2,506 research outputs found

    Wireless Power Transfer and Data Collection in Wireless Sensor Networks

    Full text link
    In a rechargeable wireless sensor network, the data packets are generated by sensor nodes at a specific data rate, and transmitted to a base station. Moreover, the base station transfers power to the nodes by using Wireless Power Transfer (WPT) to extend their battery life. However, inadequately scheduling WPT and data collection causes some of the nodes to drain their battery and have their data buffer overflow, while the other nodes waste their harvested energy, which is more than they need to transmit their packets. In this paper, we investigate a novel optimal scheduling strategy, called EHMDP, aiming to minimize data packet loss from a network of sensor nodes in terms of the nodes' energy consumption and data queue state information. The scheduling problem is first formulated by a centralized MDP model, assuming that the complete states of each node are well known by the base station. This presents the upper bound of the data that can be collected in a rechargeable wireless sensor network. Next, we relax the assumption of the availability of full state information so that the data transmission and WPT can be semi-decentralized. The simulation results show that, in terms of network throughput and packet loss rate, the proposed algorithm significantly improves the network performance.Comment: 30 pages, 8 figures, accepted to IEEE Transactions on Vehicular Technolog

    Optimal scheduling and fair servicepolicy for STDMA in underwater networks with acoustic communications

    Get PDF
    In this work, a multi-hop string network with a single sink node is analyzed. A periodic optimal scheduling for TDMA operation that considers the characteristic long propagation delay of the underwater acoustic channel is presented. This planning of transmissions is obtained with the help of a new geometrical method based on a 2D lattice in the space-time domain. In order to evaluate the performance of this optimal scheduling, two service policies have been compared: FIFO and Round-Robin. Simulation results, including achievable throughput, packet delay, and queue length, are shown. The network fairness has also been quantified with the Gini index

    Life-Add: Lifetime Adjustable Design for WiFi Networks with Heterogeneous Energy Supplies

    Get PDF
    WiFi usage significantly reduces the battery lifetime of handheld devices such as smartphones and tablets, due to its high energy consumption. In this paper, we propose "Life-Add": a Lifetime Adjustable design for WiFi networks, where the devices are powered by battery, electric power, and/or renewable energy. In Life-Add, a device turns off its radio to save energy when the channel is sensed to be busy, and sleeps for a random time period before sensing the channel again. Life-Add carefully controls the devices' average sleep periods to improve their throughput while satisfying their operation time requirement. It is proven that Life-Add achieves near-optimal proportional-fair utility performance for single access point (AP) scenarios. Moreover, Life-Add alleviates the near-far effect and hidden terminal problem in general multiple AP scenarios. Our ns-3 simulations show that Life-Add simultaneously improves the lifetime, throughput, and fairness performance of WiFi networks, and coexists harmoniously with IEEE 802.11.Comment: This is the technical report of our WiOpt paper. The paper received the best student paper award at IEEE WiOpt 2013. The first three authors are co-primary author

    Collision-free Time Slot Reuse in Multi-hop Wireless Sensor Networks

    Get PDF
    To ensure a long-lived network of wireless communicating sensors, we are in need of a medium access control protocol that is able to prevent energy-wasting effects like idle listening, hidden terminal problem or collision of packets. Schedule-based medium access protocols are in general robust against these effects, but require a mechanism to establish a non-conflicting schedule. In this paper, we present such a mechanism which allows wireless sensors to choose a time interval for transmission, which is not interfering or causing collisions with other transmissions. In our solution, we do not assume any hierarchical organization in the network and all operation is localized. We empirically show that our localized algorithm is successful within a factor 2 of the minimum necessary time slots in random networks; well in range of the expected (worst case) factor 3-approximation of known first-fit algorithms. Our algorithm assures similar minimum distance between simultaneous transmissions as CSMA(/CD)-based approaches

    Towards Optimal Distributed Node Scheduling in a Multihop Wireless Network through Local Voting

    Full text link
    In a multihop wireless network, it is crucial but challenging to schedule transmissions in an efficient and fair manner. In this paper, a novel distributed node scheduling algorithm, called Local Voting, is proposed. This algorithm tries to semi-equalize the load (defined as the ratio of the queue length over the number of allocated slots) through slot reallocation based on local information exchange. The algorithm stems from the finding that the shortest delivery time or delay is obtained when the load is semi-equalized throughout the network. In addition, we prove that, with Local Voting, the network system converges asymptotically towards the optimal scheduling. Moreover, through extensive simulations, the performance of Local Voting is further investigated in comparison with several representative scheduling algorithms from the literature. Simulation results show that the proposed algorithm achieves better performance than the other distributed algorithms in terms of average delay, maximum delay, and fairness. Despite being distributed, the performance of Local Voting is also found to be very close to a centralized algorithm that is deemed to have the optimal performance

    A Load Balancing Algorithm for Resource Allocation in IEEE 802.15.4e Networks

    Full text link
    The recently created IETF 6TiSCH working group combines the high reliability and low-energy consumption of IEEE 802.15.4e Time Slotted Channel Hopping with IPv6 for industrial Internet of Things. We propose a distributed link scheduling algorithm, called Local Voting, for 6TiSCH networks that adapts the schedule to the network conditions. The algorithm tries to equalize the link load (defined as the ratio of the queue length over the number of allocated cells) through cell reallocation. Local Voting calculates the number of cells to be added or released by the 6TiSCH Operation Sublayer (6top). Compared to a representative algorithm from the literature, Local Voting provides simultaneously high reliability and low end-to-end latency while consuming significantly less energy. Its performance has been examined and compared to On-the-fly algorithm in 6TiSCH simulator by modeling an industrial environment with 50 sensors

    Interference-Aware Scheduling for Connectivity in MIMO Ad Hoc Multicast Networks

    Full text link
    We consider a multicast scenario involving an ad hoc network of co-channel MIMO nodes in which a source node attempts to share a streaming message with all nodes in the network via some pre-defined multi-hop routing tree. The message is assumed to be broken down into packets, and the transmission is conducted over multiple frames. Each frame is divided into time slots, and each link in the routing tree is assigned one time slot in which to transmit its current packet. We present an algorithm for determining the number of time slots and the scheduling of the links in these time slots in order to optimize the connectivity of the network, which we define to be the probability that all links can achieve the required throughput. In addition to time multiplexing, the MIMO nodes also employ beamforming to manage interference when links are simultaneously active, and the beamformers are designed with the maximum connectivity metric in mind. The effects of outdated channel state information (CSI) are taken into account in both the scheduling and the beamforming designs. We also derive bounds on the network connectivity and sum transmit power in order to illustrate the impact of interference on network performance. Our simulation results demonstrate that the choice of the number of time slots is critical in optimizing network performance, and illustrate the significant advantage provided by multiple antennas in improving network connectivity.Comment: 34 pages, 12 figures, accepted by IEEE Transactions on Vehicular Technology, Dec. 201

    Design Aspects of An Energy-Efficient, Lightweight Medium Access Control Protocol for Wireless Sensor Networks

    Get PDF
    This document gives an overview of the most relevant design aspects of the lightweight medium access control (LMAC) protocol [16] for wireless sensor networks (WSNs). These aspects include selfconfiguring and localized operation of the protocol, time synchronization in multi-hop networks, network setup and strategies to reduce latency.\ud The main goal in designing a MAC protocol for WSNs is to minimize energy waste - due to collisions of messages and idle listening - , while limiting latency and loss of data throughput. It is shown that the LMAC protocol performs well on energy-efficiency and delivery ratio [19] and can\ud ensure a long-lived, self-configuring network of battery-powered wireless sensors.\ud The protocol is based upon scheduled access, in which each node periodically gets a time slot, during which it is allowed to transmit. The protocol does not depend on central managers to assign time slots to nodes.\ud WSNs are assumed to be multi-hop networks, which allows for spatial reuse of time slots, just like frequency reuse in GSM cells. In this document, we present a distributed algorithm that allows nodes to find unoccupied time slots, which can be used without causing collision or interference to other nodes. Each node takes one time slot in control to\ud carry out its data transmissions. Latency is affected by the actual choice of controlled time slot. We present time slot choosing strategies, which ensure a low latency for the most common data traffic in WSNs: reporting of sensor readings to central sinks

    Energy Consumption Of Visual Sensor Networks: Impact Of Spatio-Temporal Coverage

    Get PDF
    Wireless visual sensor networks (VSNs) are expected to play a major role in future IEEE 802.15.4 personal area networks (PAN) under recently-established collision-free medium access control (MAC) protocols, such as the IEEE 802.15.4e-2012 MAC. In such environments, the VSN energy consumption is affected by the number of camera sensors deployed (spatial coverage), as well as the number of captured video frames out of which each node processes and transmits data (temporal coverage). In this paper, we explore this aspect for uniformly-formed VSNs, i.e., networks comprising identical wireless visual sensor nodes connected to a collection node via a balanced cluster-tree topology, with each node producing independent identically-distributed bitstream sizes after processing the video frames captured within each network activation interval. We derive analytic results for the energy-optimal spatio-temporal coverage parameters of such VSNs under a-priori known bounds for the number of frames to process per sensor and the number of nodes to deploy within each tier of the VSN. Our results are parametric to the probability density function characterizing the bitstream size produced by each node and the energy consumption rates of the system of interest. Experimental results reveal that our analytic results are always within 7% of the energy consumption measurements for a wide range of settings. In addition, results obtained via a multimedia subsystem show that the optimal spatio-temporal settings derived by the proposed framework allow for substantial reduction of energy consumption in comparison to ad-hoc settings. As such, our analytic modeling is useful for early-stage studies of possible VSN deployments under collision-free MAC protocols prior to costly and time-consuming experiments in the field.Comment: to appear in IEEE Transactions on Circuits and Systems for Video Technology, 201
    • …
    corecore