≥ 4, show that the linear code
CD(f) has the parameters

[
2n−1 − 1, n, 2n−1 − 2

n−1
2

]
and the weights of the codewords cb in CD(f) satisfy

wt(cb) ∈
{

2n−2 − 2
n−3
2 , 2n−2 + 2

n−3
2 ,

2n−2 − 2
n−1
2 , 2n−2 + 2

n−1
2 , 2n−2, 0

}
.

Determine the weight distribution of the linear code CD(f).

V. BINARY LINEAR CODES FROM (x2t

+ x)e

The function (x2t

+ x)e with gcd(t, n) = gcd(e, 2n −
1) = 1 is a two-to-one function from F2n to itself. In this
section, we construct binary linear codes from two-to-one
functions of this form.

Recall that given a two-to-one function f , the param-
eters of the linear codes CD(f) in (6) depend on the
investigation of the value Wf (b). We first present an
interesting relation on Wf (b) for f(x) = (x2t

+ x)e and
the Walsh transform of Trn(xe). Indeed, we consider the
relation for functions of a general form f(x) = P (ψ(x)),
where P is a permutation polynomial over F2n and ψ(x)
is two-to-one with Im(ψ) = {y ∈ F2n : Trn(y) = 0}.

Proposition 1. Let f(x) = P (ψ(x)), where P is a
permutation polynomial over F2n and ψ(x) is two-to-one
with Im(ψ) = {y ∈ F2n : Trn(y) = 0}. Then for any
b ∈ F∗2n ,

Wf (b) =
∑
x∈F2n

(−1)Trn(bP (x)+x).

Proof. Let T0 = {y ∈ F2n : Trn(y) = 0}. Take an
element a ∈ F2n with Trn(a) = 1. Then T1 := {y ∈
F2n : Trn(y) = 1} = {a+ y : y ∈ T0}. For any b ∈ F∗2n ,
the fact

∑
y∈F2n

(−1)Trn(bP (y)) = 0 implies∑
y∈T0

(−1)Trn(bP (y)) = −
∑
y∈T1

(−1)Trn(bP (y))

=
∑
y∈T0

(−1)Trn(bP (y+a)+a).
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TABLE X
KNOWN ALMOST BENT POWER FUNCTIONS xe OVER F2n , n ODD

Functions e Conditions References

Gold 2i + 1 gcd(i, n) = 1 [30, 31]
Kasami 22i − 2i + 1 gcd(i, n) = 1 [32]
Welch 2m + 3 n = 2m + 1 [33, 34]

Niho-1 2m + 2
m
2 − 1 n = 2m + 1, m even [34]

Niho-2 2m + 2
3m+1

2 − 1 n = 2m + 1, m odd [34]

Thus,

Wf (b) =
∑
x∈F2n

(−1)Trn(bP (ψ(x))) = 2
∑
y∈T0

(−1)Trn(bP (y))

=
∑
y∈T0

(−1)Trn(bP (y)) +
∑
y∈T0

(−1)Trn(bP (y+a)+a)

=
∑
y∈T0

(−1)Trn(bP (y)+y) +
∑
y∈T0

(−1)Trn(bP (y+a)+y+a)

=
∑
y∈T0

(−1)Trn(bP (y)+y) +
∑
y∈T1

(−1)Trn(bP (y)+y)

=
∑
y∈F2n

(−1)Trn(bP (y)+y).

Remark 3. It is well-known that given an integer e
with gcd(e, 2n − 1) = 1, the calculations of the weight
distribution of Cf with f(x) = xe, the Walsh spectrum of
xe, the cross-correlation distribution of m-sequences, and
their e-decimated sequences are equivalent. The relation
has provided a great amount of interesting results which
originated from cryptography, coding theory, and sequence
design. Proposition 1 exhibits a similar relation, which
indicates the equivalence between the computation of the
weight distribution of CD(f) for f(x) =

(
x2t

+ x
)e

and
the Walsh spectrum of Trn(xe). In other words, any power
function xe, gcd(e, 2n − 1) = 1, with t-valued Walsh
spectrum can be employed to construct linear codes CD(f)

with t nonzero weights.
Recently Li and Zeng in [29] surveyed the exponents e

that allow for 3-valued, 4-valued, 5-valued Walsh spectra
of xe. All the exponents e listed in [29] with gcd(e, 2n −
1) = 1 can be employed to generate binary linear codes
CD(f) with few weights.

For simplicity, we let ψ(x) = x2t

+x with gcd(t, n) = 1
and only provide the result from almost bent monomials
over F2n with n odd, which has three-valued Walsh spec-
trum

{
0,±2

n+1
2

}
[35]. The known almost bent exponents

e is listed in Table X. From Proposition 1, we have the
following theorem on the linear codes CD(f).

TABLE XI
THE WEIGHT DISTRIBUTION OF THE CODES CD(f) IN THEOREM 11

Weight Multiplicity
0 1

2n−2 − 2m−1 2n−2 + 2m−1

2n−2 2n−1 − 1
2n−2 + 2m−1 2n−2 − 2m−1

Theorem 11. Let n = 2m + 1, f(x) = (x2t

+ x)e

with gcd(t, n) = 1 and e being one of the almost bent
exponents in Table X. Let CD(f) is defined as in (6). Then
CD(f) is a

[
2n−1 − 1, n

]
binary linear code with weight

distribution in Table XI.

Proof. From Proposition 1 and the almost bent property
of xe, we know that for b ∈ F∗2n ,

Wf (b) ∈
{

0,±2
n+1
2

}
.

Moreover, it is clear that Wf (b) = 2n if and only if b = 0,
which means that the dimension of CD(f) is n according
to (7). Furthermore, by (8), the weights of the codewords
cb in CD(f) satisfy

wt(cb) ∈
{

2n−2, 0, 2n−2 − 2
n−3
2 , 2n−2 + 2

n−3
2

}
.

Finally, define

w1 = 2n−2 − 2
n−3
2 , w2 = 2n−2, w3 = 2n−2 + 2

n−3
2 .

Then solving (10) gives the desired weight distribution.

As for the linear codes Cf defined as in (2), it seems
hard to compute the Walsh transform Wf (a, b) for any
a, b ∈ F2n . However, for the Gold function, we manage
to determine its possible values. The proof is also easily
obtained by the Walsh spectrum of the Gold function and
thus we omit it here.

Theorem 12. Let n = 2m + 1 and i be a positive

integer with gcd(i, n) = 1. Let f(x) =
(
x2t

+ x
)2i+1

with gcd(t, n) = 1. Define the linear code Cf as in (2).
Then, Cf is a [2n − 1, 2n] binary code with five weights.
Moreover, the weights of the codewords cb in Cf satisfy

wt(cb) ∈
{

2n−1 − 2
n−1
2 , 2n−1 + 2

n−1
2 ,

2n−1 − 2
n+1
2 , 2n−1 + 2

n+1
2 , 2n−1, 0

}
.

Moreover, according to the experimental results, we
have the following open problem.
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Problem 3. Let n = 2m + 1 and e be the almost bent
exponents as given in Table X. Let f(x) = (x2t

+x)e with
gcd(t, n) = 1. Define the linear codes Cf as in (2). Prove
that the parameters of the linear codes Cf are the same
as that in Theorem 12. Determine the weight distributions
of the linear codes Cf .

VI. CONCLUSION

Known good linear codes are constructed primarily
by two generic approaches. In this paper, we studied
binary linear codes produced from two-to-one functions
by the two generic approaches. We considered the rela-
tions between the Hamming weights of codewords in the
constructed codes and the Walsh transforms of the cor-
responding two-to-one functions, and particularly studied
two-to-one functions with few-valued Walsh transforms.
As a result, a large number of new binary codes with
few weights were presented and the weight distributions
of some of the obtained codes are determined based on
power moment identities.
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