1,196 research outputs found

    Independent [1,2]-number versus independent domination number

    Get PDF
    A [1, 2]-set S in a graph G is a vertex subset such that every vertex not in S has at least one and at most two neighbors in it. If the additional requirement that the set be independent is added, the existence of such sets is not guaranteed in every graph. In this paper we provide local conditions, depending on the degree of vertices, for the existence of independent [1, 2]-sets in caterpillars. We also study the relationship between independent [1, 2]-sets and independent dominating sets in this graph class, that allows us to obtain an upper bound for the associated parameter, the independent [1, 2]-number, in terms of the independent domination number.Peer ReviewedPostprint (published version

    On the excessive [m]-index of a tree

    Full text link
    The excessive [m]-index of a graph G is the minimum number of matchings of size m needed to cover the edge-set of G. We call a graph G [m]-coverable if its excessive [m]-index is finite. Obviously the excessive [1]-index is |E(G)| for all graphs and it is an easy task the computation of the excessive [2]-index for a [2]-coverable graph. The case m=3 is completely solved by Cariolaro and Fu in 2009. In this paper we prove a general formula to compute the excessive [4]-index of a tree and we conjecture a possible generalization for any value of m. Furthermore, we prove that such a formula does not work for the excessive [4]-index of an arbitrary graph.Comment: 12 pages, 7 figures, to appear in Discrete Applied Mathematic

    On the heterochromatic number of hypergraphs associated to geometric graphs and to matroids

    Full text link
    The heterochromatic number hc(H) of a non-empty hypergraph H is the smallest integer k such that for every colouring of the vertices of H with exactly k colours, there is a hyperedge of H all of whose vertices have different colours. We denote by nu(H) the number of vertices of H and by tau(H) the size of the smallest set containing at least two vertices of each hyperedge of H. For a complete geometric graph G with n > 2 vertices let H = H(G) be the hypergraph whose vertices are the edges of G and whose hyperedges are the edge sets of plane spanning trees of G. We prove that if G has at most one interior vertex, then hc(H) = nu(H) - tau(H) + 2. We also show that hc(H) = nu(H) - tau(H) + 2 whenever H is a hypergraph with vertex set and hyperedge set given by the ground set and the bases of a matroid, respectively

    Automorphism Groups of Geometrically Represented Graphs

    Full text link
    We describe a technique to determine the automorphism group of a geometrically represented graph, by understanding the structure of the induced action on all geometric representations. Using this, we characterize automorphism groups of interval, permutation and circle graphs. We combine techniques from group theory (products, homomorphisms, actions) with data structures from computer science (PQ-trees, split trees, modular trees) that encode all geometric representations. We prove that interval graphs have the same automorphism groups as trees, and for a given interval graph, we construct a tree with the same automorphism group which answers a question of Hanlon [Trans. Amer. Math. Soc 272(2), 1982]. For permutation and circle graphs, we give an inductive characterization by semidirect and wreath products. We also prove that every abstract group can be realized by the automorphism group of a comparability graph/poset of the dimension at most four

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page
    • …
    corecore