8,255 research outputs found

    Searching for a Connection Between Matroid Theory and String Theory

    Get PDF
    We make a number of observations about matter-ghost string phase, which may eventually lead to a formal connection between matroid theory and string theory. In particular, in order to take advantage of the already established connection between matroid theory and Chern-Simons theory, we propose a generalization of string theory in terms of some kind of Kahler metric. We show that this generalization is closely related to the Kahler-Chern-Simons action due to Nair and Schiff. In addition, we discuss matroid/string connection via matroid bundles and a Schild type action, and we add new information about the relationship between matroid theory, D=11 supergravity and Chern-Simons formalism.Comment: 28 pages, LaTex, section 6 and references adde

    Some characteristics of matroids through rough sets

    Full text link
    At present, practical application and theoretical discussion of rough sets are two hot problems in computer science. The core concepts of rough set theory are upper and lower approximation operators based on equivalence relations. Matroid, as a branch of mathematics, is a structure that generalizes linear independence in vector spaces. Further, matroid theory borrows extensively from the terminology of linear algebra and graph theory. We can combine rough set theory with matroid theory through using rough sets to study some characteristics of matroids. In this paper, we apply rough sets to matroids through defining a family of sets which are constructed from the upper approximation operator with respect to an equivalence relation. First, we prove the family of sets satisfies the support set axioms of matroids, and then we obtain a matroid. We say the matroids induced by the equivalence relation and a type of matroid, namely support matroid, is induced. Second, through rough sets, some characteristics of matroids such as independent sets, support sets, bases, hyperplanes and closed sets are investigated.Comment: 13 page

    Phirotopes, Super p-branes and Qubit Theory

    Get PDF
    The phirotope is a complex generalization of the concept of chirotope in oriented matroid theory. Our main goal in this work is to establish a link between phirotopes, super p-branes and qubit theory. For this purpose we first discuss maximally supersymmetric solutions of 11-dimensional supergravity from the point of view of the oriented matroid theory. We also clarify a possible connection between oriented matroid theory and supersymmetry via the Grassmann-Pl\"ucker relations. These links are in turn useful for explaining how our approach can be connected with qubit theory.Comment: Latex, 32 pages, improved versio

    Fixing numbers for matroids

    Full text link
    Motivated by work in graph theory, we define the fixing number for a matroid. We give upper and lower bounds for fixing numbers for a general matroid in terms of the size and maximum orbit size (under the action of the matroid automorphism group). We prove the fixing numbers for the cycle matroid and bicircular matroid associated with 3-connected graphs are identical. Many of these results have interpretations through permutation groups, and we make this connection explicit.Comment: This is a major revision of a previous versio
    corecore