5,374 research outputs found

    Agent Behavior Prediction and Its Generalization Analysis

    Full text link
    Machine learning algorithms have been applied to predict agent behaviors in real-world dynamic systems, such as advertiser behaviors in sponsored search and worker behaviors in crowdsourcing. The behavior data in these systems are generated by live agents: once the systems change due to the adoption of the prediction models learnt from the behavior data, agents will observe and respond to these changes by changing their own behaviors accordingly. As a result, the behavior data will evolve and will not be identically and independently distributed, posing great challenges to the theoretical analysis on the machine learning algorithms for behavior prediction. To tackle this challenge, in this paper, we propose to use Markov Chain in Random Environments (MCRE) to describe the behavior data, and perform generalization analysis of the machine learning algorithms on its basis. Since the one-step transition probability matrix of MCRE depends on both previous states and the random environment, conventional techniques for generalization analysis cannot be directly applied. To address this issue, we propose a novel technique that transforms the original MCRE into a higher-dimensional time-homogeneous Markov chain. The new Markov chain involves more variables but is more regular, and thus easier to deal with. We prove the convergence of the new Markov chain when time approaches infinity. Then we prove a generalization bound for the machine learning algorithms on the behavior data generated by the new Markov chain, which depends on both the Markovian parameters and the covering number of the function class compounded by the loss function for behavior prediction and the behavior prediction model. To the best of our knowledge, this is the first work that performs the generalization analysis on data generated by complex processes in real-world dynamic systems

    Reinforcement Learning with Perturbed Rewards

    Full text link
    Recent studies have shown that reinforcement learning (RL) models are vulnerable in various noisy scenarios. For instance, the observed reward channel is often subject to noise in practice (e.g., when rewards are collected through sensors), and is therefore not credible. In addition, for applications such as robotics, a deep reinforcement learning (DRL) algorithm can be manipulated to produce arbitrary errors by receiving corrupted rewards. In this paper, we consider noisy RL problems with perturbed rewards, which can be approximated with a confusion matrix. We develop a robust RL framework that enables agents to learn in noisy environments where only perturbed rewards are observed. Our solution framework builds on existing RL/DRL algorithms and firstly addresses the biased noisy reward setting without any assumptions on the true distribution (e.g., zero-mean Gaussian noise as made in previous works). The core ideas of our solution include estimating a reward confusion matrix and defining a set of unbiased surrogate rewards. We prove the convergence and sample complexity of our approach. Extensive experiments on different DRL platforms show that trained policies based on our estimated surrogate reward can achieve higher expected rewards, and converge faster than existing baselines. For instance, the state-of-the-art PPO algorithm is able to obtain 84.6% and 80.8% improvements on average score for five Atari games, with error rates as 10% and 30% respectively.Comment: AAAI 2020 (Spotlight

    Managing big data experiments on smartphones

    Get PDF
    The explosive number of smartphones with ever growing sensing and computing capabilities have brought a paradigm shift to many traditional domains of the computing field. Re-programming smartphones and instrumenting them for application testing and data gathering at scale is currently a tedious and time-consuming process that poses significant logistical challenges. Next generation smartphone applications are expected to be much larger-scale and complex, demanding that these undergo evaluation and testing under different real-world datasets, devices and conditions. In this paper, we present an architecture for managing such large-scale data management experiments on real smartphones. We particularly present the building blocks of our architecture that encompassed smartphone sensor data collected by the crowd and organized in our big data repository. The given datasets can then be replayed on our testbed comprising of real and simulated smartphones accessible to developers through a web-based interface. We present the applicability of our architecture through a case study that involves the evaluation of individual components that are part of a complex indoor positioning system for smartphones, coined Anyplace, which we have developed over the years. The given study shows how our architecture allows us to derive novel insights into the performance of our algorithms and applications, by simplifying the management of large-scale data on smartphones
    • …
    corecore