48,990 research outputs found

    A Framework for Image Segmentation Using Shape Models and Kernel Space Shape Priors

    Get PDF
    ©2008 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or distribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE. This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.DOI: 10.1109/TPAMI.2007.70774Segmentation involves separating an object from the background in a given image. The use of image information alone often leads to poor segmentation results due to the presence of noise, clutter or occlusion. The introduction of shape priors in the geometric active contour (GAC) framework has proved to be an effective way to ameliorate some of these problems. In this work, we propose a novel segmentation method combining image information with prior shape knowledge, using level-sets. Following the work of Leventon et al., we propose to revisit the use of PCA to introduce prior knowledge about shapes in a more robust manner. We utilize kernel PCA (KPCA) and show that this method outperforms linear PCA by allowing only those shapes that are close enough to the training data. In our segmentation framework, shape knowledge and image information are encoded into two energy functionals entirely described in terms of shapes. This consistent description permits to fully take advantage of the Kernel PCA methodology and leads to promising segmentation results. In particular, our shape-driven segmentation technique allows for the simultaneous encoding of multiple types of shapes, and offers a convincing level of robustness with respect to noise, occlusions, or smearing

    Partial Perception and Approximate Understanding

    Get PDF
    What is discussed in the present paper is the assumption concerning a human narrowed sense of perception of external world and, resulting from this, a basically approximate nature of concepts that are to portray it. Apart from the perceptual vagueness, other types of vagueness are also discussed, involving both the nature of things, indeterminacy of linguistic expressions and psycho-sociological conditioning of discourse actions in one language and in translational contexts. The second part of the paper discusses the concept of conceptual and linguistic resemblance (similarity, equivalence) and discourse approximating strategies and proposes a Resemblance Matrix, presenting ways used to narrow the approximation gap between the interacting parties in monolingual and translational discourses

    Tracking the dynamics of translation and absolute orientation of a sphere in a turbulent flow

    Full text link
    We study the 6-dimensional dynamics -- position and orientation -- of a large sphere advected by a turbulent flow. The movement of the sphere is recorded with 2 high-speed cameras. Its orientation is tracked using a novel, efficient algorithm; it is based on the identification of possible orientation `candidates' at each time step, with the dynamics later obtained from maximization of a likelihood function. Analysis of the resulting linear and angular velocities and accelerations reveal a surprising intermittency for an object whose size lies in the integral range, close to the integral scale of the underlying turbulent flow
    corecore