169 research outputs found

    Max-Leaves Spanning Tree is APX-hard for Cubic Graphs

    Full text link
    We consider the problem of finding a spanning tree with maximum number of leaves (MaxLeaf). A 2-approximation algorithm is known for this problem, and a 3/2-approximation algorithm when restricted to graphs where every vertex has degree 3 (cubic graphs). MaxLeaf is known to be APX-hard in general, and NP-hard for cubic graphs. We show that the problem is also APX-hard for cubic graphs. The APX-hardness of the related problem Minimum Connected Dominating Set for cubic graphs follows

    Scale-free spanning trees: complexity, bounds and algorithms

    Full text link
    We introduce and study the general problem of finding a most "scale-free-like" spanning tree of a connected graph. It is motivated by a particular problem in epidemiology, and may be useful in studies of various dynamical processes in networks. We employ two possible objective functions for this problem and introduce the corresponding algorithmic problems termed mm-SF and ss-SF Spanning Tree problems. We prove that those problems are APX- and NP-hard, respectively, even in the classes of cubic, bipartite and split graphs. We study the relations between scale-free spanning tree problems and the max-leaf spanning tree problem, which is the classical algorithmic problem closest to ours. For split graphs, we explicitly describe the structure of optimal spanning trees and graphs with extremal solutions. Finally, we propose two Integer Linear Programming formulations and two fast heuristics for the ss-SF Spanning Tree problem, and experimentally assess their performance using simulated and real data

    Approximability of Connected Factors

    Get PDF
    Finding a d-regular spanning subgraph (or d-factor) of a graph is easy by Tutte's reduction to the matching problem. By the same reduction, it is easy to find a minimal or maximal d-factor of a graph. However, if we require that the d-factor is connected, these problems become NP-hard - finding a minimal connected 2-factor is just the traveling salesman problem (TSP). Given a complete graph with edge weights that satisfy the triangle inequality, we consider the problem of finding a minimal connected dd-factor. We give a 3-approximation for all dd and improve this to an (r+1)-approximation for even d, where r is the approximation ratio of the TSP. This yields a 2.5-approximation for even d. The same algorithm yields an (r+1)-approximation for the directed version of the problem, where r is the approximation ratio of the asymmetric TSP. We also show that none of these minimization problems can be approximated better than the corresponding TSP. Finally, for the decision problem of deciding whether a given graph contains a connected d-factor, we extend known hardness results.Comment: To appear in the proceedings of WAOA 201

    On unrooted and root-uncertain variants of several well-known phylogenetic network problems

    Get PDF
    The hybridization number problem requires us to embed a set of binary rooted phylogenetic trees into a binary rooted phylogenetic network such that the number of nodes with indegree two is minimized. However, from a biological point of view accurately inferring the root location in a phylogenetic tree is notoriously difficult and poor root placement can artificially inflate the hybridization number. To this end we study a number of relaxed variants of this problem. We start by showing that the fundamental problem of determining whether an \emph{unrooted} phylogenetic network displays (i.e. embeds) an \emph{unrooted} phylogenetic tree, is NP-hard. On the positive side we show that this problem is FPT in reticulation number. In the rooted case the corresponding FPT result is trivial, but here we require more subtle argumentation. Next we show that the hybridization number problem for unrooted networks (when given two unrooted trees) is equivalent to the problem of computing the Tree Bisection and Reconnect (TBR) distance of the two unrooted trees. In the third part of the paper we consider the "root uncertain" variant of hybridization number. Here we are free to choose the root location in each of a set of unrooted input trees such that the hybridization number of the resulting rooted trees is minimized. On the negative side we show that this problem is APX-hard. On the positive side, we show that the problem is FPT in the hybridization number, via kernelization, for any number of input trees.Comment: 28 pages, 8 Figure

    Computing graph gonality is hard

    Get PDF
    There are several notions of gonality for graphs. The divisorial gonality dgon(G) of a graph G is the smallest degree of a divisor of positive rank in the sense of Baker-Norine. The stable gonality sgon(G) of a graph G is the minimum degree of a finite harmonic morphism from a refinement of G to a tree, as defined by Cornelissen, Kato and Kool. We show that computing dgon(G) and sgon(G) are NP-hard by a reduction from the maximum independent set problem and the vertex cover problem, respectively. Both constructions show that computing gonality is moreover APX-hard.Comment: The previous version only dealt with hardness of the divisorial gonality. The current version also shows hardness of stable gonality and discusses the relation between the two graph parameter

    Approximating Maximum Weight Cycle Covers in Directed Graphs with Weights Zero and One

    Get PDF
    A cycle cover of a graph is a spanning subgraph, each node of which is part of exactly one simple cycle. A k-cycle cover is a cycle cover where each cycle has length at least k. Given a complete directed graph with edge weights zero and one, Max-k-DDC(0,1) is the problem of finding a k-cycle cover with maximum weight. We present a 2/3 approximation algorithm for Max-k-DDC(0,1) with running time O(n 5/2). This algorithm yields a 4/3 approximation algorithm for Max-k-DDC(1,2) as well. Instances of the latter problem are complete directed graphs with edge weights one and two. The goal is to find a k-cycle cover with minimum weight. We particularly obtain a 2/3 approximation algorithm for the asymmetric maximum traveling salesman problem with distances zero and one and a 4/3 approximation algorithm for the asymmetric minimum traveling salesman problem with distances one and two. As a lower bound, we prove that Max-k-DDC(0,1) for k ≥ 3 and Max-k-UCC(0,1) (finding maximum weight cycle covers in undirected graphs) for k ≥ 7 are \APX-complet
    • …
    corecore