12,986 research outputs found

    Matrix representations of the inverse problem in the graph model for conflict resolution

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.ejor.2018.03.007 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Given the final individual stability for each decision maker or an equilibrium of interest, a matrix-based method for an inverse analysis is developed in order to calculate all of the possible preferences for each decision maker creating the stability results based on the Nash, general metarationality, symmetric meta rationality, or sequential stability definition of possible human interactions in a conflict. The matrix representations are furnished for the relative preferences, unilateral movements and improvements, as well as joint movements and joint improvements for a conflict having two or more decision makers. Theoretical conditions are derived for specifying required preference relationships in an inverse graph model. Under each of the four solution concepts, a matrix relationship is established to obtain all the available preferences for each decision maker causing the specific state to be an equilibrium. To explain how it can be employed in practice, this new approach to inverse analysis is applied to the Elsipogtog First Nation fracking dispute which took place in the Canadian Province of New Brunswick.National Natural Science Foundation of China [71371098, 71471087, 71301060, 71071077]Nanjing University of Aeronautics and Astronautics [BCXJ15-10]Natural Sciences and Engineering Research Council of CanadaJiangsu Innovation Program for Graduate Education [KYZZ15_0093

    Optimizing an Organized Modularity Measure for Topographic Graph Clustering: a Deterministic Annealing Approach

    Full text link
    This paper proposes an organized generalization of Newman and Girvan's modularity measure for graph clustering. Optimized via a deterministic annealing scheme, this measure produces topologically ordered graph clusterings that lead to faithful and readable graph representations based on clustering induced graphs. Topographic graph clustering provides an alternative to more classical solutions in which a standard graph clustering method is applied to build a simpler graph that is then represented with a graph layout algorithm. A comparative study on four real world graphs ranging from 34 to 1 133 vertices shows the interest of the proposed approach with respect to classical solutions and to self-organizing maps for graphs

    Brain Modularity Mediates the Relation between Task Complexity and Performance

    Full text link
    Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than as a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases and other tasks showing worse performance. A recent theoretical model (Chen & Deem, 2015) suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on more complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of simple and complex behavioral tasks. Complex and simple tasks were defined on the basis of whether they did or did not draw on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on a composite measure combining scores from the complex tasks but a positive correlation with performance on a composite measure combining scores from the simple tasks. These results and theory presented here provide a framework for linking measures of whole brain organization from network neuroscience to cognitive processing.Comment: 47 pages; 4 figure

    Filtering graphs to check isomorphism and extracting mapping by using the Conductance Electrical Model

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/This paper presents a new method of filtering graphs to check exact graph isomorphism and extracting their mapping. Each graph is modeled by a resistive electrical circuit using the Conductance Electrical Model (CEM). By using this model, a necessary condition to check the isomorphism of two graphs is that their equivalent resistances have the same values, but this is not enough, and we have to look for their mapping to find the sufficient condition. We can compute the isomorphism between two graphs in O(N-3), where N is the order of the graph, if their star resistance values are different, otherwise the computational time is exponential, but only with respect to the number of repeated star resistance values, which usually is very small. We can use this technique to filter graphs that are not isomorphic and in case that they are, we can obtain their node mapping. A distinguishing feature over other methods is that, even if there exists repeated star resistance values, we can extract a partial node mapping (of all the nodes except the repeated ones and their neighbors) in O(N-3). The paper presents the method and its application to detect isomorphic graphs in two well know graph databases, where some graphs have more than 600 nodes. (C) 2016 Elsevier Ltd. All rights reserved.Postprint (author's draft

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available
    • …
    corecore