74 research outputs found

    Prophet Inequalities with Limited Information

    Full text link
    In the classical prophet inequality, a gambler observes a sequence of stochastic rewards V1,...,VnV_1,...,V_n and must decide, for each reward ViV_i, whether to keep it and stop the game or to forfeit the reward forever and reveal the next value ViV_i. The gambler's goal is to obtain a constant fraction of the expected reward that the optimal offline algorithm would get. Recently, prophet inequalities have been generalized to settings where the gambler can choose kk items, and, more generally, where he can choose any independent set in a matroid. However, all the existing algorithms require the gambler to know the distribution from which the rewards V1,...,VnV_1,...,V_n are drawn. The assumption that the gambler knows the distribution from which V1,...,VnV_1,...,V_n are drawn is very strong. Instead, we work with the much simpler assumption that the gambler only knows a few samples from this distribution. We construct the first single-sample prophet inequalities for many settings of interest, whose guarantees all match the best possible asymptotically, \emph{even with full knowledge of the distribution}. Specifically, we provide a novel single-sample algorithm when the gambler can choose any kk elements whose analysis is based on random walks with limited correlation. In addition, we provide a black-box method for converting specific types of solutions to the related \emph{secretary problem} to single-sample prophet inequalities, and apply it to several existing algorithms. Finally, we provide a constant-sample prophet inequality for constant-degree bipartite matchings. We apply these results to design the first posted-price and multi-dimensional auction mechanisms with limited information in settings with asymmetric bidders

    Matroid prophet inequalities and Bayesian mechanism design

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2012.Cataloged from PDF version of thesis.Includes bibliographical references (p. 42-44).Consider a gambler who observes a sequence of independent, non-negative random numbers and is allowed to stop the sequence at any time, claiming a reward equal to the most recent observation. The famous prophet inequality of Krengel, Sucheston, and Garling asserts that a gambler who knows the distribution of each random variable can achieve at least half as much reward, in expectation, as a "prophet" who knows the sampled values of each random variable and can choose the largest one. We generalize this result to the setting in which the gambler and the prophet are allowed to make more than one selection, subject to a matroid constraint. We show that the gambler can still achieve at least half as much reward as the prophet; this result is the best possible, since it is known that the ratio cannot be improved even in the original prophet inequality, which corresponds to the special case of rank-one matroids. Generalizing the result still further, we show that under an intersection of p matroid constraints, the prophet's reward exceeds the gambler's by a factor of at most 0(p), and this factor is also tight. Beyond their interest as theorems about pure online algoritms or optimal stopping rules, these results also have applications to mechanism design. Our results imply improved bounds on the ability of sequential posted-price mechanisms to approximate optimal mechanisms in both single-parameter and multi-parameter Bayesian settings. In particular, our results imply the first efficiently computable constant-factor approximations to the Bayesian optimal revenue in certain multi-parameter settings. This work was done in collaboration with Robert Kleinberg.by S. Matthew Weinberg.S.M

    An Improved Lower Bound for Matroid Intersection Prophet Inequalities

    Get PDF

    Stochastic Combinatorial Optimization via Poisson Approximation

    Full text link
    We study several stochastic combinatorial problems, including the expected utility maximization problem, the stochastic knapsack problem and the stochastic bin packing problem. A common technical challenge in these problems is to optimize some function of the sum of a set of random variables. The difficulty is mainly due to the fact that the probability distribution of the sum is the convolution of a set of distributions, which is not an easy objective function to work with. To tackle this difficulty, we introduce the Poisson approximation technique. The technique is based on the Poisson approximation theorem discovered by Le Cam, which enables us to approximate the distribution of the sum of a set of random variables using a compound Poisson distribution. We first study the expected utility maximization problem introduced recently [Li and Despande, FOCS11]. For monotone and Lipschitz utility functions, we obtain an additive PTAS if there is a multidimensional PTAS for the multi-objective version of the problem, strictly generalizing the previous result. For the stochastic bin packing problem (introduced in [Kleinberg, Rabani and Tardos, STOC97]), we show there is a polynomial time algorithm which uses at most the optimal number of bins, if we relax the size of each bin and the overflow probability by eps. For stochastic knapsack, we show a 1+eps-approximation using eps extra capacity, even when the size and reward of each item may be correlated and cancelations of items are allowed. This generalizes the previous work [Balghat, Goel and Khanna, SODA11] for the case without correlation and cancelation. Our algorithm is also simpler. We also present a factor 2+eps approximation algorithm for stochastic knapsack with cancelations. the current known approximation factor of 8 [Gupta, Krishnaswamy, Molinaro and Ravi, FOCS11].Comment: 42 pages, 1 figure, Preliminary version appears in the Proceeding of the 45th ACM Symposium on the Theory of Computing (STOC13

    Simple Mechanisms for Non-linear Agents

    Full text link
    We consider agents with non-linear preferences given by private values and private budgets. We quantify the extent to which posted pricing approximately optimizes welfare and revenue for a single agent. We give a reduction framework that extends the approximation of multi-agent pricing-based mechanisms from linear utility to nonlinear utility. This reduction framework is broadly applicable as Alaei et al. (2012) have shown that mechanisms for linear agents can generally be interpreted as pricing-based mechanisms. We give example applications of the framework to oblivious posted pricing (e.g., Chawla et al., 2010), sequential posted pricing (e.g., Yan, 2011), and virtual surplus maximization (Myerson, 1981)

    Prophet Inequalities for Cost Minimization

    Full text link
    Prophet inequalities for rewards maximization are fundamental to optimal stopping theory with several applications to mechanism design and online optimization. We study the cost minimization counterpart of the classical prophet inequality, where one is facing a sequence of costs X1,X2,…,XnX_1, X_2, \dots, X_n in an online manner and must stop at some point and take the last cost seen. Given that the XiX_i's are independent, drawn from known distributions, the goal is to devise a stopping strategy SS that minimizes the expected cost. If the XiX_i's are not identically distributed, then no strategy can achieve a bounded approximation if the arrival order is adversarial or random. This leads us to consider the case where the XiX_i's are I.I.D.. For the I.I.D. case, we give a complete characterization of the optimal stopping strategy, and show that, if our distribution satisfies a mild condition, then the optimal stopping strategy achieves a tight (distribution-dependent) constant-factor approximation. Our techniques provide a novel approach to analyze prophet inequalities, utilizing the hazard rate of the distribution. We also show that when the hazard rate is monotonically increasing (i.e. the distribution is MHR), this constant is at most 22, and this is optimal for MHR distributions. For the classical prophet inequality, single-threshold strategies can achieve the optimal approximation factor. Motivated by this, we analyze single-threshold strategies for the cost prophet inequality problem. We design a threshold that achieves a O⁑(polylog⁑n)\operatorname{O}\left(\operatorname{polylog}{n}\right)-factor approximation, where the exponent in the logarithmic factor is a distribution-dependent constant, and we show a matching lower bound. We note that our results can be used to design approximately optimal posted price-style mechanisms for procurement auctions which may be of independent interest.Comment: 38 page

    Buyback Problem - Approximate matroid intersection with cancellation costs

    Full text link
    In the buyback problem, an algorithm observes a sequence of bids and must decide whether to accept each bid at the moment it arrives, subject to some constraints on the set of accepted bids. Decisions to reject bids are irrevocable, whereas decisions to accept bids may be canceled at a cost that is a fixed fraction of the bid value. Previous to our work, deterministic and randomized algorithms were known when the constraint is a matroid constraint. We extend this and give a deterministic algorithm for the case when the constraint is an intersection of kk matroid constraints. We further prove a matching lower bound on the competitive ratio for this problem and extend our results to arbitrary downward closed set systems. This problem has applications to banner advertisement, semi-streaming, routing, load balancing and other problems where preemption or cancellation of previous allocations is allowed
    • …
    corecore