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Abstract

Consider a gambler who observes a sequence of independent, non-negative random numbers and
is allowed to stop the sequence at any time, claiming a reward equal to the most recent observa-
tion. The famous prophet inequality of Krengel, Sucheston, and Garling asserts that a gambler
who knows the distribution of each random variable can achieve at least half as much reward, in
expectation, as a "prophet" who knows the sampled values of each random variable and can choose
the largest one. We generalize this result to the setting in which the gambler and the prophet are
allowed to make more than one selection, subject to a matroid constraint. We show that the gam-
bler can still achieve at least half as much reward as the prophet; this result is the best possible,
since it is known that the ratio cannot be improved even in the original prophet inequality, which
corresponds to the special case of rank-one matroids. Generalizing the result still further, we show
that under an intersection of p matroid constraints, the prophet's reward exceeds the gambler's by
a factor of at most 0(p), and this factor is also tight.

Beyond their interest as theorems about pure online algoritms or optimal stopping rules, these
results also have applications to mechanism design. Our results imply improved bounds on the
ability of sequential posted-price mechanisms to approximate optimal mechanisms in both single-
parameter and multi-parameter Bayesian settings. In particular, our results imply the first ef-
ficiently computable constant-factor approximations to the Bayesian optimal revenue in certain
multi-parameter settings.

This work was done in collaboration with Robert Kleinberg.

Thesis Supervisor: Constantinos Daskalakis
Title: Associate Professor
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Chapter 1

Introduction

Online Optimization is an increasingly important area of theoretical computer science. In this

thesis, we study an online selection problem. That is, weighted elements of a set are revealed one

at a time to the user, who must immediately decide to accept or reject the element upon learning

its weight. Some set of rules governs which elements may feasibly be accepted simultaneously.

The goal of the online algorithm is accept a feasible set whose weight is competitive with the

max-weight feasible set (i.e. the offline optimum). Mechanism Design is a seemingly unrelated

field, where the a central agent tries to achieve some goal through the selfish behavior of rational

participants. In other words, the agent wants to achieve some outcome involving the participants,

who do not necessarily want the same outcome. The agent's goal is to find a way to achieve

this outcome nonetheless by appealing to their selfish, but rational behavior. We also show that

solutions to the online selection problem we study can be leveraged to design mechanisms in

previously unsolved settings.

1.1 Bayesian Online Selection Problems

In 1978, Krengel, Sucheston and Garling [18] proved a surprising and fundamental result about

the relative power of online and offline algorithms in Bayesian settings. They showed that if

X 1, X2 , .. ., X,, is a sequence of independent, non-negative, real-valued random variables and E [max; X] <
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oo, then there exists a stopping rule r such that

2 -E [XT] >I E max i. (1.1)

In other words, if we consider a game in which a player observes the sequence X 1, X2, ... X,

and is allowed to terminate the game at any time, collecting the most recently observed reward,

then a prophet who can foretell the entire sequence and stop at its maximum value can gain at most

twice as much payoff as a player who must choose the stopping time based only on the current

and past observations. The inequality (1.1) became the first' of many "prophet inequalities" in

optimal stopping theory. Expressed in computer science terms, these inequalities compare the

performance of online algorithms versus the offline optimum for problems that involve selecting

one or more elements from a random sequence, in a Bayesian setting where the algorithm knows

the distribution from which the sequence will be sampled whereas the offline optimum knows

the values of the samples themselves and chooses among them optimally. Not surprisingly, these

inequalities have important applications in the design and analysis of algorithms, especially in

algorithmic mechanism design, a connection that we discuss further below.

An instance of the Bayesian online selection problem (BOSP) is specified by a ground set U,

a downward-closed set system I C 2v, and for each x c U a probability distribution F. supported

on the set R, of non-negative real numbers. These data determine a probability distribution over

functions w : U -+ R+, in which the random variables {w(x) I x E V} are independent and w(x)

has distribution F,. We refer to w(x) as the weight of x, and we extend w to an additive set function

defined on 2U by w(A) = LA w(x). Elements of I are calledfeasible sets. For a given assignment

of weights, w, we let MAX(w) denote the maximum-weight feasible set and OPT(w) denotes its

weight; we will abbreviate these to MAX and OPT when the weights w are clear from context.

An input sequence is a sequence o- of ordered pairs (xi, w;) i = 1, ... , n, each belonging to ' x

R., such that every element of ' occurs exactly once in the sequence xi, ... , x,. A deterministic

online selection algorithm is a function A mapping every input sequence o- to a set A(o-) e I

'More precisely, it was the second prophet inequality. The same inequality with a factor of 4, instead of 2, was
discovered a year earlier by Krengel and Sucheston [17].
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such that for any two input sequences a-, o-' that match on the first i pairs (xi, wi), ... , (xi, wi), the

sets Ai(c-) = A(o-) n {1,..., i} and A;(o-') = A(&r) n {1,..., i) are identical. A randomized online

selection algorithm is a probability distribution over deterministic ones. The algorithm's choices

define decision variables bi(o-) which are indicator functions of the events xi E A(o-). An algorithm

is monotone if increasing the value of w; (while leaving the rest of o- unchanged) cannot decrease

the value of E [b;(o-)], where the expectation is over the algorithm's internal randomness but not the

randomness of c- (if any). A monotone deterministic online selection algorithm can be completely

described by a sequence of thresholds Ti(o-),..., Tn(o-), where T,(o-) E R, U {oo} is the infimum

of the set of weights w such that i E A(cr') when o-' is obtained from o- by modifying wi to w.

Conversely, for any sequence of threshold functions T 1,..., T,, such that T(o-) depends only on

the first i - 1 elements of c- and Ti(cr) = oo whenever A;_i(o-) U {i} 0 I, there is a corresponding

monotone deterministic online selection algorithm that selects x; whenever w; > Ti(a-).

1.1.1 Matroids

In this paper, we prove a prophet inequality for matroids, generalizing the original inequality (1.1)

which corresponds to the special case of rank-one matroids. Matroids are a commonly-studied

notion in computer science that generalize the notion of linear independence in a vector space

without assuming that addition is well-defined. Specifically, a matroid M consists of a ground set

V and a non-empty downward-closed set system I C 2' satisfying the matroid exchange axiom:

for all pairs of sets I, J E I such that I|I < IJI, there exists an element x E J such that I U {x} E I.

Elements of I are called independent sets when (U, I) is a matroid. A maximal independent set

is called a basis. If A is a subset of V, its rank, denoted by rank(A), is the maximum cardinality of

an independent subset of A. Its closure or span, denoted by cl(A), is the set of all x E V such that

rank(A U {x}) = rank(A). It is well known that the following greedy algorithm selects a maximum-

weight basis of a matroid: number the elements of V as xi, ... , xn in decreasing order of weight,

and select the set of all xi such that xi V cl({x, ... , x;-1}). We want to design algorithms to solve the

BOSP when I is restricted to be a matroid. Specificially we wish to solve the following problem:

Matroid Prophet Inequality Problem (MPIP): Given as input a matroid (V, I), and a distri-
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bution F, for all x E V, design a stopping rule whose accepted set, ALG, is always in I and such

that for some constant c, cE[w(ALG)] ;> E[OPT].

1.1.2 Results

We prove in this thesis that for every matroid, there is a solution to the MPIP with c = 2. It is well

known that the factor 2 in Krengel, Sucheston, and Garling's inequality (1.1) cannot be improved

(see Section 4 for a lower bound example) and therefore our result for matroids is the best possible,

even in the rank-one case.

Our algorithm is quite simple. At its heart lies a new algorithm for achieving the optimal factor

2 in rank-one matroids: compute a threshold value T = E [max; X;]/2 and accept the first element

whose weight exceeds this threshold. This is very similar to the algorithm of Samuel-Cahn [20],

which uses a threshold T such that Pr(max; X; > T) = 1 but is otherwise the same, and which also

achieves the optimal factor 2. It is hard to surpass the elegance of Samuel-Cahn's proof, and indeed

our proof, though short and simple, is not as elegant. On the other hand, our algorithm for rank-one

matroids has a crucial advantage over Samuel-Cahn's: it generalizes to arbitrary matroids without

weakening its approximation factor. The generalization is as follows. After having selected some

set A and considering adding the next element xi, the algorithm asks, "How much reward would

a prophet expect if he were forced to start with the set A (not counting the weight of A)? And

how much would this decrease if he were forced to start with A U {x} instead (not counting the

weight of A and xi)?" If the weight of x; exceeds half this expected decrease, then we accept it.

Otherwise we reject. Note that this algorithm, specialized to rank-one matroids, is precisely the

one proposed at the start of this paragraph: the expected value of a prophet who accepts nothing

is exactly E [max X;], and the expected value of a prophet who is forced to start already having

accepted an element is 0.

1.1.3 Matroid Intersections

We next extend our algorithm to the case in which the feasibility constraint is given by a matroid

intersection rather than a single matroid. The intersection of p matroids (V, Ii),.. ., (V, I,) is the
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set system ('lI, n;I;). In other words, a set is "independent" if and only if it is independent in all p

matroids. It is easy to extend the MPIP to ask about feasibility constraints that are the intersection

of p matroids, and we will denote the problem as p-MPIP. In this thesis, we also show that the p-

MPIP admits a solution with c = 4p - 2. The algorithm is a natural extension of the one described

earlier, but slightly more complex to account for the change in setting. Having already accepted A

and considering xi, the algorithm again considers the expected reward of a prophet forced to start

with A versus one forced to start with A U {xi}. With matroid intersections, the expected reward of

a prophet doesn't behave as nicely as with a single matroid, so we make two modifications. First,

we further restrict the prophet so that the set he accepts is not only feasible when combined with

A, but is also a subset of the true max-weight feasible set. This restriction is vacuous with a single

matroid, as the prophet will always choose such a subset anyway. Second, rather than using the

correct feasibility constraints, we pretend that one matroid will be chosen uniformly at random

and the constraints from the remaining ones will be ignored. Again, this is vacuous with a single

matroid as it will always be chosen. After these modifications to the "prophet," the algorithm is

the same: if the weight of x; exceeds half the expected decrease in the prophet's reward, we accept

it.

In Section 4 we show that our result for matroid intersections is almost tight: we present a lower

bound demonstrating that the ratio 4p - 2 cannot be improved by more than a constant factor.

1.2 Mechanism Design

Mechanism Design and online selection problems are seemingly unrelated. However, Chawla,

Hartline, Malec and Sivan discovered a connection between designing certain types of mechanisms

and proving prophet inequalities [5]. Specifically, imagine the following scenario: you are a seller

(the central agent) with n distinguishable items for sale. There are m buyers interested in the items.

As a salesman, your objective is to maximize your revenue by auctioning the items to the bidders

in a way that exploits their selfish, rational behavior. Formally, here are the standard economic

assumptions behind the problem considered in [5] that can be traced all the way back to Myerson's

seminal paper on mechanism design, where he solves this problem for n = 1 [19].
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Bayesian Multi-dimensional Unit-demand Mechanism Design (BMUMD):

1. Each bidder i has a private value vij for receiving item j. This is unknown to the seller.

2. Each bidder i is unit-demand. That is, the value of bidder i for a set of goods, J, is just

maxjEJ vij.

3. Each bidder i's value for item j is sampled independently from a known distribution Fij. Fij

is known to the seller.

4. Some set system ([m] x [n], I) determines which items can simultaneously be awarded to

which bidders, which includes the w.l.o.g. assumption that each bidder receives at most one

item.

5. Bidders are quasi-linear. That is, their utility is just their value minus the price they pay.

6. The mechanism must be truthful, or dominant strategy incentive compatible (DSIC) to en-

sure predictable behavior from selfish, rational participants. That is, for all i, no matter what

bids are made by the remaining bidders, it is in bidder i's best interest to report her true bid

(i.e. their utility is higher by telling the truth than telling any possible lie).

7. The goal is to design a truthful mechanism whose expected revenue is competitive with that

of the highest achievable expected revenue by any truthful mechanism.

Chawla et al. [5] pioneered the study of approximation guarantees for sequential posted pric-

ings (SPMs), a very simple class of mechanisms in which the seller makes a sequence of take-it-

or-leave-it offers to the agents, with each offer specifying an item and a price that the agent must

pay in order to win the item. Despite their simplicity, sequential posted pricings were shown in [5]

to approximate the optimal revenue in many different settings. Prophet inequalities constitute a

key technique underlying these results; instead of directly analyzing the revenue of the SPM, one

analyzes the so-called virtual values of the winning bids, proving via prophet inequalities that

the combined expected virtual value accumulated by the SPM approximates the offline optimum.

Translating this virtual-value approximation guarantee into a revenue guarantee is an application
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of standard Bayesian mechanism design techniques introduced by Roger Myerson [19]. In the

course of developing these results, Chawla et al. prove a type of prophet inequality for matroids

that is of considerable interest in its own right: they show that if the algorithm is allowed to specify

the order in which the matroid elements are observed, then it can guarantee an expected payoff at

least half as large as the prophet's. Our result can be seen as a strengthening of theirs, achieving

the same approximation bound without allowing the algorithm to reorder the elements. Unlike our

setting, in which the factor 2 is known to be tight, the best known lower bound for algorithms that

may reorder the elements is frf2 n 1.25.

Extending the aforementioned results from single-parameter to multi-parameter domains, Chawla

et al. define in [5] a general class of multi-parameter mechanism design problems called Bayesian

multi-parameter unit-demand (BMUMD). SPMs in this setting are not truthful but can be modi-

fied to yield mechanisms that approximate the Bayesian optimal revenue with respect to a weaker

solution concept: implementation in undominated strategies. A narrower class of mechanisms

called oblivious posted pricings (OPMs) yields truthful mechanisms, but typically with weaker

approximation guarantees; for example, it is not known whether OPMs can yield constant-factor

approximations to the Bayesian optimal revenue in matroid settings, except for special cases such

as graphic matroids. Without resolving this question, our results lead to an equally strong posi-

tive result for BMUMD: truthful mechanisms that 2-approximate the Bayesian optimal revenue in

matroid settings and (4p - 2)-approximate it in settings defined by an intersection of p matroid

constraints.

To extend our results to multi-dimensional settings, one must distinguish between adversaries

with respect to their power to choose the ordering of the sequence. The original BOSP treated

in previous work [17, 18] considers a fixed-order adversary. That is, the adversary chooses an

ordering (or distribution over orderings) for revealing the elements of VU without knowing any of

the weights w(x). Our main result is an algorithm that achieves !OPT (or 1-OPT) against a

fixed-order adversary. This result combined with the techniques of [5] immediately yields OPMs

for single-parameter mechanism design. To extend our results to BMUMD, we must consider

a stronger type of adversary. There are many ways that an adversary could adapt to the sam-
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pled weights and/or the algorithm's decisions, some more powerful than others. The type of

adaptivity that is relevant to our paper will be called an online weight-adaptive adversary. An

online weight-adaptive adversary chooses the next element of 'V to reveal one at a time. After

choosing x 1,..., xi- and learning w(xi),.. ., w(xi-), the online weight-adaptive adversary chooses

the next xi to reveal without knowing the weight w(x;) (or any weights besides w(x1) through

w(xi-)). Fortunately, the same exact proof shows that our algorithm, without any modification,

also achieves !OPT (or 1 OPT) against an online weight-adaptive adversary. The connection
2 4p- 2

between BMUMD and online weight-adaptive adversaries is not trivial, and is explained in Sec-

tion 5.

1.3 Related Work

The genesis of prophet inequalities in the work of Krengel, Sucheston, and Garling [17, 18] was

discussed earlier. It would be impossible to do justice to the extensive literature on prophet inequal-

ities. Of particular relevance to our work are the so-called multiple-choice prophet inequalities in

which either the gambler, the prophet, or both are given the power to choose more than one el-

ement. While several papers have been written on this topic, e.g. [13, 14, 15], the near-optimal

solution of the most natural case, in which both the gambler and the prophet have k > 1 choices,

was not completed until the work of Alaei [1], who gave a factor-(1 - 1/ Vk +3)-l prophet in-

equality for k-choice optimal stopping; a nearly-matching lower bound of 1 + n(k'1 2 ) was already

known from prior work.

Research investigating the relationship between algorithmic mechanism design and prophet

inequalities was initiated by Hajiaghayi, Kleinberg, and Sandholm [12], who observed that algo-

rithms used in the derivation of prophet inequalities, owing to their monotonicity properties, could

be interpreted as truthful online auction mechanisms and that the prophet inequality in turn could

be interpreted as the mechanism's approximation guarantee. Chawla et al. [5] discovered a much

subtler relation between the two subjects: questions about the approximability of offline Bayesian

optimal mechanisms by sequential posted-price mechanisms could be translated into questions

about prophet inequalities, via the use of virtual valuation functions. A fuller discussion of their
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contributions appears earlier in this section. Recent work by Alaei [1] deepens still further the

connections between these two research areas, obtaining a near-optimal k-choice prophet inequal-

ity and applying it to a much more general Bayesian combinatorial auction framework than that

studied in [5].

While not directly related to our work, the matroid secretary problem [3] also concerns re-

lations between optimal stopping and matroids, this time under the assumption of a randomly

ordered input, rather than independent random numbers in a fixed order. In fact, the "hard exam-

ples" for many natural examples in the matroid-secretary setting also translate into hard examples

for the prophet inequality setting. In light of this relation, it is intriguing that our work solves

the matroid prophet inequality problem whereas the matroid secretary problem remains unsolved,

despite intriguing progress on special cases [7, 16], general matroids [4], and relaxed versions of

the problem [22].

Finally, the Bayesian online selection problem that we consider here can be formulated as an

exponential-sized Markov decision process, whose state reflects the entire set of decisions made

prior to a specified point during the algorithm's execution. Thus, our paper can be interpreted as

a contribution to the growing CS literature on approximate solutions of exponential-sized Markov

decision processes, e.g. [6, 10, 11]. Most of these papers use LP-based techniques. Combinatorial

algorithms based on simple thresholding rules, such as ours, are comparatively rare although there

are some other examples in the literature on such problems, for example [9].
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Chapter 2

Algorithms for Matroids

In this section we prove our main theorem, asserting the existence of algorithms whose expected

reward is at least !OPT when playing against any online weight-adaptive adversary. Here is some

intuition as to the considerations guiding the design of our algorithm. Imagine a prophet that

is forced to start by accepting the set A, and let the remainder of A (denoted R(A), defined for-

mally in the following section) denote the subset that the restricted prophet adds to A. Let the

cost of A (denoted C(A), defined formally in the following section) denote the subset that the un-

restricted prophet selected in place of A. Then the restricted prophet makes w(A) + E [w(R(A))]

in expectation, while the unrestricted prophet makes E [w(C(A))] + E [w(R(A))]. So if A satisfies

w(A)> 1 E [w(C(A))] for a small constant a, it is not so bad to get stuck holding set A. However,

just because A is not a bad set to start with does not mean we shouldn't accept anything that comes

later. After all, the empty set is not a bad set to start with. If we can choose A in a way such that for

any V we reject with A U V E I, w(V) s E [w(R(A))], then A is not a bad set to finish with. Simply

put, we want to choose thresholds that are large enough to guarantee that w(A) compares well to

E [w(C(A))], but small enough to guarantee that everything we reject is not too heavy. Indeed, the

first step in our analysis is to define this property formally and show that an algorithm with this

property obtains a -- approximation.

14



2.1 Detour: The rank-one case

To introduce the ideas underlying our algorithm and its analysis, we start with a very simple analy-

sis of the case of rank-one matroids. This is the special case of the problem in which the algorithm

is only allowed to make one selection, i.e. the same setting as the original prophet inequality (1.1).

Thus, the algorithm given in this section can be regarded as providing a new and simple proof of

that inequality.

Let the random weights of the elements by denoted by Xi, ... , X,, and let T = E [maxi X]/2.

We'will show that an algorithm that stops at the first time r such that X, T makes at least T in

expectation. Let p = Pr[max; X; T]. Then we get the following inequality, for any x > T:

n

Pr[XT > x] (1 - p) Pr[X, > x]

This is true because with probability 1 - p the algorithm accepts nothing, so with probability at

least (1 -p) it has accepted nothing by the time it processes X;. So the probability that the algorithm

accepts X; and that X; > x is at least (1 - p) Pr[X; > x]. It is also clear, by the union bound, that

Pr[X,> x] Pr[max X; > x]

and therefore, for all x > T,

Pr[X, > x] (1 - p) Pr[max X; > x].

Now, observe that E [max; X;] = Pr[max; X, > x] dx + Pr[max; X; > x] dx = 2T. As the first

term is clearly at most T, the second term must be at least T. So finally, we write:

ITp
E[X] = Pr[X, > x] dx + Pr[X, > x] dx

pT + (1 - p) Pr[max Xi > x] dx

SpT + (1 - p)T = T = E max X

15



which completes the proof of (1.1).

2.2 Defining a-balanced thresholds

To design and analyze algorithms for general matroids, we begin by defining a property of a deter-

ministic monotone algorithm that we refer to as a-balanced thresholds. In this section we prove

that the expected reward of any such algorithm is at least IOPT. In the following section we

construct an algorithm with 2-balanced thresholds, completing the proof of the main theorem.

To define a-balanced thresholds, we must first define some notation. Let w, w' : 'U -* R,

denote two assignments of weights to 'V, both sampled indepedently from the given distribution.

We consider running the algorithm on an input sequence c-, with o- = (xi, w(x 1)),..., (xv, w(x,))

and comparing the value of its selected set, A = A(o-), with that of the basis B that maximizes

w'(B). The matroid exchange axiom ensures that there is at least one way to partition B into

disjoint subsets C, R such that A U R is also a basis of M. (Consider adding elements of B one-by-

one to A, preserving membership in I, until the two sets have equal cardinality, and let R be the set

of elements added to A.) Among all such partitions, let C(A), R(A) denote the one that maximizes

w'(R).

Definition 1. For a parameter a > 1, a deterministic monotone algorithm has a-balanced thresh-

olds if it has the following property. For every input sequence o-, if A = A(o-) and V is a set disjoint

from A such that A U V e I, then

ZT(cr) > - E [w'(C(A))] (2.1)

T,(- I E [w'(R(A))], (2.2)
xiEV

where the expectation is over the random choice of w'.

Intuitively, Equation 2.1 guarantees that the set we accept is not too bad. The idea is that by

selecting A, we have stopped the prophet from accepting C(A), so we should make sure that w(A)

16



is comparable to E [w'(C(A))]. Equation 2.2 guarantees that any set we reject is not too heavy.

A prophet expects reward equal to E [w'(R(A))] when adding elements to A, so if there is no way

for the gambler to make even (1 - -)E [w'(R(A))], he is not missing out on much by rejecting

everything. Proposition 1 below states formally that this intuition holds.

Proposition 1. If a monotone algorithm has a-balanced thresholds, then it satisfies the following

approximation guarantee against online weight-adaptive adversaries:

1
B [w(A)] -OPT. (2.3)

a

Proof We have

OPT = B [w'(C(A)) + w'(R(A))] (2.4)

because C(A)UR(A) is a maximum-weight basis with respect to w', and w' has the same distribution

as w. For any real number z, we will use the notation (z)* to denote max{z, 0}. The proof will consist

of deriving the following three inequalities, in which wi stands for w(x;).

Ez Tj E [w'(C(A))] (2.5)

lB [Z(w - T)j E W(xi) - Ti)+] (2.6)
x EA xiER(A)

E L (w'x;) - T; > lE [w'(R(A))]. (2.7)
xiER( A)

Summing (2.5)-(2.7) and using the fact that Ti + (w; - T;)* = w; for all xi e A, we obtain

1 1
B [w(A)] -B I[w'(C(A))] + -E [w'(R(A))].

a a

Inequality (2.5) is a restatement of the definition of a-balanced thresholds. Inequality (2.6) is

deduced from the following observations. First, the algorithm selects every i such that w > T;,

so E w - T;)+ = R 1i(w; - T,)+. Second, the online property of the algorithm and the fact
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that weight-adaptive adversaries do not learn w; before choosing to reveal x; imply that Ti depends

only on (x1, wi),..., (x- 1, wi- 1) and that the random variables w(x;), w'(x), Ti are independent. As

w; = w(x;) and w'(xi) are identically distributed, it follows that

B Z(wi - Ti)+j
i=1.

= B (w'(xi) - Ti)j

> =B (w'(xi) - Tx)[x16R(A)

and (2.6) is established. Finally, we apply Property (2.2) of a-balanced thresholds, using the set

V = R(A), to deduce that

E w'(xi)[xiER(A) L

< B Z) Til+BI, (('xi) -T;)
xiER(A) xiER(A)

< 1I- B x w'(xi)

LERA, -

+ B (w'(x;) - TX)
LxiER(A)

B w'(x) ]BZ (w'(xi) - Ti)*

Consequently (2.7) holds, which concludes the proof.
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2.3 Achieving 2-balanced thresholds

This section presents an algorithm with 2-balanced thresholds. The algorithm is quite simple. In

step i, having already selected the (possibly empty) set Ai_ 1, we set threshold Ti = oo if A;_1 U

{x} 0 I. Otherwise, imagine that a prophet resamples the sequence and starts over having already

accepted A;_1. Such a prophet would obtain expected reward exactly equal to E [w'(R(A_ 1 ))].

Imagine also a prophet resampling and starting over having already accepted A;_1 U {x,}. Such a

prophet obtains expected reward exactly equal to E [w'(R(A;_1 U {x;}))]. We set T; equal to exactly

half of what a prophet would lose in expectation by accepting {x;}, or formally:

Ti= E [w'(R(A;-1)) - w'(R(A;_1 U {xj}))] (2.8)

=jE [w'(C(A;_i U {x;})) - w'(C(A;-1))] (2.9)

The algorithm selects element x; if and only if w; > T;. The fact that both (2.8) and (2.9) define the

same value of T, is easy to verify. Let B denote the maximum weight basis of M with weights w'.

w'(C(Ai- 1 )) + w'(R(A;_1)) = w'(B)

= w'(C(A;_ 1 U (xj})) + w'(R(A;_1 U {x;}))

w'(R(A;_1)) - w'(R(A_ 1 U {x;}))

= w'(C(A_ 1 U {x;})) - w'(C(A;-1))

Property (2.1) in the definition of a-balanced thresholds follows from a telescoping sum.

Ti = j E [w'(C(A;_j U {x;})) - w'(C(A;-1))]
xiEA xiEA

= j E [w'(C(Ai)) -w(CAi_1))]
xiEA

='E [w'(C(An)) - w'(C(Ao))]

= jE[w'(C(A))].
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The remainder of this section is devoted to proving Property (2.2) in the definition of a-

balanced thresholds. In the present context, with a = 2 and thresholds T, defined by (2.8), the

property simply asserts that for every pair of disjoint sets A, V such that A U V E I,

E ;7w'(R(A;_1)) - w'(R(A;_1 U {xi))

= 2 Z Ti(c-) E [w'(R(A))]
x;EV

We will show, in fact, that this inequality holds for every non-negative weight assignment w' and

not merely in expectation. The proof appears in Proposition 2 below. To establish it, we will need

some basic properties of matroids.

Definition 2 ([21], Section 39.3). If M is a matroid and S is a subset of its ground set, the deletion

M - S and the contraction MIS are two matroids with ground set V - S. A set T is independent

in M - S if T is independent in M, whereas T is independent in MIS if T U So is independent in

M, where So is any maximal independent subset of S.

Lemma 1. Suppose M = (U, I) is a matroid and V, R e I are two independent sets of equal

cardinality.

1. There is a bijection $ : V -> R such that for every v e V, (R - {#(v)}) U {v} is an independent

set.

2. For a weight function w' : V -> R, suppose that R has the maximum weight of all IRI-element

independent subsets of V U R. Then the bijection # in part 1 also satisfies w'( p(v)) > w'(v).

Proof Part 1 is Corollary 39.12a in [21]. To prove part 2, simply observe that the weight of

(R - {#(v)}) U {v} cannot be greater than the weight of R, by our assumptions on R and #. n

The next two lemmas establish basic properties of the function S F-- R(S).

Lemma 2. For any independent set A, the set R(A) is equal to the maximum weight basis of M/A.
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Proof Let B be the maximum-weight basis of M. Among all bases of MIA that are contained in

B, the set R(A) is, by definition, the one of maximum weight. Therefore, if it is not the maximum-

weight basis of M/A, the only reason can be that there is another basis of MIA, not contained in

B, having strictly greater weight. But we know that the maximum-weight basis of MIA is selected

by the greedy algorithm, which iterates through the list y1, ... , yk of elements of 1 - A sorted in

order of decreasing weight, and picks each element y, that is not contained in cl(A U {yi, ... , y-I1).

In particular, every y, chosen by the greedy algorithm on MIA satisfies y; g cl({yi,... , y-1}) and

therefore belongs to B. Thus the maximum-weight basis of MIA is contained in B and must equal

R(A). 0

Lemma 3. For any independent set J, the function f(S) = w'(R(S)) is a submodular set function

on subsets of J.

Proof For notational convenience, in this proof we will denote the union of two sets by '+' rather

than 'U'. Also, we will not distinguish between an element x and the singleton set {x).

To prove submodularity it suffices to consider an independent set S + x + y and to prove that

f(S) - f(S + x) s f(S + y) - f(S + x + y). Replacing M by MIS, we can reduce to the case that

S = 0 and prove that f(0) - f(x) f(y) - f(x + y) whenever {x, y) is a two-element independent

set.

What is the interpretation of f(0) - f(x)? Recall that f(0) = w'(R(0)) is the weight of the

maximum-weight basis B of M. Similarly, f(x) is the weight of the maximum-weight basis B, of

M/{x}. Let bi, b2 ,.. ., b, denote the elements of B in decreasing order of weight. Consider running

two executions of the greedy algorithm to select B and B, in parallel. The only step in which the

algorithms make differing decisions is the first step i in which {bi, ... , b;} U {x} contains a circuit.

In this step, b; is included in B but excluded from B. Similarly, when we run two executions of

the greedy algorithm to select By and BX, - the maximum-weight bases of M/{y) and M/{x,y},

respectively - the only step in which differing decisions are made is the earliest step j in which

{bi, ... , bj} U {x, y} contains a circuit. But j certainly cannot be later than i, since {bi, ... , b;} U {x, y}
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is a superset of {b 1,..., bi} U {x} and hence contains a circuit. We may conclude that

f(0) - f(x) = bi b; = f(y) - f(x + y),

and hence f is submodular as claimed. 0

Proposition 2. For any disjoint sets A, V such that A U V E I,

Z w'(R(A;_1)) - w'(R(A;i U {x;})) w'(R(A)).
XiEV

Proof The function f(S) = w'(R(S)) is submodular on subsets S C A U V, by Lemma 3. Hence

E w'(R(A;_1)) - w'(R(A-I U (x;})) (2.10)
XiEV

s w'(R(A)) - w'(R(A U {x})). (2.11)
XEV

Apply Lemma 1 to the independent sets V, R(A) in M/A to obtain a bijection # such that w'(#(x)) >

w'(x) and A U (R(A) - #(x)) U {x} E I for all X E V. By definition of R(-), we know that A U {x} U

R(A U {x}) is the maximum weight independent subset of A U {x} U B that contains A U {x}. One

such set is A U (R(A) - #(x)) U {x}, so

w'(A) + w'(R(A)) - w'(#(x)) + w'(x)

w'(A) + w'(R(A U (x})) + w'(x) (2.12)

w'(R(A)) - w'(R(A U {xl))

w'(#(x)) (2.13)

Z w'(R(A)) - w'(R(A U {x}))
xEV

s w'(#(x)) = w'(R). (2.14)
xEV

The proposition follows by combining (2.10) and (2.14). 0
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One might notice that our choice of thresholds involves computing the expectation of a random

variable. In practice, computing our thresholds exactly may be unrealistic. However, it is not hard

to see that the work in this section also provides a proof of the following proposition:

Proposition 3. Let T denote the thresholds used by our algorithm to obtain 2-balanced thresholds,

and let T|' denote thresholds used by some other monotone algorithm. Then if T' < Ti < (1 + E)T|

for all i, the thresholds T' are 2(1 + e)-balanced thresholds.

Proposition 3 can be deduced by observing that decreasing the thresholds cannot possibly hurt

the ratio of Property (2.2), but it might hurt the ratio of Property (2.1). We proved Property (2.1)

by simply observing a telescoping sum. It is clear that lower bounding the telescoping sum instead

of computing it exactly provides the bound LA Ti(o-) > (1+,)E [w'(C(A))].
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Chapter 3

Matroid intersections

Our algorithm and proof for matroid intersections is quite similar. We need to modify some defi-

nitions and extend some proofs, but the spirit is the same.

3.1 Generalizing a-balanced thresholds

We first have to extend our notation a bit. Denote the independent sets for the p matroids as

1 1,... , 1. Denote the "truly independent" sets as I = njI;. Still let w, w' : -> R, denote two

assignments of weights to V, both sampled indepedently from the given distribution. We consider

running the algorithm on an input sequence cr = (xi, w(xi)),..., (x,, w(x,)) and comparing the

value of its selected set, A = A(o-), with that of the B E I that maximizes w'(B). For all j, the

matroid exchange axiom ensures that there is at least one way to partition B into disjoint subsets

Cj, Rj such that A URj E Ij, and B 9 cl/(A URj). Among all such partitions, let C/(A), Rj(A) denote

the one that maximizes w'(Rj) (greedily add elements from B to R1 unless it creates a dependency

in Ij). We denote by R(A) = nR 1 (A) and C(A) = U3 C/(A).

Definition 3. For a parameter a > 0, a deterministic monotone algorithm has a-balanced thresh-

olds if it has the following property. For every input sequence o-, if A = A(o-) and V is a set disjoint
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from A such that A U V E I, then

Ti(o-) I - E w'(Cj(A))j (3.1)
xiE Aj

Ti~o- Y w'(Rj(A)) ,(3.2)
xiEV j

where the expectation is over the random choice of w'.

Proposition 4. If a monotone algorithm has a-balanced thresholds for a 2, then it satisfies the

following approximation guarantee against weight-adaptive adversaries when I is the intersection

of p matroids:

E [w(A)] > OPT. (3.3)
a(a -)

Proof We have

OPT = E [w'(Cj(A)) + w'(Rj(A))] 'Vj (3.4)

OPT = E [w'(C(A)) + w'(R(A))] (3.5)

because C;(A) U Rj(A) is a maximum-weight independent set with respect to w' for all j, as is

C(A) U R(A), and w' has the same distribution as w. The proof will again consist of deriving the

following three inequalities.

E X[Tl E w'(C(A)) (3.6)
xiEA j

X (wi - T)j

E (w'(xi) - TX (3.7)
LxER( A)

E (w(xi)- Ti)+

E [w'(R(A))] - E w'(Rj(A))]. (3.8)
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Summing (3.6) + (3.7) + y;(3.8) and using the fact that Ti + (w; - T;)+ = wi for all x; E A, we

obtain

E [w(A)] ( i a E w'(Cj(A))
a -1 a(a - 1)1

+ a B (w'(x;) - Tia 1xiER(A)

+ E [w'(R(A))]
a - 1

- __ _E w'(Rj(A))

Subsituting in Equations (3.4) and (3.5) (and observing that 2 0 whenever a 2), we get:

E [w(A)] OPT - OPT =a-p OPT
a - a(ar -1) a(a - 1)

It remains to show that Equations (3.6) - (3.8) hold for any a-balanced thresholds. Equation

(3.6) is again a restatement of the definition of a-balanced thresholds. Inequality (3.7) is deduced

from the same observations as Equation (2.6). Finally, as in Proposition 1, we apply Property (3.2)
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of a-balanced thresholds, using the set V = R(A), to deduce that

E w'(xi)]
LXiER(A) JI

-> E [w'(R(A))]

< E Ti]

+ E (w'(xi) - T )*
xiER(A)

<JE w'(R(A))

+ E (w'(x;) - T )*
XiER(A)

-FE w'(Rj(A))

<l E ('xi) - T;)*
LxdeR(A)

Consequently (3.8) holds, which concludes the proof.

0

3.2 Obtaining a-balanced thresholds

This section presents an algorithm obtaining a-balanced thresholds for any a > 1. One can take

a derivative to see that the optimal choice of a for the intersection of p matroids is a, = p +

Ap(p - 1). For simplicity, we will instead just use a = 2p, as this is nearly optimal and always at

least 2. When a = 2p, the approximation guarantee from Proposition 4 is .

We now define our thresholds. Let

T(A, i, j) = E w'(Rj(A)) - w'(Rj(A U {x;}))

= E [w'(Cj(A U (x;})) - w'(C;(A))]

T(A, i) = T(A, i, j).
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In step i, having already selected the (possibly empty) set A;- 1, we set threshold Ti = oo if

A_. 1 U {il V I, and Ti = T(A;_ 1, i) otherwise. In other words, each T(A, i, j) is basically the

same as the threshold used for the single matroid algorithm if I; was the only matroid constraint.

It is not exactly the same, because R(A) when Ij is the only matroid is not the same as Rj(A) in the

presence of other matroid constraints. T(A, i) just sums T(A, i, j) over all matroids.

The proof of Equation (3.1) follows exactly the proof of Equation (2.1).

The proof of Equation (3.2) follows from Proposition 2, although perhaps not obviously. As

A U V e I, we clearly have A U V e Ij for all j. So the hypotheses of Proposition 2 are sat-

isfied for all j. Summing the bound we get in Proposition 2 over all j gives us Equation (3.2).

Similar to our thresholds for matroids, our thresholds for matroid intersections are robust to

small errors in computation. The same reasoning provides us with the following proposition:

Proposition 5. Let T, denote the thresholds used by our algorithm to obtain a-balanced thresholds,

and let T denote thresholds used by some other monotone algorithm. Then if Ti : T (1 + e)T|

for all i, the T are a(1 + E)-balanced thresholds.
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Chapter 4

Lower Bounds

Here we provide two examples. The first is the well-known example of [17] showing that the factor

of 2 is tight for matroids. We present their construction here for completeness. The second shows

that the ratio O(p) is tight for the intersection of p matroids.

We start with the well-known example of [17]. Consider the 1-uniform matroid over 2 ele-

ments. We have w(1) = 1 with probability 1, w(2) = n with probability 1/n and 0 otherwise. Then

the prophet obtains 2-1/n in expectation, but the gambler obtains at most 1, as his optimal strategy

is just to take the first element always.

The example for the intersection of p matroids has appeared in other forms in [3, 5]. Let q be

a prime between p/2 and p. Then let 11 = {(i, j)|0 1 i s q" - 1, 0 s j q - 11. Then let 1 contain

all sets of the form {(i, ji), ... , (i, jI)}. Now let w(i, j) = 1 with probability 1/q, and w(i, j) = 0

otherwise, for all i, j. Reveal the elements in any order. No matter what strategy the gambler uses

to pick the first element, his optimal strategy from that point on is to just accept every remaining

element with the same first coordinate. However the gambler winds up with his first element, he

makes at most 1 - 1 /q in expectation from the remaining elements he is allowed to pick (as there

are at most q - 1 remaining elements, and each has E [w(i, j)] = 1/q). Therefore, the expected

payoff to the gambler is less than 2. However, with probability at least (1 - 1le), there exists an i

such that w(i, j) = 1 for all j (as the probability that this occurs for a fixed i is 1 /qq and there are

qq different i's). So the expected payoff to the prophet is O(q).
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Finally, we just have to show that I can be written as the intersection of q matroids. Let I., be

the partition matroid that partitions 'V into UjSj = U1 U, {(i, xi + j (mod q))}, and requires that only

one element of each S1 be chosen. Then clearly, I c nXEzIx as any two elements with the same

first coordinate lie in different partitions in each of the Ix. In addition, nxEzIx c I. Consider any

(i, J) and (i', f ) with i # i'. Then when (j - j') (mod q) = x(i - i') (mod q), (i, j) and (i', j') are

in the same partition of I. As q is prime, this equation always has a solution. Therefore, we have

shown that I = nXEZIx, and I can be written as the intersection of q p matroids. As the prophet

obtains O(p) in expectation, and the gambler obtains less than 2 in expectation, no algorithm can

achieve an approximation factor better than O(p).
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Chapter 5

Interpretation as OPM's

Here, we describe how to use our algorithm to design OPMs for unit-demand multi-parameter

bidders under matroid and matroid intersection feasibility constraints. We begin by recalling the

definition of Bayesian multi-parameter unit-demand mechanism design (BMUMD) from [5]. In

any such mechanism design problem, there is a set of services, V, partitioned into disjoint sub-

sets J1, ... , J., one for each bidder. The mechanism must allocate a set of services, subject to

downward-closed feasibility constraints given by a collection I of feasible subsets. We assume

that the feasibility constraints guarantee that no bidder receives more than a single service, i.e.

that the intersection of any feasible set with one of the sets Ji contains no more than one element.

(If this property is not already implied by the given feasibility constraints, it can be ensured by

intersecting the given constraints with one additional partition matroid constraint.)

As in the work of Chawla et al. [5], we assume that each bidder i's values for the services

in set J, are independent random variables, and we analyze BMUMD mechanisms for any such

distribution by exploring a closely-related single-parameter domain that we denote by coPies. In

ICOPi" there are II bidders, each of whom wants just a single service x and has a value v, for

receiving that service. The feasibility constraints are the same in both domains - the mechanism

may select any set of services that belongs to I - and the joint distribution of the values v, (x E I)

is the same as well; the only difference between the two domains is that an individual bidder i in

the BMUMD problem becomes a set of competing bidders (corresponding to the elements of Ji)
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in the domain IcoPi**. As might be expected, the increase in competition between bidders results in

an increase in revenue for the optimal mechanism; indeed, the following lemma from [5] will be a

key step in our analysis.

Lemma 4. Let I be any individually rational, truthful deterministic mechanism for instance I

of BMUMD. Then the expected revenue of Af is no more than the expected revenue of the optimal

mechanism for Icopies.

A second technique that we will borrow from [5] (and, ultimately, from Myerson's original

paper on optimal mechanism design [19]), is the technique of analyzing the expected revenue of

mechanisms indirectly via their virtual surplus. We begin by reviewing the definitions of virtual

valuations and virtual surplus. Assume that vx, the value of bidder i for item x E J, has cumulative

distribution function F, whose density f, is well-defined and positive on the interval on which v,

is supported. Then the virtual valuation function #, is defined by

1 - F,(v)
#x(v) = v - ,f(v)

fx(v)

and the virtual surplus of an allocation A e I is defined to be the sum >jA #x(vx). Myerson [19]

proved the following:

Lemma 5. In single-parameter domains whose bidders have independent valuations with mono-

tone increasing virtual valuation functions, the expected revenue of any mechanism in Bayes-Nash

equilibrium is equal to its expected virtual surplus.

The distribution of v, is said to be regular when the virtual valuation function #x is mono-

tonically increasing. We will assume throughout the rest of this section that bidders' values have

regular distributions, in order to apply Lemma 5. To deal with non-regular distributions, it is neces-

sary to use a technique known as ironing, also due to Myerson [19], which in our context translates

into randomized pricing via a recipe described in Lemma 2 of [5].

Our plan is now to design truthful mechanisms M and MOPiS for the BMUMD domain I

and the associated single-parameter domain I'"Pi*s, respectively, and to relate them to the optimal
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mechanisms for those domains via the following chain of inequalities.

R(M) R(Mopies)

R(MoPs) = (Mopies)

1
(Mopies) I -D( p-rOPies)

a
1 1
-D(OPT P* ) = -R(OPT P* )
a a
1 ces) 1

R(OPT' *) -R(OPT). (5.1)
a a

Here, R(-) and D(-) denote the expected revenue and expected virtual surplus of a mechanism, re-

spectively, and a denotes the approximation guarantee of a prophet inequality algorithm embedded

in our mechanism. Thus, a = 2 when I is a matroid, and more generally a = 4p - 2 when I is

given by an intersection of p matroid constraints.

Most of the steps in line (5.1) are already justified by the lemmas from prior work discussed

above. The relation R = (D for mechanisms M4Pes and OPTco" is a consequence of Lemma 5,

while Lemma 4 provides R(OPTcOP") R(OPT). We will naturally derive the relation D(MC*Pi) >

1 (OPTOP") as a consequence of the prophet inequality. To do so, it suffices to define mechanism

M*Pi" such that its allocation decisions result from running the prophet inequality algorithm on an

input sequence consisting of the virtual valuations #,x(v,), presented in an order determined by an

online weight-adaptive adversary. The crux of our proof will consist of designing said adversary

to ensure that the relation R(M) R(Mcopies) also holds.

Given these preliminaries, we now describe the mechanisms M and MOPi*S. Central to both

mechanisms is a pricing scheme using thresholds T(A, x), defined as the threshold T, that our

online algorithm would use at step s when x, = x and the algorithm has accepted the set A so far.

(Contrary to previous sections of the paper in which steps of the online algorithm's execution were

denoted by i, here we reserve the variable i to refer to bidders in the mechanism, using s instead to

denote a step of the online algorithm. Note that the thresholds assigned by our algorithm depend

only on A and x, not on s, hence the notation T(A, x) is justified.) Mechanism M, described by the

pseudocode in Algorithm 1, simply makes posted-price offers to bidders 1,2,.. ., n in that order,
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Algorithm 1: Mechanism M for unit-demand multi-dimensional bidders

1: Initialize A = 0.
2: for i = 1, 2,..., n do
3: for all x E Ji do

4: Set Px =($Q (T(A x)) ifA U {x} E I
oo otherwise.

5: end for
6: Post price vector (pI),X.
7: Bidder i chooses an element x e Ji, or poss-

ibly nothing at these posted prices.
8: if x is chosen then
9: Allocate x to bidder i and charge price px.

10: A *- A U {x}
11: else
12: Allocate nothing to bidder i and charge

price 0.
13: end if
14: end for

defining the posted price for each item by applying its inverse-virtual-valuation function to the

threshold that the prophet inequality algorithm sets for that item.

To define mechanism M'oPi", we first define an online weight-adaptive adversary and then

run the prophet inequality algorithm on the input sequence presented by this adversary, using its

thresholds to define posted prices exactly as in mechanism M above. The adversary is designed

to minimize the mechanism's revenue, subject to the constraint that the elements are presented in

an order that runs through all of the elements of J1 , then the elements of J2 , and so on. In fact,

it is easy to compute this worst-case ordering by backward induction, which yields a dynamic

program presented in pseudocode as Algorithm 2. The dynamic programming table consists of

entries V(A, i) denoting the expected revenue that Mcopie, will gain from selling elements of the

set Ji, 1 U ... U J. given that it has already allocated the elements of A. Computing and storing

these values requires exponential time and space, but we are not concerned with making MP"

into a computationally efficient mechanism because its role in this paper is merely to provide an

intermediate step in the analysis of mechanism M.

The formula for V(A, i) is guided by the following considerations. Since MoPies will post
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prices px = #-1 (T(A, x)) for all x E JiI given that it has already allocated A, it will not allocate

any element of J;1 if v2 < px for all x E Jii, and otherwise it will allocate some element x e Ji,1 .

In the former case, its expected revenue from the remaining elements will be V(A, i + 1). In the

latter case, it extracts revenue px from bidder i + 1 and expected revenue V(A U {x}, i + 1) from

the remaining bidders. Thus, an adversary who wishes the minimize the revenue obtained by the

mechanism will order the elements x E Ji+1 in increasing order of px + V(A U {x), i + 1). Denoting

the elements of Ji1+ in this order by x 1, x2 , ... , xk, we obtain the formula

k

V(A i)= F] Fxj(p, -V(A, i+ 1)
j=1

+ ZP(O - P2(O - P3(t) (5.2)
t=1

t-1

PI() = F FlF (px,)
j=1

P2(V) = 1 - Fx,(p,)

P3) = Px, + V(A U {x}, i + 1).

The first term on the right side accounts for the possibility that bidder i + 1 buys nothing, while

the sum accounts for the possibility that bidder i + 1 buys xt, for each f = 1, ... , k: P1 (t) is the

probability that bidder i + 1 did not buy any of {xi, . .. , xt}, P2 (t) is the probability that bidder i + 1

is willing to purchase xt, and P3(e) is the expected value of V(A, i) given that bidder i + 1 purchases

Xt.

Mechanism MCOP1es has already been described above, and is specified by pseudocode in Algo-

rithm 3. We note that M4*P" does not satisfy the definition of an OPM in [5], since the price p,

for x E Ji may depend on the bids by for y e J U -.. U Ji_1. However, it retains a key property of

OPMs that make them suitable for analyzing multi-parameter mechanisms: the prices of elements

of Ji are predetermined before any of the bids in JI are revealed.

Theorem 1. Mechanism M for BMUMD settings with independent regular valuations obtains
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Algorithm 2: Online weight-adaptive adversary for Pcopies

1: for i = n, n - 1,..., 1 do ||Preprocessing loop: fill in DP table

2: for all feasible sets A g Ji U ... U J do
3: if i = n then
4: V(A, i) 0
5: else
6: px = #x1(T(A, x)) for all x E Ji+1-

7: Sort J,1+ in order of increasing px + V(A U {x}, i + 1).
8: Denote this sorted list by x1,..., xk.

9: Compute V(A, i) using formula (5.2).
10: end if
11: end for
12: end for
13: ||Main loop: choose the ordering of each set Ji
14: Initialize A = 0.
15: for i 1,.., n do
16: Px - #- 1(T(A, x)) for all x E Jg.

17: Sort the elements of Ji in order of increasing px + V(A U {x}, i - 1).
18: Present the elements of Ji to the online algorithm in this order.
19: if 3x E Ji s.t. vx > px then
20: Find the first such x in the ordering of Ji,

and insert x into A.
21: end if
22: end for

a 2-approximation to the revenue of the optimal deterministic mechanism for matroid feasibility

constraints, and a (4p - 2)-approxi-mation to the revenue of the optimal deterministic mechanism

for feasibility constraints that are the intersection of p matroids.

Proof Both M and MoPie are posted-price (hence, truthful) mechanisms that always output a

feasible allocation. To prove that the allocation is always feasible, one can argue by contradiction:

if not, there must be a step in which the set A becomes infeasible through adding an element x.

However, in both M and M'OP", we can see that the price px is infinite in that case, while bid bx

is greater than or equal to px, a contradiction.

The proof of the approximate revenue guarantee follows the outline given by equation (5.1)

above. As explained earlier, the only two steps in that equation that do not follow from prior work
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Algorithm 3: Mechanism M*Pie for single-parameter domain I4*P1*0.

1: / Set prices using adversary and with BOSP
2: Obtain bids b. for all bidders x E V.

3: Run Algorithm 2, using v. = b, for all x,
to obtain an ordering of V.

4: Set w(x) = #x(bx) for all x E V.

5: Present the pairs (x, w(x)) to the prophet inequality algorithm, in the order computed
above.

6: Obtain thresholds T(A, x) from the prophet inequality algorithm.
7: Set price px = #b-1 (T(A, x)) for all x c V.
8: / Determine allocation and payments
9: Initialize A = 0

10: for i = 1,..., n do
11: for all x E Ji do
12: if bx px and by < p, for all y e J that precede x in the ordering then
13: Add x to the set A.
14: Charge price px to bidder x.
15: end if
16: end for
17: end for

are the relations

R(M) R(M*Pies) (5.3)

1
<D(McoPies) --0(OPTcoPies). (5.4)

a

To justify the second line, observe that the "adversary" (Algorithm 2) that computes the ordering

of the bids is an online weight-adaptive adversary. This is because the adversary does not need to

observe the values v (x E Ji) in order to sort the elements of Ji in order of increasing px + V(A U

{x}, i - 1). Thus, the prophet inequality algorithm running on the input sequence specified by the

adversary achieves an expected virtual surplus that is at least 1(OPTroPie). Furthermore, the set

of elements selected by M*Pi*S is exactly the same as the set of elements selected by the prophet

inequality algorithm - the criterion bx px is equivalent to the criterion w(x) T(A, x) because

w(x) = #x(bs), T(A, x) = #x(px), and # is monotone increasing. This completes the proof of (5.4).

To prove (5.3) we use an argument that, in effect, justifies our claim that Algorithm 2 is a worst-
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case adversary for mechanism McoPi". Specifically, for each i = 0,... , n and each feasible set

A J1U ... U J;, let R(M, A, i) and R(McoPies, A, i) denote the expected revenue that M (respectively,

MoPies) obtains from selling items in Ji, 1 U -J conditional on having allocated set A while

processing the bids in J1 U .. U Ji. (In evaluating the expected revenue of the two mechanisms, we

assume that the bidders are presented to M in the order i = 1,... , n, and that they are presented

to Mcpie, in the order determined by the adversary, Algorithm 2.) We will prove, by downward

induction on i, that

Vi, A R(M, A, i) R(A4oPiesA, i) = V(A, i)

and then (5.3) follows by specializing to i = 0, A = 0. When i = n, we have R(M, A, i) =

R(MoPies, A, i) = V(A, i) = 0 so the base case of the induction is trivial. The relation R(MOPi", A, i) =

V(A, i) for i < n is justified by the discussion preceding equation (5.2). To prove R(M, A, i)

R(M*Pl", A, i), suppose that both mechanisms have allocated set A while processing the bids in

Ji U ... U Ji. Conditional on the set of x e Ji, 1 such that vx px being equal to any specified

set K, we will prove that M obtains at least as much expected revenue as McoPi" from selling the

elements of J;, 1 U ... U Jn. If K is empty, then the two mechanisms will obtain expected rev-

enue R(M, A, i + 1) and R(MOPi", A, i + 1), respectively, from elements of J;,I U ... U J, and

the claim follows from the induction hypothesis. Otherwise, MOPiS" obtains expected revenue

min{px + V(A U {x}, i + 1) | x E K} while M obtains expected revenue p., + R(M, A U {y}, i + 1)

where y E K is the element of K chosen by bidder i + 1 when presented with the menu of posted

prices for the elements of J;, 1. The induction hypothesis implies

p, + R(M, A U {y}, i + 1)

py + V(A U {y}, i + 1)

> min{px + V(A U {x}, i + 1) 1x E K},

and this completes the proof.
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Chapter 6

Simple Thresholding Rules

Most existing prophet inequalities for the rank-one case (including ours) are based on especially

simple algorthms: they compute a single threshold T, and accept any element whose weight ex-

ceeds T. We'll call such an algorithm a simple thresholding rule. In this section, we show that the

algorithm of [8] for the matroid secretary problem implies the existence of a constant-competitive

simple thresholding rule for the BOSP when M is uniformly dense I and each F, is identical. How-

ever, we also show that even if we restrict M to be uniformly dense, that no simple thresholding

rule can achieve a constant competitive ratio when the F, are non-identical. It is worth noting the

algorithm of [8] combined with the reduction of [22] also implies a constant competitive algorithm

for all matroids when each F, is identical, although it is no longer a simple thresholding rule.

The problem solved in [8] is called the AO-RA-MK version of the matroid secretary problem.

That is, a matroid M = (U, I) is given as input. An adversary chooses a fixed ordering of the

elements of V, x1,... , x, and n non-negative weights. Then, the weights are randomly permuted

into w 1,... , wn. One at a time, the pair (x;, w1) is revealed to the algorithm, which must decide to

accept or reject xi, and must maintain that the set of accepted elements is always in I. Like in the

BOSP, the goal is to have the expected weight of the accepted set be large relative to the weight of

the maximum weight basis. The following theorem is shown in [8]:

'A matroid is uniformly dense if U E argmaxscy S
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Theorem 2. ([8]) A 40-competitive solution to the AO-RA-MK version of the matroid secretary

problem exists when M is uniformly dense. The algorithm observes the first half of the revealed

weights without accepting anything, sets a single threshold T equal to the (Lrank(M)/4J + 1) '

largest observed weight, and accepts every remaining element whose weight exceeds T (without

creating a dependency in M).

Corollary 1. A 20-compeitive simple thresholding rule exists for the BOSP when each F, is iden-

tical, and M is uniformly dense.

Proof We claim that the following simple thresholding rule gets a competitive ratio of 20 for the

BOSP: Take n independent samples from F, (which is the same for all x) and call them wi, ... , w'.

Let T denote the ([rank(A4)/4J + 1)" largest weight and use threshold T. Clearly, if this method

for choosing T achieves a competitive ratio of 20, then there exists a deterministic choice of T that

achieves a competitive ratio of 20 as well.

Because each F, is identical, we may sample each wi and w' in the following manner: First, take

2n independent samples from F, and call the collection of weights W'. Then, pick a permutation

uniformly at random and permute the weights accordingly (i.e. weights may be swapped between

the samples used to set T as well as the online samples). Fixing any collection of weights W

and taking expectations with respect to the random permutation of the weights, if Vp(O) denotes

the expected value of the prophet and VG(0) denotes the expected value of the gambler using the

simple thresholding rule, we will show that VG(0) _ Vp(')/20. We will prove this by showing that

this is exactly an execution of the algorithm from [8] when the weights are '.

Let M' be a copy of M on a disjoint ground set ', and let M" be the direct sum MUM'. Then

because M is uniformly dense, so is M". Consider any fixed ordering that reveals every element

of V' before revealing any element of V. If we run the algorithm of [8], it is clear that we will

only accept elements of U, as their algorithm does not accept anything in the first half of the input.

It is also clear that their algorithm will choose T in the same manner as our simple thresholding

rule. Therefore, the expected weight achieved by their algorithm in this setting is exactly VG(W').

Finally, it is clear that the expected weight of the maximum-weight basis of M" is exactly 2VP(O).

Because their algorithm achieves a competitive ratio of 40, we must have VG(i) > Vp(O)/20. 0
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Proposition 6. There is no constant-competitive

simple thresholding rule for the BOSP if the F, are non-identical, even if M is uniformly dense.

Proof Let M be the rank-one matroid on two elements, and let M' be the partition matroid with

n = >j ki- 1 disjoint copies of M. Then M' is uniformly dense. For i = 0,..., k, define F; to be

the distribution that samples k' with probability 1. For all 1 i k, pick kk-' copies of M and

let the distribution for one element be F,_1, and the other be F;. Order the elements in increasing

order of weight.

It is clear that the prophet can obtain Z, k-'k' = kk+" by accepting the heavier element from

every partition. It is also clear that whenever we have k' T < ki+ that the value obtained by the

gambler using threshold T is kk + Ej,> kk-jki' <_ 2kk. So no simple thresholding rule can obtain a

competitive ratio better than k/2.
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