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Abstract

The hybridization number problem requires us to embed a set of binary rooted phylogenetic
trees into a binary rooted phylogenetic network such that the number of nodes with indegree
two is minimized. However, from a biological point of view accurately inferring the root lo-
cation in a phylogenetic tree is notoriously difficult and poor root placement can artificially
inflate the hybridization number. To this end we study a number of relaxed variants of this
problem. We start by showing that the fundamental problem of determining whether an un-

rooted phylogenetic network displays (i.e. embeds) an unrooted phylogenetic tree, is NP-hard.
On the positive side we show that this problem is FPT in reticulation number. In the rooted
case the corresponding FPT result is trivial, but here we require more subtle argumentation.
Next we show that the hybridization number problem for unrooted networks (when given two
unrooted trees) is equivalent to the problem of computing the Tree Bisection and Reconnect
(TBR) distance of the two unrooted trees. In the third part of the paper we consider the “root
uncertain” variant of hybridization number. Here we are free to choose the root location in
each of a set of unrooted input trees such that the hybridization number of the resulting rooted
trees is minimized. On the negative side we show that this problem is APX-hard. On the
positive side, we show that the problem is FPT in the hybridization number, via kernelization,
for any number of input trees.
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1 Introduction

Within the field of phylogenetics the evolutionary history of a set of contemporary species X , known
as taxa, is usually modelled as a tree where the leaves are bijectively labelled by X . One of the
central challenges in phylogenetics is to accurately infer this history given only measurements on X
(e.g. one string of DNA per species in X) and to this end many different optimality criteria have
been proposed [12, 28]. One issue is that algorithms which construct evolutionary trees (henceforth:
phylogenetic trees) usually produce unrooted phylogenetic trees as output i.e. trees in which the
direction of evolution is not specified and thus the notion of “common ancestor” is not well-defined.
Nevertheless, biologists are primarily interested in rooted trees [22], where the root, and thus the
direction of evolution, is specified. In practice this problem is often addressed by solving the tree-
inference and root-inference problem simultaneously, using a so-called “outgroup” [26]. However,
this process is prone to error (see [37] for a recent case-study) and disputes over rooting location
are prominent in the literature (see e.g. [11]).

Moreover, in recent years there has been growing interest in algorithms that construct rooted
phylogenetic networks [16], essentially the generalization of rooted phylogenetic trees to rooted
directed acyclic graphs. One popular methodology is to construct phylogenetic networks by merging
sets of trees according to some optimality criterion [23, 17]. For example, in the Hybridization
Number (HN) problem we are given a set of rooted phylogenetic trees as input and we are required
to topologically embed them into a network N = (V,E) such that the reticulation number r(N) =
|E|−(|V |−1) is minimized; the minimum value thus obtained is known as the hybridization number
of the input trees. This problem is NP-hard and APX-hard [6] and has similar (in)approximability
properties to the classical problem Directed Feedback Vertex Set (DFVS) [21], which is
not known to be in APX (i.e. it is not known whether it permits constant-factor polynomial-
time approximation algorithms). On a more positive note, there has been considerable progress on
developing fixed parameter tractable (FPT) algorithms for HN. Informally, these are algorithms
which solve HN in time O(f(k) · poly(n)) where n is the size of the input, k is the hybridization
number of the input trees and f is some computable function that only depends on k. FPT
algorithms have the potential to run quickly for large n, as long as k is small (see [10] for an
introduction), and they can be highly effective in applied phylogenetics (see e.g. [36, 29, 14]). In
[5] it was proven that HN is FPT (in the hybridization number) for two input trees and in recent
years the result has been generalized in a number of directions (see [30] and the references therein
for a recent overview).

One modelling issue with HN is that a poor and/or inconsistent choice of the root location in
the input trees can artificially inflate the hybridization number, and this in turn can (alongside
other methodological errors) be misinterpreted as evidence that reticulate evolutionary phenomena
such as horizontal gene transfer are abundant [33, 22]. To take a simple example, consider two
identical unrooted trees on a set X of n taxa which should, in principle, be rooted in the same
place, so the hybridization number should be 0. If, however, they are rooted in different places due
to methodological error, the hybridization number will be at least 1, and in the worst case can rise
to n− 2. The effect is reinforced as the number of trees in the input increases.

To this end, in this article we study a number of variations of HN (and related decision prob-
lems) in which the root has a relaxed role, or no role whatsoever. The first major part of the article
is Section 3 in which we analyse the Unrooted Tree Containment (UTC) problem. This is
simply the problem of determining whether an unrooted phylogenetic network N has an unrooted
phylogenetic tree T topologically embedded within it. (Following [13], an unrooted phylogenetic
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network is simply a connected, undirected graph where every internal node has degree 3 and the
leaves, as usual, are bijectively labelled by X). The rooted version of this problem has received
extensive interest [32, 7, 15] and, although NP-hard [19], permits a trivial FPT algorithm, param-
eterized by the reticulation number of N . Here we show that UTC is also NP-hard, addressing a
number of technicalities that do not emerge in the rooted case, and FPT in the reticulation num-
ber of N . However, here the FPT algorithm is not trivial. We describe a linear kernel based on
contracting common chains and subtrees, and a bounded-search branching algorithm with running
time O(4kn2), where k is the reticulation number of the network and n is the number of nodes in
the network.

In Section 4, a comparatively short section, we consider the Unrooted Hybridization Num-
ber (UHN) problem, where both the input trees and the output network are unrooted. In this
section we restrict our attention to the case when the input has exactly two trees T1 and T2 and we
simply ask to find an unrooted network that displays them both such that the reticulation number
of the network is minimized. Consider for example the case of Figure 1 where we are given two un-
rooted trees T1, T2 as input. Nu is a network that displays them both such that r(Nu) = 1 and this is
optimal. Slightly surprisingly we show that for UHN the minimum reticulation number of any net-
work that contains both T1 and T2, is equal to the Tree Bisection and Reconnection (TBR)
distance of T1 and T2, which (as is well-known) in turn is equal to the size of an optimum solution to
the Maximum Agreement Forest (MAF) problem, minus 1 [1]. Hence, the UHN problem on
two trees immediately inherits both negative and positive results about TBR/MAF: NP-hardness
on one hand, but constant-factor polynomial-time approximation algorithms and FPT algorithms
on the other. This shows that, from an approximation perspective, UHN might be strictly easier
than its rooted counterpart which, as mentioned earlier, might not be in APX at all. It also means
that UHN benefits from ongoing, intensive research into MAF [34, 8, 9, 4].

In the second major part of the article, Section 5, we consider the Root Uncertain Hy-
bridization Number (RUHN) problem. Here the input is a set of unrooted binary trees and
we are to choose the root location of each tree, such that the reticulation number is minimized.
See again Figure 1. In contrast with UHN, if we have to root each of T1, T2 then the minimum
reticulation number is 2 and this is achieved by the rooted network Nr. This simple example also
shows that UHN can be strictly smaller than RUHN, a point we will elaborate on in the prelim-
inaries. Biologically speaking, RUHN is the most relevant problem we study because it explicitly
acknowledges the fact that the input unrooted trees need to be rooted in some way. This high-
lights the fact that a root exists, but its location is uncertain and we would like to infer the root
locations such that the reticulation number of a network that displays them all is minimized. On
the negative side we show that this problem, which was explored experimentally in [36], is already
NP-hard and APX-hard for two trees. On the positive side, we show that the problem is FPT (in
the hybridization number) for any number of trees, giving a quadratic-sized kernel and discussing
how an exponential-time algorithm can be obtained for solving the kernel. Similar ideas were in-
troduced for the rooted variant in [31]. Finally, in Section 6 we conclude with a number of open
questions and future research directions.

We begin with a section dedicated to preliminaries in which we formally define all the models
studied in this paper and briefly discuss their differences.
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Figure 1: Two unrooted trees T1, T2, an unrooted network Nu with reticulation number 1 that
displays T1 and T2 and a rooted network Nr that displays rootings of T1 and T2 and has reticulation
number 2. Nu is an optimal solution to the UHN problem, while Nr is an optimal solution to the
RUHN problem.

2 Preliminaries

A rooted binary phylogenetic network N = (V,E) on a set of leaf-labels (also known as taxa) X
(where |X | ≥ 2) is a directed acyclic graph (DAG) in which the leaves are bijectively labelled by
X , there is exactly one root (a node with indegree 0 and outdegree 2), and all nodes are either tree
nodes (indegree 1, outdegree 2) or reticulation nodes (indegree 2, outdegree 1). The reticulation
number r(N) of N is defined as |E| − (|V | − 1), which is equal to the number of reticulation nodes
in N . A rooted binary phylogenetic network N which has r(N) = 0 is simply called a rooted
binary phylogenetic tree. Two rooted binary phylogenetic networks N1 and N2 on X are said to be
isomorphic if there exists an isomorphism between N1 and N2 which is the identity on X .

Similarly, an unrooted binary phylogenetic network on X is simply a connected, undirected graph
N = (V,E) with |X | nodes of degree 1 (i.e., leaves), labelled bijectively by X , and all other nodes
are of degree 3. Although notions of indegree and outdegree do not apply here, reticulation number
can still naturally be defined as r(N) = |E| − (|V | − 1). An unrooted binary phylogenetic tree is
an unrooted binary phylogenetic network with r(N) = 0. See Figure 1 for examples of rooted and
unrooted networks.

Throughout the article we will occasionally refer to caterpillars. For n ≥ 4 an unrooted caterpillar
(x1, ..., xn) is the unrooted binary phylogenetic tree constructed as follows: it consists of a central
path (p2, ..., pn−1) with a single taxon xi adjacent to each pi (for 3 ≤ i ≤ n− 2), two taxa x1 and
x2 adjacent to p2 and two taxa xn−1 and xn adjacent to pn−1. The two trees shown in Figure 1
are both unrooted caterpillars with n = 6. A rooted caterpillar is obtained by subdividing the edge
{p2, x1}, taking the newly created node p1 as the root and directing all edges away from it.

We say that a rooted binary phylogenetic network N on X displays a rooted binary phylogenetic
tree T on X if T can be obtained from a subtree T ′ of N by suppressing nodes with indegree 1
and outdegree 1. Similarly, an unrooted binary phylogenetic network N on X displays an unrooted
binary phylogenetic tree T on X if T can be obtained from a subtree T ′ of N by suppressing nodes
of degree 2. In both cases we say that T ′ is an image of T .

Consider the following problem, which has been studied extensively, and its unrooted variant.
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Problem: Hybridization Number (HN)
Input: A set T of rooted binary phylogenetic trees on the same set of taxa X .
Output: A rooted binary phylogenetic network N on X such that, for each T ∈ T , N displays
T .
Goal: Minimize r(N).

The minimum value of r(N) thus obtained we denote by hr(T ) and this is also called the hy-
bridization number of T . Note that feasible solutions to HN should include certificates verifying
that the input trees are actually displayed by N . A certificate in this case is usually an image of
each tree embedded in N . Determining whether a rooted network displays a rooted tree - this is the
Tree Containment problem - is NP-hard [19], hence the need for these certificates. (Certificates
are thus also required for RUHN, to be defined in due course).

HN is APX-hard (and thus NP-hard) [6] but FPT in parameter hr(T ) [31]. That is, answering
the question “Is hr(T ) ≤ k?” can be answered in time O(f(k) · poly(n)) where f is a computable
function that only depends on k and n is the size of the input to HN. It is well-known that hr(T ) = 0
if and only if all the trees in T are isomorphic, which can easily be checked in polynomial time [28].

Problem: Unrooted Hybridization Number (UHN)
Input: A set T of unrooted binary phylogenetic trees on the same set of taxa X .
Output: An unrooted binary phylogenetic network N on X such that, for each T ∈ T , N displays
T .
Goal: Minimize r(N).

We write hu(T ) to denote the minimum value of r(N) thus obtained. It is natural to ask: do
feasible solutions to UHN require, as in the rooted case, certificates verifying that the input trees
are displayed by the network? This motivates our study of the following problem, which we will
start with in Section 3.

Problem: Unrooted Tree Containment (UTC)
Input: An unrooted binary phylogenetic network N and an unrooted binary phylogenetic tree T ,
both on X .
Question: Does N display T ?

Finally, we will consider the variant in which we require the unrooted input trees to be rooted.
A rooted binary phylogenetic tree T ′ on X is a rooting of an unrooted binary phylogenetic tree T
if T ′ can be obtained by subdividing an edge of T with a new node u and directing all edges away
from u. We say that T is the unrooting of T ′, denoted U(T ′).

Problem: Root Uncertain Hybridization Number (RUHN)
Input: A set T of unrooted binary phylogenetic trees on the same set of taxa X .
Output: A root location (i.e. an edge) of each tree in T ∈ T (which induces a set of rooted
binary phylogenetic trees T ′ on X) and a rooted binary phylogenetic network N on X such that,
for each T ′ ∈ T ′, N displays T ′.
Goal: Minimize r(N).

The minimum value of r(N) obtained is denoted hru(T ) and is called the root-uncertain hybridiza-
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tion number of T . Note that if T is a set of rooted binary phylogenetic trees and T ∗ is the set of
unrooted counterparts of T - that is, T ∗ = {U(T )|T ∈ T } - then hru(T ∗) can differ significantly
from hr(T ). For example, if T consists of two rooted caterpillars on the same set of n taxa, but
with opposite orientation, then hr(T ) = n− 2 whilst hru(T ∗) = 0. More generally, a little thought
should make it clear that on a set T of binary rooted trees and the set T ∗ of their corresponding
unrooted versions, we have:

hu(T ∗) ≤ hru(T ∗) ≤ hr(T ). (1)

It is possible to say more about this inequality chain. Let T ∗ be the two unrooted binary trees
T1 and T2 shown in Figure 1. It is easy to see that hu(T ∗) = 1: we simply arrange the taxa in
a circle with circular ordering a, b, c, d, e, f (see Nu in Figure 1). However, as can be verified by
case analysis (or using the “re-root by hybridization number” functionality in Dendroscope [18]),
hru(T ∗) = 2. Moreover, let T be the two rooted trees obtained by rooting the first tree on the edge
entering a, and the second tree on the edge entering e. It can be verified that hr(T ) = 3. Hence,
T is an example when both inequalities in (1) are simultaneously strict.

3 The Tree Containment problem on unrooted networks and
trees

Given a rooted binary phylogenetic network N = (V,E) on X and a rooted binary phylogenetic
tree T also on X it is trivial to determine in time O(2k · poly(n)) whether N displays T , where
k = r(N) = |E| − (|V | − 1) and n = |V |. This is because, for each of the k reticulation nodes,
we can simply guess which of its two incoming edges are on the image of T . Here we consider the
natural unrooted analogue of the problem where both N and T are unrooted.

We show that the question whether N displays T is NP-hard, but FPT when parameterized by
k = r(N) = |E| − (|V | − 1). Note that, unlike for the rooted case, an FPT result here is not trivial,
since the notion “reticulation node” no longer has any meaning.

3.1 The hardness of Unrooted Tree Containment (UTC)

Theorem 1. UTC is NP-hard.

Proof. We reduce from the problem Node Disjoint Paths On Undirected Graphs (NDP).
The reduction is similar in spirit to the reduction given in [19], where the hardness of tree con-
tainment on rooted networks was proven by reducing from NDP on directed graphs. However, our
reduction has to deal with a number of subtleties specific to the case of unrooted trees and networks.

NDP is defined as follows. We are given an undirected graph G = (V,E) and a multiset of
unordered pairs of nodes W = {{s1, t1}, . . . , {sk, tk}}, where for each i, si 6= ti. Note that we do not
assume a distinction between the s nodes and the t nodes (we refer to them together as terminals),
and the same pair can appear several times. The question is: do there exist k paths Pi (1 ≤ i ≤ k)
such that Pi connects si to ti, and such that the Pi are mutually node-disjoint?

The literature is somewhat ambiguous about whether endpoints of the paths are allowed to
intersect, and of course this is a necessary condition if we are to allow some terminal to appear in
more than one pair in W . We posit as few restrictions as possible on the input - specifically, we
allow each terminal to be in multiple pairs - and then show that this can be reduced to a more
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restricted instance. We do however make use of the fact that NDP remains hard on cubic graphs1,
and assume henceforth that G is cubic.

We start by first reducing the cubic NDP instance (G,W ) to a new instance (G′,W ′) where G′

has maximum degree 3 and no nodes of degree 2, each terminal appearing within W ′ is in exactly
one pair, and a node of G′ is a terminal if and only if it has degree 1. As usual, the idea is that
(G,W ) is a YES instance for NDP if and only (G′,W ′) is. The transformation to (G′,W ′) is
straightforward. Observe firstly that in the (G,W ) instance each terminal can appear in at most
3 pairs (otherwise it is trivially a NO instance). Depending on whether a terminal is in 1, 2, or 3
pairs we use a different transformation.

1. A terminal is in 3 pairs in W : {si, ti}, {sj, tj}, {sk, tk} where si = sj = sk. We split the
terminal into 3 distinct nodes; see Figure 2(left).

2. A terminal is in 2 pairs in W : {si, ti}, {sj, tj} where si = sj. We split the terminal into 2
distinct nodes; see Figure 2(middle).

3. A terminal is in 1 pair in W : {si, ti}. Here we do not split the terminal but we do introduce
a new terminal pair {p, q}; see Figure 2(right). The introduction of {p, q} concerns the fact
that, prior to the transformation, at most one of the node disjoint paths can intersect with
node si. The presence of {p, q} ensures that, after transformation, at most one path can
intersect with the image of this node. (A simpler transformation is not obviously possible,
due to the degree restrictions on G′).

The transformations are applied as often as necessary to obtain the instance (G′,W ′). Let
W ′ = {{s1, t1}, . . . , {sk′ , tk′}}. Due to the fact that each terminal now appears in exactly one pair,
we can schematically view the (G′,W ′) instance as shown in Figure 3.

Now, we reduce (G′,W ′) to UTC. Let T be the unrooted binary phylogenetic tree on 2k′ + 1
taxa X = {ρ, s1, t1, . . . , sk′ , tk′} shown in Figure 4. The unrooted binary phylogenetic network N ,
also on X , is constructed from (G′,W ′) as shown in Figure 5. It can easily be verified that N
displays T if and only if (G′,W ′) is a YES instance to NDP.

1 This follows from [25]. In that article the hardness of NDP is proven for undirected graphs of maximum degree
3, but using standard gadgets nodes of degree 1 or 2 can easily be upgraded to degree 3. See also [27], p. 1225 for a
related discussion.
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si = sj = sk

si sj sk si sj

q

si p

Figure 2: Gadgets for obtaining a transformed NDP instance (G′,W ′) where G′ has maximum
degree 3, no nodes of degree 2, a node has degree 1 if and only if it is a terminal, and each terminal
appears in exactly one pair.

sk′ sk′−1
. . .

s1

G′

tk′ tk′−1

. . .
t1

Figure 3: Schematic representation of the transformed NDP instance (G′,W ′).
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Figure 4: The tree T used in the reduction of NDP to UTC.
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Figure 5: The network N used in the reduction of NDP to UTC.
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3.2 Unrooted Tree Containment (UTC) parameterized by reticulation
number

Recall that the input to UTC is an unrooted binary phylogenetic network N = (V,E) and an
unrooted binary phylogenetic tree T , both on X . In this section we use n := |V | to denote the size
of the input to UTC, which is justified by noticing that |X | ≤ |V | and |V | − 1 ≤ |E| ≤ (3/2)|V |
and that |V | can be arbitrarily larger than |X |.

We prove that UTC is fixed parameter tractable (FPT) in parameter r(N). First, we give a
linear kernel: we show how to transform in poly(n) time the instance (N, T ) of UTC into a new
instance (N ′′, T ′′) on X ′′ such that r(N ′′) ≤ r(N), the size of the instance (N ′′, T ′′) is at most a
linear function of r(N ′′), and N ′′ displays T ′′ if and only if N displays T . Second, we describe
a simple bounded-search branching algorithm to answer UTC, and combining these two results
establishes the FPT result. (Note that the second result alone is actually sufficient to establish
the FPT result, and could be used without first applying the kernelization procedure, but the
kernelization is of independent interest and can contribute to further speed-up in practice).

We start with some necessary definitions, which we give in a form somewhat more general than
required in this section, so that we can use them in later sections. Let N be a collection of binary,
unrooted, phylogenetic networks (all on X) and Ni ∈ N . A subtree T is called a pendant subtree of
Ni if there exists an edge e the deletion of which detaches T from Ni. A subtree T , which induces
a subset of taxa X ′ ⊂ X , is called common pendant subtree of N if the following two conditions
hold:

1. T is a pendant subtree on each Ni ∈ N and Ni|X ′ = Nj|X ′ for each pair of two distinct
networks Ni, Nj ∈ N . Here by Ni|X ′ we mean the tree which is obtained from Ni by taking
the minimum spanning tree on X ′ and then suppressing any resulting node of degree 2.

2. Let ei be the edge of network Ni ∈ N the deletion of which detaches T from Ni and let vi ∈ ei
be the endpoint of ei “closest” to the taxon set X ′. Let’s say that we root each Ni|X ′ at vi,
thus inducing a rooted binary phylogenetic tree (Ni|X ′)ρ on X ′. We require that, for each
distinct pair of networks Ni, Nj ∈ N , (Ni|X ′)ρ = (Nj |X ′)ρ.

The second condition formalizes the idea that the point of contact (root location) of the tree should
explicitly be taken into account when determining whether a pendant subtree is common. (This is
consistent with the definition of common pendant subtree elsewhere in the literature).

The above definition is the basis of the following polynomial-time reduction rule which we will
use extensively.

Common Pendant Subtree (CPS) reduction: Find a maximal common pendant subtree in
N . Let T be such a common subtree with at least two taxa and let XT be its set of taxa.
Clip T from each Ni ∈ T . Attach a single label x /∈ X in place of T on each Ni. Set
X := (X \XT ) ∪ {x}.

Note that, if all the networks in N are copies of the same, identical unrooted binary tree on X ,
we adopt the convention that iterated application of the CPS reduction reduces all the trees to a
single taxon {x}.

Next, let N be an unrooted binary network on X . For each taxon xi ∈ X , let pi be the unique
parent of xi inN . Let C = (x1, x2, . . . , xt) be an ordered sequence of taxa and let P = (p1, p2, . . . , pt)
be the ordered sequence corresponding to their parents. We allow p1 = p2 or pt−1 = pt. If P is a
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path in N then C is called a chain of length t. A chain C is a common chain of N if C is a chain
in each Ni ∈ N . This brings us to our second polynomial-time reduction rule.

Common d-Chain (d-CC) reduction: Find a maximal common chain C = (x1, . . . , xt) of N
where t > d. Delete from each Ni ∈ N all leaf labels xd+1, . . . , xt, suppress any resulting
node of degree 2 and delete any resulting unlabelled leaves of degree 1.

Lemma 1. There exists a kernelization for UTC producing an instance (N ′′, T ′′) with at most
max(6k, 4) taxa and max(15k, 5) edges, where k = r(N ′′) ≤ r(N).

Proof. If, during the kernelization procedure, we ever discover that the answer to UTC is definitely
NO (respectively, YES) then we simply output a trivial NO (YES) instance as (N ′′, T ′′) e.g. letting
N ′′ and T ′′ be two topologically distinct (identical) unrooted phylogenetic trees on 4 taxa and 5
edges. We shall henceforth use this implicitly; this is where the “4” and “5” terms come from in
the statement of the lemma. Note that if |X | ≤ 3, the answer is trivially YES, so we henceforth
assume |X | ≥ 4.

We begin with some trivial pre-processing. If N contains a cut-edge e such that one of the two
connected components obtained by deleting e contains no taxa, we delete e and this component
from N and suppress the degree 2 node created by deletion of e. (This is safe, i.e. does not alter
the YES/NO status of the answer to UTC because the image of T in N can never enter such a
component). We repeat this step until it no longer holds. Let N ′ be the resulting network. If N ′

and T are both trees, and are topologically distinct (respectively, identical) the answer is definitely
NO (YES). Hence, we assume that N ′ is not a tree.

Next, we apply the Common Pendant Subtree (CPS) reduction to {N ′, T } until it can no
longer be applied. It is easy to see that applying this reduction is safe. This is because the image
of the common pendant subtree, and the common pendant subtree itself, are necessarily identical
in N ′. Gently abusing notation, let N ′ be the resulting network and T ′ the resulting tree. Observe
that at this stage N ′ potentially still contains pendant subtrees (with 2 or more taxa). This occurs
if the pendant subtree has no common counterpart in T ′. However, if this happens the answer is
definitely NO. Therefore, we can henceforth assume that N ′ contains no pendant subtrees (with 2
or more taxa).

The next step is to apply the Common 3-Chain (3-CC) reduction repeatedly to {N ′, T ′}
until it can no longer be applied. This has the effect of clipping all common chains on 4 or more
taxa to length 3. (The fact that we can clip common chains to constant length is the reason we
obtain a linear kernel). Let (N ′′, T ′′) be the instance obtained after a single application of the
common chain reduction rule. To establish correctness it is sufficient to show that (N ′′, T ′′) is a
YES instance if and only if (N ′, T ′) is a YES instance.

It is easy to see that if (N ′, T ′) is a YES instance then (N ′′, T ′′) is a YES instance. This is
because, if N ′ contains an image of T ′, then an image of T ′′ (in N ′′) can be obtained from the
image of T ′ simply by disregarding the surplus taxa deleted from the chain.

The other direction is somewhat more subtle. Observe that, prior to the chain reduction, the
common chain C′ = (x1, x2, . . . , xt), t ≥ 4, was not pendant inN ′ (becauseN ′ contained no pendant
subtrees). Hence, the clipped chain C′′ = (x1, x2, x3) is not pendant in N ′′. Let e1, e12, e23, e3 be
the 4 interior edges of N ′′ shown in Figure 6.
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e1 e12 e23 e3

x1 x2 x3

Figure 6: The chain C′′ in N ′′.

Now, suppose N ′′ displays T ′′; we will prove that N ′ displays T ′. Fix some image of T ′′ inside
N ′′. We distinguish two main cases. Note that C′ is pendant in T ′ if and only if C′′ is pendant in T ′′.

Case 1: C′′ is not pendant in T ′′. Both e1 and e3 must be on the image of T ′′ in N ′′, because
otherwise the image of the chain C′′ is pendant, a contradiction. If both e12 and e23 are also on the
image, then the chain C′′ and its image in N ′′ are identical. In particular, there is no ambiguity
about the orientation of the chain, so reintroducing the clipped taxa (x4, . . . , xt) into the image of
T ′′ (next to x3) yields an image of T ′ in N ′. The only remaining subcase is that, in addition to
both e1 and e3, exactly one of {e12, e23} is on the image. Without loss of generality let this be e12.
However, this is not possible, because it would mean that {x1, x2} are pendant in the image of C′′,
and this cannot be an image of T ′′ because {x1, x2} are not pendant in T ′′.

Case 2: C′′ is pendant in T ′′. There are two subcases to consider.

• In the first subcase, x1 and x2 share a parent in T ′′. (That is, the chain is oriented towards
the rest of the tree). In such a situation both e12 and e3 must be on the image of T ′′. (If
this was not the case, {x2, x3} would be pendant in the image of C′′, but this is not possible
because they are not pendant in T ′′.) Now, if e23 is on the image (irrespective of whether e1
is on the image) then, as in the earlier case, reintroducing the clipped taxa (x4, . . . , xt) into
the image of T ′′ (next to x3) yields an image of T ′ in N ′. The main subtlety is if e23 is not on
the image, and (necessarily) e1 is. This occurs if the image of C′′ exits via e1, follows some
simple path P through another part of the network, and re-enters at e3. However, note that,
within the image, the path P contains exactly one node of degree 3 - which is the image of
the parent of x3 - and for the rest only degree 2 nodes. This means that we can manipulate
the image of T ′′ as follows: put e23 in the image, remove e1 from the image, and then tidy up
the image in the usual sense (i.e. repeatedly deleting unlabelled nodes of degree 1). This is
a new, valid image of T ′′, and puts us back in the situation when e23 is on the image, so we
are done.

• In the second subcase, x2 and x3 share a parent in T ′′. (That is, the chain is oriented away
from the rest of the tree). Observe that e1 and e23 must be on the image, because otherwise
{x1, x2} is pendant in the chain image but not in T ′′. If e12 is in the image (irrespective of
whether e3 is in the image), re-introducing the clipped taxa (x4, . . . , xt) to the right of x3

yields an image of T ′ in N ′. Again, there is one subtle situation, and that is when e12 is not
on the image, but e3 is. Just as before this occurs if the image of C′′ exits via e1, follows
some simple path P through another part of the network, and re-enters at e3. The unique
node on P of degree 3 is the image of the parent of x1 (and all other nodes on P are degree
2). Hence, if we put e12 into the image, remove e3 from the image, and tidy the image up, we
obtain a new valid image of T ′′ and we are back in the case when e12 is in the image.
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Thus, we have established that if N ′′ displays T ′′, then N ′ displays T ′. Hence, an application
of the 3-CC chain reduction is always safe.

Although it can be shown that the CPS and 3-CC reduction rules produce a linear-size kernel,
we now add a third reduction rule which helps to further reduce the size of the kernel and (more
importantly) the value of the parameter (i.e., the reticulation number). Assume that none of the
previous reduction rules are applicable.

Network chain (NC) reduction. If the network contains a chain (x1, . . . , xt) with t ≥ 3 then
proceed as follows. Let ei,i+1 be the edge connecting the parents of xi and xi+1. Let e1 be the edge
incident to the parent of x1 that is not e12 and not incident to x1. Let et be the edge incident to
the parent of xt that is not et−1,t and not incident to xt. (Note that all these edges exist, because
the network does not contain any pendant subtrees, and thus no pendant chains.)

1. If t ≥ 7 then return a trivial NO instance.

2. If t = 6 then delete e34.

3. If t = 5, do the following. If the tree contains a chain (x1, x2, x3), delete e34. Otherwise,
delete e23.

4. If t = 4, do the following. If the tree contains a chain (x1, x2, x3), delete e34. If it contains a
chain (x2, x3, x4), delete e12. Otherwise, delete e23.

5. If t = 3 and the tree has a pendant subtree on {x1, x2, x3}, do the following. If x1 and x2

have a common parent in the tree, delete e1. Otherwise, delete e3.

6. Otherwise, if t = 3 and the tree has a pendant subtree on {x1, x2}, delete e23.

7. Otherwise, if t = 3 and the tree has a pendant subtree on {x2, x3}, delete e12.

8. Otherwise, if t = 3 and the tree has a chain (x1, x2, x3), delete x3.

In all cases, we suppress any resulting degree-2 nodes.
We now show that the network chain reduction (NC) rule is safe. Suppose that the network

displays the tree. Then the chain (x1, . . . , xt) of the network is either also a chain of the tree,
or there exists some 1 ≤ i ≤ t − 1 such that the tree has pendant chains on {x1, . . . , xi} and on
{xi+1, . . . , xt}. We now discuss each case of the network chain reduction separately.

1. In this case it follows that there is a common chain of length at least four, which is not possible
since we assumed that the 3-CC common chain reduction is not applicable.

2. This is only possible if (x1, x2, x3) and (x4, x5, x6) are pendant chains of the tree. Hence, e34
is not used by any image of the tree in the network and can be deleted.

3. If the tree contains a chain (x1, x2, x3), then it must be pendant. Hence, e34 can be deleted.
Otherwise, (x3, x4, x5) must be a pendant chain of the tree and e23 can be deleted.

4. Similar to the previous case. If neither (x1, x2, x3) nor (x2, x3, x4) is a pendant chain of the
tree, then (x1, x2) and (x3, x4) must both be pendant chains of the tree, in which case e23
can be deleted.

5-7. Similar to the previous cases.
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8. In this case, (x1, x2, x3) is a chain of the tree that is not pendant (since otherwise we would
be in one of the previous cases). The image of the tree in the network must then use all
of e1, e12, e23, e3. Now we delete x3 and suppress the resulting degree-2 node. Hence the
reduced network has a chain (x1, x2) with edges e1, e12, e2 defined as in the network chain
reduction rule. To see that this reduction is safe, assume that the reduced tree is displayed
by the reduced network. Then the embedding of the tree in the network has to use e1 and e2.
It does not necessarily use e12 but if it does not it is easy to adapt the image such that it
does use e12. Hence, the chain (x1, x2) can be replaced by (x1, x2, x3) and it follows that the
original tree is displayed by the original network.

Let (N ′′, T ′′) be an instance obtained by applying the CPS, 3-CC and NC reduction rules
exhaustively until none applies. Clearly, the process by which (N ′′, T ′′) is obtained from the original
(N, T ) can be completed in polynomial time, since all pre-processing steps delete at least one node
or edge from the network. It is easy to verify that, by construction, r(N ′′) ≤ r(N). Hence, to
complete the kernelization it remains only to show that the size of the instance (N ′′, T ′′) is at
most a linear function of r(N ′′), where for brevity we let k = r(N ′′). To see this, recall firstly
that N ′′ has no pendant subtrees. Let N ′′ = (V ′′, E′′). Suppose we delete all taxa in N ′′ and
then repeatedly suppress nodes of degree 2, and delete nodes of degree 1, until neither of these
operations can be applied anymore. For k ≥ 2, this creates a 3-regular graph N∗ with nodes V ∗

and edges E∗, that potentially contains multi-edges and loops. Notice that in each deletion of a
leaf and each suppression of a node with degree 2, we diminish both the number of nodes and the
number of edges by 1. Since we started out with |E′′| = k+ |V ′′|−1 we still have |E∗| = k+ |V ∗|−1.
Moreover, because of 3-regularity, |E∗| = 3|V ∗|/2. Combining yields |V ∗| = 2k − 2 and therefore
|E∗| = 3(k − 1). (For k = 1, N∗ contains no nodes and is strictly speaking not a graph: in this
case we define N∗ to be a single node with a loop). Observe that N ′′ can be obtained from N∗ by
replacing each edge with a chain of taxa: this operation is sufficient because N ′′ had no pendant
subtrees. Moreover, each such chain contains at most two leaves since otherwise the network chain
reduction rule would be applicable. This means that |X ′′| is at most 2 ·max(1, 3(k − 1)), and the
number of edges in N ′′ is at most 5 ·max(1, 3(k − 1)).

We observe that simply reducing common chains to length 2, i.e. applying the 2-CC reduction
rule, is not safe, as the following example shows. Suppose N consists of a single cycle with taxa
a, b, c, d, e, f in that (circular) order. Let T be a caterpillar tree with taxa a, b, c, f, e, d in that order.
N does not display T . However, if the common chain (a, b, c) is clipped to (a, b) - or to (b, c) - the
resulting network N ′′ does display T ′′. A symmetrical argument also holds for the common chain
(f, e, d).
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Figure 7: Example showing that it is not safe to reduce chains to length 2. The shown network N
does not display the given tree T . However, if the chains (a, b, c) and (d, e, f) are reduced to length 2,
then the reduced network N ′ does display the reduced tree T ′ (by deleting the dotted edge).

The proof of the FPT result follows by applying a simple bounded-search branching algorithm to
the kernelized instance. Note that, as mentioned earlier, this algorithm can be applied independently
of the kernelization.

Theorem 2. Let (N, T ) be an input to UTC, where N = (V,E). There exists an O(4kn2)-time
algorithm for UTC, where k = r(N) and n = |V |.

Proof. If the network is a tree then the problem can be solved easily in polynomial time by deciding
whether or not the network is isomorphic to the input tree. Otherwise, we proceed as follows.

Consider any two taxa x, y that have a common neighbour in the tree T . If x and y also have
a common neighbour in N , then we can delete y from both T and N and suppress the resulting
degree-2 nodes (see the CPS reduction above).

Otherwise, let nx and ny be the neighbours of, respectively, x and y in the network N . Let e1, e2
be the two edges that are incident to nx but not to x and let e3, e4 be the two edges that are incident
to ny but not to y. If N displays T , then the embedding of T in N can contain at most three of
these four edges e1, . . . , e4 (since there is exactly one edge leaving the path between x and y in the
embedding). Hence, we create four subproblems P1, . . . , P4. In subproblem Pi, we delete edge ei
and suppress resulting degree-2 nodes. The parameter (reticulation number) in each subproblem
is k − 1. Hence, the running time is O(4kn2).

4 Unrooted hybridization number (UHN) on two trees

In this section we study the unrooted hybridization number problem in case the input consists of
two trees T1, T2 and we show equivalence to a well-known problem that has been studied before in
the literature, namely the Tree Bisection and Reconnect problem.

Let T be an unrooted, binary tree on X . A Tree Bisection and Reconnect (TBR) move is defined
as follows: (1) we delete an edge of T to obtain a forest consisting of two subtrees T ′ and T ′′. (2)
Then we select two edges e1 ∈ T ′, e2 ∈ T ′′, subdivide these two edges with two new nodes v1 and
v2, add an edge from v1 to v2, and finally suppress all nodes of degree 2. In case either T ′ or T ′′ are
single leaves, then the new edge connecting T ′ and T ′′ is incident to that node. Let T1, T2 be two
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binary and unrooted trees on the same set of leaf-labels. The TBR-distance from T1 to T2, denoted
dTBR(T1, T2), is simply the minimum number of TBR moves required to transform T1 into T2.

It is well known that computation of TBR-distance is essentially equivalent to the Maximum
Agreement Forest (MAF) problem, which we now define. Given an unrooted, binary tree
on X and X ′ ⊂ X we let T (X ′) denote the minimal subtree that connects all the elements in
X ′. An agreement forest of two unrooted binary trees T1, T2 on X is a partition of X into non-
empty blocks {X1, . . . , Xk} such that (1) for each i 6= j, T1(Xi) and T1(Xj) are node-disjoint
and T2(Xi) and T2(Xj) are node-disjoint, (2) for each i, T1|Xi = T2|Xi. A maximum agreement
forest is an agreement forest with a minimum number of components, and this minimum is denoted
dMAF (T1, T2). In 2001 it was proven by Allen and Steel that dMAF (T1, T2) = dTBR(T1, T2) + 1 [1].

Theorem 3. Let T1, T2 be two unrooted binary phylogenetic trees on the same set of taxa X. Then
dTBR(T1, T2) = hu(T1, T2).

Proof. We first show hu(T1, T2) ≤ dTBR(T1, T2). Let dTBR(T1, T2) = k. Observe that if k = 0 then
T1 = T2, because dTBR is a metric, and if T1 = T2 then hu(T1, T2) = 0, so the claim holds. Hence,
assume k ≥ 1.

By the earlier discussed equivalence, T1 and T2 have an agreement forest with k + 1 compo-
nents F = {F0, . . . , Fk}. Our basic strategy is to start with a network that trivially displays T1

(specifically, T1 itself) and then to “wire together” the components of F such that an image of T2 is
progressively grown. Each such wiring step involves subdividing two edges and introducing a new
edge between the two subdivision nodes. This increases the number of nodes in the network by 2
and the number of edges by 3, so it increases the reticulation number by 1. We will do this k times,
yielding the desired result.

Observe that for least one of the components, Fp say, T2(Fp) will be pendant in T2. Let
F ′ = F \ {Fp}, X ′ = X \ Fp, T

′

1 = T1|X ′ and T ′

2 = T2|X ′. Let {u, v} be the edge that, when
deleted, detaches T2(Fp) from the rest of the tree. Assume without loss of generality that u lies on
T2(Fp) and v lies on T2(X

′). The nodes u and v thus lie on unique edges of T2|Fp and T2|X
′ (or

taxa if Fp and/or X ′ are singleton sets); these can be viewed as the wiring points where Fp wants
to connect to the rest of the tree. Next, observe that F ′ is an agreement forest for T ′

1 and T ′

2, so it
too has a pendant component, and the process can thus be iterated. In this way we can impose an
elimination ordering on the components of F . For the sake of brevity assume that the components
F0, F1, . . . , Fk are already ordered in this way.

Now, set Nk := T1. For each Fi ∈ F , fix the unique image of Fi in Nk (this allows us without
ambiguity to refer to the image of Fi in the intermediate networks we construct). For each 0 ≤ j ≤
k− 1, we construct Nj from Nj+1 in the following way. Assume that by construction Nj+1 already
contains an image of T2|(∪j′>jFj′ ) and an image of T2|Fj , and that these images are disjoint.
(Clearly this is true for j = k− 1, by the definition of agreement forest). From the earlier argument
we know the two wiring points at which T2|Fj wishes to join with T2|(∪j′>jFj′ ). If |Fj | ≥ 2 the
wiring point within Fj will be an edge, otherwise it is a taxon, and an identical statement holds for
| ∪j′>j Fj′ |. Assume for now that both wiring points are edges, e1 and e2 respectively. The images
of these edges will, in general, be paths in Nj+1. We subdivide any edge on the image of e1, and
any edge on the image of e2, and connect them by a new edge. If a wiring point is a taxon x the
only difference is that we subdivide the unique edge entering x in Nj−1. At the end of this process,
N0 displays both T1 and T2. This completes the claim hu(T1, T2) ≤ dTBR(T1, T2).

To prove hu(T1, T2) ≥ dTBR(T1, T2), let k = hu(T1, T2) and let N be an unrooted phylogenetic
network with reticulation number k that displays both T1 and T2. Fix an image T ′

1 of T1 inside
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N . If this image is not a spanning tree of N , greedily add edges to the image until it becomes one.
(The edges added this way will correspond to unlabelled degree 1 nodes that are repeatedly deleted
when tidying up the image to obtain T1). Now, fix an image T ′

2 of T2 inside N . Let F ⊆ E(N) be
those edges of N that are only in T ′

2. Deleting in T2 the edges that correspond to F breaks T2 up
into a forest with at most |F | + 1 components. In fact, by construction this will be an agreement
forest. Hence, dTBR(T1, T2) ≤ |F |. What remains is to show that |F | ≤ hu(T1, T2). Given that T ′

1

was a spanning tree of N , and none of the edges on this image are in F , the graph (V,E − F ) is
connected, so |E| − |F | ≥ |V | − 1. Hence, |F | ≤ |E| − |V |+ 1 = k.

Note that the proof given above is constructive, in the following sense. Given an agreement forest
F with k + 1 components, one can easily construct in polynomial time an unrooted network N
with reticulation number k that displays both the trees, and given an unrooted network N with
reticulation number k (and images of T1 and T2 in N) one can easily construct in polynomial time
an agreement forest F with k + 1 components.

Corollary 1. UHN is NP-hard, in APX, and FPT in parameter hu(T1, T2).

Proof. Immediate from Theorem 3 and the corresponding results for dTBR. Hardness (and a linear-
size kernel) were established in [1]. The best-known approximation result for dTBR is currently
a polynomial-time 3-approximation [34, 35]. The best-known FPT result for dTBR is currently
O(3k · poly(n)) [8].

5 Root-uncertain hybridization number (RUHN)

In this section we turn our attention to the Root Uncertain Hybridization Number (RUHN)
problem. We remind the reader that in this problem the input consists of a set of unrooted binary
trees and we are asked to choose the root location of each tree, such that the hybridization number
is minimized. In the first part of this section we show that RUHN is already NP-hard and APX-
hard even when the input consists of two trees. On the other side, in the next subsection we
show that the problem is FPT in the hybridization number for any number of trees by providing a
quadratic-sized kernel. We conclude the section by discussing how an exponential-time algorithm
can be obtained for solving the kernel.

5.1 Hardness

Lemma 2. Let T = {T1, T2} be an input to HN. We can transform in polynomial time T1 and T2

into two unrooted binary phylogenetic trees T ∗

1 , T
∗

2 such that,

hru(T ∗

1 , T
∗

2 ) = hr(T1, T2) + 1. (2)

Proof. Let X denote the taxa of T1 and T2 and let n = |X |. We will construct in polynomial time
a pair of unrooted trees T ∗

1 , T
∗

2 on 3|X |+ 2 taxa such that (2) holds.
To construct T ∗

1 , we start by taking an unrooted caterpillar (c0, c1, ..., cn, d0, d1, d2, ..., dn) on
2n + 2 new taxa. Let r1 be the root of T1. To complete T ∗

1 we ignore all the directions on the
arcs of T1, and concatenate the caterpillar to T1 by subdividing the unique edge entering dn with
a new node u, and connect u to r1. The construction of T ∗

2 is analogous, except that the c-part
of the caterpillar is reversed: (cn, cn−1, ..., c0, d0, d1, d2..., dn). See Figure 8 (left and centre) for an
example when n = 5.
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Figure 8: An example of the transformation used in Lemma 2 when |X | = 5. Left and centre: the
two unrooted binary trees T ∗

1 and T ∗

2 that are used as input to RUHN. These are obtained from the
original rooted binary trees T1 and T2 on X that are the input to the HN problem. If these trees
are rooted at the specified points, then the rooted phylogenetic network N ′ displays the two rootings,
where N is an optimal solution to the original HN problem. (Although not shown explicitly here,
in the top part of N ′ all arcs are oriented downwards.)

It is quite easy to show that hru(T ∗

1 , T
∗

2 ) ≤ hr(T1, T2) + 1. Specifically, let N be any optimum
solution to the original HN problem, i.e. r(N) = hr(T1, T2). If we root both T ∗

1 and T ∗

2 on the
internal edge between c2 and c3, then the network N ′ as shown in Figure 8 (right) clearly displays
these two rootings. Essentially, N ′ has been obtained by adding a single “root cycle” above N , so
r(N ′) = r(N)+1. More formally, in order of increasing distance from the root, the network N ′ has
taxa c2, c1, c0 on one side of the root cycle, and c3, ..., cn−1, cn on the other.

The lower bound, hru(T ∗

1 , T
∗

2 ) ≥ hr(T1, T2) + 1, requires slightly more effort to prove. We will
use the following observation.

hru(T ∗

1 , T
∗

2 ) ≤ hr(T1, T2) + 1 ≤ (n− 2) + 1 = n− 1. (3)

The second inequality follows from the well-known fact that two rooted binary phylogenetic trees
on n ≥ 2 taxa can have hybridization number at most n− 2 [2].

Notice that, if in a rooting of T ∗

1 , the whole c-part of the caterpillar appears in reverse order of
the one in a rooting of T ∗

2 then just this c-part of the caterpillars adds n − 1 to the hybridization
number of that rooting. The same holds for the d-parts of the caterpillars. In both cases, using the
observation above, the lower bound is true. In particular, this implies that the lower bound holds
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if T ∗

1 is rooted inside its T1-part, since any rooting of T ∗

2 will create either oppositely-oriented c- or
d-parts of the caterpillars. The same holds for a rooting inside T2. But clearly, if both T ∗

1 and T ∗

2

are rooted outside their T -parts, then these T -parts add hr(T1, T2) to the hybridization number of
such a rooting. Since the caterpillars of T ∗

1 and T ∗

2 are non-isomorphic, any rooting within the c-
or d-parts of caterpillars of the trees will additionally add at least 1 to the hybridization number.
(Formally speaking this last argument is a consequence of the cluster reduction described in [3]).

Theorem 4. Root Uncertain Minimimum Hybridization is NP-hard and APX-hard for |T | =
2.

Proof. HN is already known to be NP-hard and APX-hard for |T | = 2. NP-hardness of RUHN is
thus immediate from Lemma 2. We can also use this lemma to prove APX-hardness, which excludes
the existence of a PTAS for RUHN, unless P=NP. The APX-hardness result might seem intuitively
obvious, since the +1 term in (2) is of vanishing significance as hr(T1, T2) grows. However, there
are quite some technicalities involved in the extraction of a solution for HN from a solution for
RUHN. In particular, additional combinatorial insight is required. We give a (2, 1) L-reduction
from HN to RUHN. In fact, this can be extended to an (α, 1) L-reduction for each 1 < α < 2.
To avoid disrupting the flow of the paper we have deferred the details of the L-reduction to the
appendix.

Note that one consequence of the L-reduction given in the proof of Theorem 4 is that if RUHN
has a constant-factor polynomial-time approximation algorithm (i.e. is in APX), then so does HN.
In [21] it is proven that, if HN is in APX, so is Directed Feedback Vertex Set. Hence the
following corollary is obtained.

Corollary 2. If RUHN is in APX, then so is HN and thus also Directed Feedback Vertex
Set.

Determining whether Directed Feedback Vertex Set is in APX is a longstanding open
problem in computer science; the corollary can thus be viewed provisionally as a strengthening of
Theorem 4.

5.2 Parameterized complexity of RUHN

In this subsection we will show that RUHN is FPT when the parameter is hru(T ) (or, in other
words, the size k of the optimal solution for RUHN). To prove this, we will provide a kernel of
quadratic size which (when combined with any exponential-time algorithm) will let us answer the
question “Is the optimal solution to RUHN≤ k?” in time O(f(k) · poly(n)) for some computable
function f that depends only on k.

For the kernelization proof we use the same ingredients introduced in Section 3.2 and in particu-
lar the two reductions rules introduced there: Common Pendant Subtree (CPS) reduction and
Common d-Chain (d-CC) reduction rules. We use them slightly differently from how they were
defined there, because here the input to each reduction rule is a set of unrooted binary trees, and
within the common chain reduction we will take d = 5k (i.e., long common chains will be truncated
down to length 5k). In [31] the authors described how these two reduction rules can be used in the
rooted HN problem to reduce the initial instance T to a new kernelized instance of rooted binary
phylogenetic trees T ′ on a set of leaf labels X ′ such that hr(T ) ≤ k ⇔ hr(T ′) ≤ k and, moreover,
|X ′| = O(k2). Here, we adapt their arguments to work for the unrooted case as well. Although
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this might seem a direct generalization, additional technicalities must be addressed arising in root
placement on the unrooted trees/networks.

We start by defining the concept of generator [20] which will be used in the rest of the section:
An r-reticulation generator (for short, r-generator) is defined to be a directed acyclic multigraph
with a single node of indegree 0 and outdegree 1, precisely r reticulation nodes (indegree 2 and
outdegree at most 1), and apart from that only nodes of indegree 1 and outdegree 2. The sides
of an r-generator are defined as the union of its edges (the edge sides) and its nodes of indegree-2
and outdegree-0 (the node sides). Adding a set of labels L to an edge side (u, v) of an r-generator
involves subdividing (u, v) to a path of |L| internal nodes and, for each such internal node w, adding
a new leaf w′, an edge (w,w′), and labeling w′ with some taxon from L (such that L bijectively
labels the new leaves). On the other hand, adding a label l to a node side v consists of adding a
new leaf y, an edge (v, y) and labeling y with l. In [31] it was shown that if G is an r-generator,
then G has at most 4r − 1 edge sides and at most r node sides.

Theorem 5. Let T be a collection of binary, unrooted, phylogenetic trees on a common set of leaf
labels (taxa) X. Let T ′ be the set of binary, unrooted, phylogenetic trees on X ′ after we have applied
the common pendant subtree (CPS) and the Common 5k-Chain reduction rules, until no such rule
can be performed anymore. Then hru(T ) ≤ k ⇔ hru(T ′) ≤ k and, moreover, |X ′| = O(k2).

We will start by showing that the CPS reduction rule leaves the hybridization number un-
changed:

Claim 1. Let T be a set of unrooted binary trees with leaves labeled bijectively by X. Let T be a
maximal common pendant subtree of T and let T ′ be the set of all trees in T after the application
of the Common Pendant Subtree Reduction rule to T . Then hru(T ) ≤ k ⇔ hru(T ′) ≤ k.

Proof. Let N be the optimal (with the minimum reticulation number) network that displays the
optimally rooted version of T and let N ′ be the optimal network that displays the optimally rooted
reduced instance T ′ (after a single application of the CPS reduction rule).

(⇐) Let hru(T ′) = r(N ′) = k. FromN ′ we will construct a rooted networkN with k reticulation
nodes that displays T . Since N ′ displays T ′ which is a collection of trees with leaves bijectively
labeled from {X \ {XT }} ∪ {x} (where, as before, XT is the set of taxa of T ), simply replace on
N ′ the leaf x with the common pendant subtree T . We have a new network N ′′ whose reticulation
number obviously is k (we did not add/create any new reticulation nodes). The leaves of N ′′ are
labeled from X (without x). It remains only to show that N ′′ displays T which is immediate since
T displays itself. Observe that the root placement on each tree T ∈ T ′ is irrelevant.

(⇒) For the other direction, consider T and let T ρ be a rooting of all trees such that hr(T ρ)
is minimized. Let N be the rooted network displaying the trees in T ρ and let ρ(T ), for T ∈ T be
the actual root of T (given by T ρ). Similar for N . Let T be the CPS of each member of T . From
N we need to construct a new network N ′ with k reticulation nodes that displays all the trees in
T ′. The problem will be: what if ∃T ∈ T such that its root is inside T ? In such cases, the CPS
reduction rule will cut-off the root of this tree and this will “force” us to root T in another location
unaffected by the CPS reduction rule, which will potentially change the hybridization number of
the resulting instance. Given a rooting of all members of T and N with hru(T ) = k, consider the
following rootings for each T ′ ∈ T ′: if ρ(T ) ∈ T then root T ′ (after the clipping of T ) on the parent
of x (the new taxon replacing T ). Else, leave the rooting unchanged. Now, from N , we need to
create a new rooted network N ′ that displays T ′ such that its reticulation number is (not greater
than) k. Apply the standard procedure: let XT ⊂ X be the set of leaves of the CPS T and let
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(x1, x2, . . . , xt) be some arbitrary but fixed ordering of them. Start with x1, delete it and delete
any reticulation node with outdegree 0 and perform the standard cleaning-up operations2 until the
resulting network is a phylogenetic network. Repeat for x2 and so on until arriving at xt which
is simply relabelled by the new taxon x. Let N ′ be the resulting network. By construction, N ′

displays all T ′

i ∈ T ′ and r(N ′) ≤ k.

Now to the common chain reduction rule:

Claim 2. Let T be a set of binary, unrooted trees on X and let T ′ be the set of trees in T after a
single application of the Common 5k-Chain reduction rule. Then, hru(T ) ≤ k ⇔ hru(T ′) ≤ k.

Proof. For the first direction (from the reduced to the original instance) let C = (x1, x2, . . . , xt)
be a subset of the taxa X that defines a maximal common chain of length > 5k. Suppose that,
in T , we have clipped C down to a reduced chain CR = (x1, . . . , x5k). Let TR be the set of these
clipped (or reduced) trees and let NR be a network that displays some rooted version of TR with k
reticulation nodes. Since the generator has at most 5k − 1 sides, there must exist at least one side
containing at least two leaves of the chain. Let xi and xj be two leaves of the chain that are on
the same side s of the generator, with xi above xj . Clearly, this side must be an edge side. We will
consider the case that i < j. The case that j < i can be handled symmetrically.

First suppose that {i, j} 6= {1, 2}. Then, we move all the taxa of the chain on the appropriate
location on the side s of xi, xj of the generator G. We take all taxa xℓ such that ℓ > j and plug
them after xj in s, by appropriately subdividing the unique edge exiting the parent of xj . We do
the opposite for all the taxa xℓ′ such that ℓ′ < i i.e., plug them “before” xi in s by appropriately
subdividing the unique edge entering the parent of xi.

Now suppose that i = 1 and j = 2. Then we take any other pair of leaves that are on the same
side of the generator and go back to the previous case. To see that such leaves exist, assume that
{x1, x2} is the only pair of leaves that are on the same side. If the trees in TR are not all identical,
then there exists at least one leaf y that is not in the reduced chain CR. Since the generator has
at most 5k − 1 sides, and the chain has 5k leaves, this implies that each side contains at least
one leaf of the chain. Let xq be a leaf of the chain that is on the same side as y. This is only
possible when q ∈ {1, 5k}. If q = 1 this implies that the original chain C was not maximal and we
obtain a contradiction. If q = 5k, then we can add y to CR and obtain a longer common chain C′

R.
Repeating this argument, we eventually obtain a contradiction or find out that all trees in TR are
identical (a case that can be handled trivially).

As mentioned before, the case that j < i can be handled symmetrically. In this case, we make
sure that {i, j} 6= {5k − 1, 5k}.

Expanding Step: We still need to expand the chain by introducing the “missing” taxa (the ones
that disappeared after the clipping of the chain). Move all these taxa {x5k+1, . . . , xt} to the side s
in such a way that either C or the reverse sequence becomes a chain in the network. In that way,
from NR on XR (the leaf label set without the clipped labels after an application of the 5k-CC
rule) we have created a new network N on X with the same reticulation number as NR. We still
need to argue that N displays some appropriately rooted version of T .

Take any tree TR ∈ TR. Perform all the previous operations (applied on NR) on TR. In other
words, move appropriately all the corresponding taxa on the same side of the root and re-introduce
the “missing” taxa in such a way that either C or the reverse sequence becomes a chain in the tree.

2Deleting reticulation nodes with outdegree 0; suppressing nodes with indegree and outdegree both equal to 1;
deleting leaves unlabelled by taxa; deleting nodes with indegree 0 and outdegree 1.
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In this way, from the rooted network NR on XR that displays a rooted version of the truncated
trees in TR, we construct a new rooted network N on X and rooted versions T ρ of the trees T .

We now argue that N displays T ρ. Let T ρ ∈ T ρ, let TR be the corresponding reduced tree in TR
and let T ρ

R be a rooting of the reduced tree TR that is displayed by NR.
If neither x1 and x2 nor x5k−1 and x5k have a common parent in T ρ

R, then it is clear from the
construction that N displays T ρ. If x1 and x2 have a common parent in T ρ

R, then it is possible
that x1 and x2 are on the same side of the generator of NR with x1 above x2. If we moved all chain-
taxa below x2 on this side then this would inverse the chain, which would be a problem. However,
this does not happen since in this case i < j and in that case we made sure that {i, j} 6= {1, 2}.
Symmetrically, if x5k−1 and x5k have a common parent in T ρ

R and x5k is above x5k−1 on some side
of NR, then we do not move all taxa to this side because then j < i and hence {i, j} 6= {5k, 5k− 1}.

For the other direction (from the original instance to the truncated), let N be a rooted network
that displays some rooted version of T with k reticulation nodes. Let TR be the set of trees from
T after a single application of the common chain reduction rule. Then, from N , we will show how
to create a rooted network N ′ that displays some appropriately rooted version of T ′. Let N ′ be
the network obtained from N as follows: let C be a common chain on T of length greater than 5k.
Take C on N and “clip” it i.e., delete all leaves xℓ with indexes ℓ ≥ 5k + 1, and apply the usual
cleaning-up steps. If the root of N happens to be on the chain then take the single edge e entering
the parent of the last surviving taxon of the chain with index x5k, subdivide it and introduce the
new root location at the new intermediate node that subdivides e. Do the same on all T ∈ T .
Thus, we have created a new rooted network N ′ and a rooting for all trees in TR, all on X ′ (without
the “excess” taxa deleted from the common chain). Obviously, by construction, the reticulation
number of N ′ has not increased. It remains to show that N ′ displays TR which follows immediately
since N displays (a rooted version of) T .

These two claims show that successive applications of the CPS and 5k-CC rules do not change
the hybridization number of the resulting reduced instances. Assuming that we have applied these
two rules as often as possible, let T ′ be the resulting instance. From the previous analysis we know
that ∃N ′ such that r(N ′) ≤ k. Since each common chain of T ′ has length ≤ 5k, we conclude that
in N ′ we cannot find a chain of length greater than 5k where all leaves are on the same side of
the underlying generator (otherwise it would constitute a common chain and it would be clipped).
Thus, N ′ has at most 5k− 1 taxa on each edge side and, obviously, at most one taxon on each node
side. Thus, the total number of taxa that N ′ can have is at most

(5k − 1) · (4k − 1)
︸ ︷︷ ︸

# of edge sides

+ k
︸︷︷︸

# of node sides

< 20k2.

The above kernelization eventually terminates: at each step we either identify a common pen-
dant subtree or a long common chain or, if none of these is possible, we terminate. Each reduction
step reduces the number of taxa by at least 1, so we eventually terminate in polynomial time.

The kernel we have described can be used to give an FPT algorithm to answer the question,
“Is hru(T ) ≤ k?”. Let T ′ be the kernelized set of trees. If the cardinality of the set of leaves given
in the above bound is violated, we know that the answer is NO. So, assume it is not violated. We
simply guess by brute-force the root location of each tree in T ′. Each collection of guesses yields
a set of rooted binary phylogenetic trees T ′′, and we ask “Is hr(T ′′) ≤ k?” Clearly, the answer to

22



“Is hru(T ) ≤ k?” is YES if and only if at least one of the “Is hr(T ′′) ≤ k?” queries answers YES.
The kernelization procedure ensures that each tree in T ′ has O(k2) taxa and thus also O(k2) edges.
Hence, the overall running time is the time for the kernelization procedure plus [O(k2)]t calls to an
algorithm forHN, where t = |T |. Noting that t ≤ 2k (otherwise the answer is trivially NO), and that
HN is FPT [30], we obtain an overall running time of O(poly(n)+f(k)·poly(n)) = O(f(k)·poly(n)).

This concludes the proof of Theorem 5.

6 Conclusions and open problems

In this article we have studied two variations of the classical hybridization number (HN) problem:
the root-uncertain variantRUHN and the unrooted variant UHN. We have also studied the natural
unrooted variant of the tree containment (TC) decision problem, UTC.

As we have seen, both TC and UTC are NP-complete and FPT in reticulation number. The
natural open question here is whether our FPT algorithm for UTC, with running time O(4k ·
poly(n)), can be improved to achieve a running time of O(2k · poly(n)), which is trivial for TC.
Also, the TC literature has not yet considered pre-processing, so it would be interesting to adapt
our kernelization strategy to the rooted context.

Regarding HN and RUHN, both are APX-hard. It is known that if HN (respectively, RUHN)
is in APX then so too is DFVS. However, at present we do not have a reduction from RUHN to
HN, which means that (from an approximation perspective) HN might be easier than RUHN. This
is an interesting question for future research: it remains a possibility that both HN and DFVS
are in APX, but RUHN is not. Both HN and RUHN are FPT in hybridization number, via a
quadratic kernel. For RUHN a pertinent question is whether, in the case of just two input trees,
the best known FPT running time for HN can be matched, which is O(3.18k · poly(n)) [34]. This
raises the question of whether, and in how far, the successful agreement forest abstraction can be
adapted for RUHN.

In terms of approximation the other variant of HN, UHN, differs quite strikingly from HN,
although we note that in this article we have only studied UHN on two trees. For two trees RUHN
is (due to its equivalence with TBR) in APX, while it is still unknown whether HN is in APX
(see the above discussion). This gap in approximability is similar to that which exists between
Maximum Acylic Agremeent Forest (MAAF) and Maximum Agreement Forest (MAF)
on two rooted trees [21]. This is not so surprising given that MAAF is essentially equivalent to
HN, and both the rooted and unrooted variants of MAF (which are essentially equvalent to rSPR
and TBR respectively) are firmly in APX.

Alongside the complexity discussions above it’s tempting to ask which of the problems studied
in this article can (in some formal sense) be “reduced” to each other. The APX-hardness reduction
already shows that HN can be reduced to RUHN in a highly approximation-preserving way. Can
RUHN be reduced to HN? Can HN be reduced to UHN? Can RUHN be reduced to UHN?
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A Omitted APX-hardness proof

Here we give the details of the omitted proof that RUHN is APX-hard (Theorem 4).

Proof. To establish the result we provide a linear (L) reduction [24] from HN to RUHN. Formally,
an L-reduction is defined as follows:

Definition A.1. Let A,B be two optimization problems and cA and cB their respective cost
functions. A pair of functions f, g, both computable in polynomial time, constitute an L-reduction
from A to B if the following conditions are true:

1. x is any instance of A ⇒ f(x) is an instance to B,

2. y is a feasible solution of f(x) ⇒ g(y) is a feasible solution of x,

3. ∃α ≥ 0 such that OPTB(f(x)) ≤ αOPTA(x),

4. ∃β ≥ 0 such that for every feasible solution y′ for f(x) we have |OPTA(x) − cA(g(y
′))| ≤

β|OPTB(f(x)) − cB(y
′)|

where OPTA is the optimal solution value of problem A and similarly for B.

HN is already known to be NP-hard and APX-hard for |T | = 2. We will give a (α, β) = (2, 1)
L-reduction from HN to RUHN.

Let (T1, T2) be the two trees that are given as input to HN, and let X be their set of taxa,
where n = |X |. Let (T ∗

1 , T
∗

2 ) be the unrooted trees constructed in the proof of Lemma 2, except
that here we make the “c” and “d” caterpillars slightly longer: length (2n + 3) instead of length
(n+ 1). It is easy to check that with these longer caterpillars (2) still holds.

To avoid technical complications (the approximation oracle outputting an exponentially large
answer) it is helpful in this proof to assume that, when given two unrooted binary trees as input,
each on n′ taxa, an approximation oracle forRUHN never returns a networkN such that r(N) > n′.
This is reasonable because one can always root the two trees in arbitrary places and construct a
trivial network with n′ reticulation nodes that displays both rootings, simply by “merging” the two
rooted trees at their taxa and adding a new root.

The reduction proceeds as follows. First we check whether hr(T1, T2) = 0. This can easily
be performed in polynomial time since this holds if and only if T1 and T2 are isomorphic. If the
equality holds, then there is no need to call the RUHN approximation oracle: simply return T1 as
an optimal solution to HN (i.e. T1 is a rooted phylogenetic network that trivially displays both
T1 and T2). Otherwise, we know hr(T1, T2) ≥ 1. Given that (as shown in the previous proof)
hru(T ∗

1 , T
∗

2 ) = hr(T1, T2) + 1 it then follows immediately that hru(T ∗

1 , T
∗

2 ) ≤ α · hr(T1, T2), thus
satisfying the “forward mapping” part of the L-reduction (i.e. point 3 of the definition).

We now consider the “back mapping” part, i.e. point 4 of the definition. Consider the solution
returned by the approximation oracle for RUHN. We distinguish two cases. First, suppose the
solution given by the oracle roots T ∗

1 and T ∗

2 in a “stupid” way i.e. such that two oppositely
oriented rooted caterpillars are induced. If this happens, the network given by the oracle will
have reticulation number at least 2n + 1 (i.e. the length of the caterpillar minus two). We know
hru(T ∗

1 , T
∗

2 ) = hr(T1, T2)+1 so, trivially, hru(T ∗

1 , T
∗

2 ) ≤ n+1. Hence, the additive gap between the
quality of the approximate and exact solution to RUHN(T ∗

1 , T
∗

2 ) is at least (2n+ 1)− (n+1) = n.
To complete the L-reduction in this case, we simply discard the output of the approximation oracle,
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and return a trivial solution to HN with n reticulations (e.g. by merging T1 and T2 at their taxa
and adding a new root). Given that hr(T1, T2) ≥ 1, the additive gap between our approximate
solution to HN and its true optimum is at most n − 1. Clearly, n − 1 ≤ β · n, as required by the
“back mapping” part of the L-reduction.

The other case is if the the approximate solution roots the trees in a “sensible” way. That is,
without loss of generality, T ∗

1 is rooted somewhere inside its c-part and T ∗

2 is rooted somewhere
above its T2 part (i.e. somewhere in its c-part or d-part). This case is somewhat more subtle.
Suppose the network N ′ returned by the approximation oracle for RUHN has reticulation number
q.

We restrict N ′ to only those nodes and edges necessary to display T1 and T2. The images of
T1 and T2 inside N ′ can easily be found in polynomial time because (a) images of the rootings of
T ∗

1 and T ∗

2 within N ′ will be returned by the oracle as certificates, and (b) due to the location of
the chosen roots, images of T1 and T2 within N ′ can be directly extracted from the images of the
rootings of T ∗

1 and T ∗

2 . (Note that if NT1,T2 , which simply denotes the union of the two images,
does not comply with the degree restrictions of a rooted binary phylogenetic network, it is easy to
modify it so that it does comply with these restrictions, without raising its reticulation number).
NT1,T2 displays T1 and T2, and has X as its set of taxa: this will be the solution we return for HN.

Suppose that NT1,T2 has reticulation number p. Given that the restriction operation does not
create new reticulation nodes (but possibly deletes them), p ≤ q. To make the reduction go through,
we need:

|p− hr(T1, T2)| ≤ β|q − hr(T ∗

1 , T
∗

2 )|

which is equivalent to,
|p− hr(T1, T2)| ≤ |q − hr(T1, T2)− 1|

If p ≤ (q − 1) this is immediate. However, what if p = q? This occurs if NT1,T2 has just as
many reticulations as N ′ i.e. the restriction process did not delete any reticulation nodes. However,
this cannot happen, for the following reason. Consider again the image of the rooting of T ∗

1 in N ′.
Extract all nodes and edges on the image that minimally span the taxa {c0, ..., c2n+2, d0, ..., d2n+2}.
Do this also for the image of the rooting of T ∗

2 in N ′. Let NCat be the network obtained from N ′

by restricting to the union of these nodes and edges. NCat is a rooted binary phylogenetic network
on {c0, ..., c2n+2, d0, ..., d2n+2} that displays the caterpillars induced by the rootings of T ∗

1 and T ∗

2 .
Crucially, r(NCat) > 0. This is because, as observed earlier, the caterpillar parts of T ∗

1 and T ∗

2

remain non-isomorphic wherever you place the root exactly. In turn this means that NCat must
contain at least one reticulation node v. This reticulation node v necessarily lies on the images of
both T ∗

1 and T ∗

2 , since otherwise it would not have survived to be a reticulation node in NCat (i.e.
at most one of its two incoming edges would have been extracted, and hence it would have been
suppressed). However, v does not lie on the part of the image of T ∗

1 that contributed to NT1,T2 ,
since v is not part of the image of T1. Hence, v lies on (at most) the image of T2, meaning that v
is a reticulation node that does not survive when NT1,T2 is created (because at most one of its two
incoming edges is extracted), and hence p < q.

The above proof can, if desired, be strengthened to an (α, 1) L-reduction for any constant
1 < α < 2. To achieve this, we do not begin by checking whether h(T1, T2) = 0, but instead
whether h(T1, T2) <

1
α−1

, and if so we simply return an optimal solution. For constant α this can
be performed in polynomial time, because computation of HN is FPT in hr(T1, T2).
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