1,936 research outputs found

    The 2D Dependency Pair Framework for Conditional Rewrite Systems¿Part II: Advanced Processors and Implementation Techniques

    Full text link
    [EN] Proving termination of programs in `real-life¿ rewriting-based languages like CafeOBJ, Haskell, Maude, etc., is an important subject of research. To advance this goal, faithfully cap- turing the impact in the termination behavior of the main language features (e.g., conditions in program rules) is essential. In Part I of this work, we have introduced a 2D Dependency Pair Framework for automatically proving termination properties of Conditional Term Rewriting Systems. Our framework relies on the notion of processor as the main practical device to deal with proofs of termination properties of conditional rewrite systems. Processors are used to decompose and simplify the proofs in a divide and conquer approach. With the basic proof framework defined in Part I, here we introduce new processors to further improve the abil- ity of the 2D Dependency Pair Framework to deal with proofs of termination properties of conditional rewrite systems. We also discuss relevant implementation techniques to use such processors in practice.Partially supported by the EU (FEDER) and projects RTI2018-094403-B-C32, PROMETEO/2019/098, SP20180225. Jose Meseguer was supported by grants NSF CNS 13-19109 and NRL N00173-17-1-G002. Salvador Lucas' research was partly developed during a sabbatical year at the UIUC.Lucas Alba, S.; Meseguer, J.; Gutiérrez Gil, R. (2020). The 2D Dependency Pair Framework for Conditional Rewrite Systems¿Part II: Advanced Processors and Implementation Techniques. Journal of Automated Reasoning. 64(8):1611-1662. https://doi.org/10.1007/s10817-020-09542-3S16111662648Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with MU-TERM. In: Proceedings of AMAST’10, LNCS, vol. 6486, pp. 201–208 (2011)Baader, F., Nipkow, T.: Term Rewriting and all That. Cambridge University Press, Cambridge (1998)Barwise, J.: An introduction to first-order logic. In: Barwise, J. (ed.) Handbook of Mathematical Logic. North-Holland, Amsterdam (1977)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. LNCS 4350, Springer, New York (2007)Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. Autom. Reason. 34(4), 325–363 (2006)Dershowitz, N.: A note on simplification orderings. Inf. Process. Lett. 9(5), 212–215 (1979)Durán, F., Lucas, S., Meseguer, J.: MTT: the Maude termination tool (system description). In: Proceedings of IJCAR’08, LNAI, vol. 5195, pp. 313–319 (2008)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: Automatic Termination proofs in the dependency pair framework. In: Proceeding of IJCAR’06, LNAI, vol. 4130, pp. 281–286 (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P.: The dependency pair framework: combining techniques for automated termination proofs. In: Proceedings of LPAR’04, LNAI, vol. 3452, pp. 301–331 (2004)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reason. 37(3), 155–203 (2006)Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Proceedings of TAPSOFT’87, LNCS, vol. 250, pp. 1–22 (1987)Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Proceedings of CADE 2019, LNCS, vol. 11716, pp. 287–299 (2019). Tool page: http://zenon.dsic.upv.es/ages/Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: Proceedings of RTA’04, LNCS, vol. 3091, pp. 249–268 (2004)Hodges, W.: Elementary predicate logic. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, vol. 1, pp. 1–131. Reidel Publishing Company, Dordrecht (1983)Lankford, D.S.: On proving term rewriting systems are noetherian. Technical Report, Louisiana Technological University, Ruston, LA (1979)Lucas, S.: Using Well-founded relations for proving operational termination. J. Autom. Reason. to appear (2020). https://doi.org/10.1007/s10817-019-09514-2Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reason. 60(4), 465–501 (2018)Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95, 446–453 (2005)Lucas, S., Meseguer, J.: Models for logics and conditional constraints in automated proofs of termination. In: Proceedings of AISC’14, LNAI, vol. 8884, pp. 9–20 (2014)Lucas, S., Meseguer, J.: 2D Dependency pairs for proving operational termination of CTRSs. In: Escobar, S., (ed) Proceedings of the 10th International Workshop on Rewriting Logic and its Applications, WRLA’14, LNCS, vol. 8663, pp. 195–212 (2014)Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Methods Program. 86, 236–268 (2017)Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting. J. Log. Algebr. Methods Program. 85(1), 67–97 (2016)Lucas, S., Meseguer, J., Gutiérrez, R.: Extending the 2D DP framework for conditional term rewriting systems. In: Selected Papers from LOPSTR’14, LNCS, vol. 8981, pp. 113–130 (2015)Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018)McCune, W.: Prover9 & Mace4. http://www.cs.unm.edu/~mccune/prover9/ (2005–2010)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002)Schernhammer, F., Gramlich, B.: Characterizing and proving operational termination of deterministic conditional term rewriting systems. J. Log. Algebr. Program. 79, 659–688 (2010)Sternagel, T., Middeldorp, A.: Conditional confluence (system description). In: Proceedings of RTA-TLCA’14, LNCS, vol. f8560, pp. 456–465 (2014)Sternagel, T., Middeldorp, A.: Infeasible conditional critical pairs. In: Proceedings of IWC’15, pp. 13–18 (2014)Thiemann, R.: The DP Framework for Proving Termination of Term Rewriting. PhD Thesis, RWTH Aachen, Technical Report AIB-2007-17 (2007)Thiemann, R., Giesl, J., Schneider-Kamp, P.: Improved modular termination proofs using dependency pairs. In: Proceedings of IJCAR’04, LNAI, vol. 3097, pp. 75–90 (2004)Wang, H.: Logic of many-sorted theories. J. Symb. Log. 17(2), 105–116 (1952

    Relative Termination via Dependency Pairs

    Full text link
    [EN] A term rewrite system is terminating when no infinite reduction sequences are possible. Relative termination generalizes termination by permitting infinite reductions as long as some distinguished rules are not applied infinitely many times. Relative termination is thus a fundamental notion that has been used in a number of different contexts, like analyzing the confluence of rewrite systems or the termination of narrowing. In this work, we introduce a novel technique to prove relative termination by reducing it to dependency pair problems. To the best of our knowledge, this is the first significant contribution to Problem #106 of the RTA List of Open Problems. We first present a general approach that is then instantiated to provide a concrete technique for proving relative termination. The practical significance of our method is illustrated by means of an experimental evaluation.Open access funding provided by Austrian Science Fund (FWF). We would like to thank Nao Hirokawa, Keiichirou Kusakari, and the anonymous reviewers for their helpful comments and suggestions in early stages of this work.Iborra, J.; Nishida, N.; Vidal Oriola, G.; Yamada, A. (2017). Relative Termination via Dependency Pairs. Journal of Automated Reasoning. 58(3):391-411. https://doi.org/10.1007/s10817-016-9373-5391411583Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A \vee ∨ C-termination. In: WRLA 2010, LNCS, vol. 6381, pp. 36–52. Springer (2010)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Bachmair, L., Dershowitz, N.: Critical pair criteria for completion. J. Symb. Comput. 6, 1–18 (1988)Bonacina, M., Hsiang, J.: On fairness of completion-based theorem proving strategies. In: RTA 1991, LNCS, vol. 488, pp. 348–360. Springer (1991)Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)Geser, A.: Relative Termination. Dissertation, Fakultät für Mathematik und Informatik. Universität Passau, Germany (1990)Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: RTA 2001, LNCS, vol. 2051, pp. 93–107. Springer (2001)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: IJCAR 2006, LNCS, vol. 4130, pp. 281–286. Springer (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency Pairs. J. Autom. Reason. 37(3), 155–203 (2006)Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: RTA 2004, LNCS, vol. 3091, pp. 249–268. Springer (2004)Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: AISC 2004, LNAI, vol. 3249, pp. 185–198. Springer (2004)Hirokawa, N., Middeldorp, A.: Tyrolean termination tool: techniques and features. Inf. Comput. 205(4), 474–511 (2007)Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reason. 47(4), 481–501 (2011)Hullot, J.M.: Canonical forms and unification. In: CADE 1980, LNCS, vol. 87, pp. 318–334. Springer (1980)Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination of narrowing. In: LOPSTR 2009, LNCS, vol. 6037, pp. 52–66. Springer (2010)Iborra, J., Nishida, N., Vidal, G., Yamada, A.: Reducing relative termination to dependency pair problems. In: CADE-25, LNAI, vol. 9195, pp. 163–178. Springer (2015)Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980). Unpublished noteKlop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 32, 143–183 (1987)Koprowski, A.: TPA: termination proved automatically. In: RTA 2006, LNCS, vol. 4098, pp. 257–266. Springer (2006)Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: FroCoS 2005, LNCS, vol. 3717, pp. 232–247. Springer (2005)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: RTA 2009, LNCS, vol. 5595, pp. 295–304. Springer (2009)Kusakari, K., Toyama, Y.: On proving AC-termination by AC-dependency pairs. IEICE Trans. Inf. Syst. E84–D(5), 439–447 (2001)Lankford, D.: Canonical algebraic simplification in computational logic. Technical report ATP-25, University of Texas (1975)Marché, C., Urbain, X.: Modular and incremental proofs of AC-termination. J. Symb. Comput. 38(1), 873–897 (2004)Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting systems with extra variables. ENTCS 86(3), 52–69 (2003)Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, London (2002)Slagle, J.: Automated theorem-proving for theories with simplifiers commutativity and associativity. J. ACM 21(4), 622–642 (1974)Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination techniques based on multiset orderings. In: RTA 2012, LIPIcs, vol. 15, pp. 339–354. Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2012)Vidal, G.: Termination of narrowing in left-linear constructor systems. In: FLOPS 2008, LNCS, vol. 4989, pp. 113–129. Springer (2008)Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: RTA-TLCA 2014, LNCS, pp. 466–475. Springer (2014)Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program. 111, 110–134 (2015)Zantema, H.: Termination of term rewriting by semantic labelling. Fundam. Inf. 24(1/2), 89–105 (1995)Zantema, H.: Termination. In: Bezem, M., Klop, J. W., de Vrijer, R. (eds.) Term Rewriting Systems, Cambridge Tracts in Theoretical Computer Science, chap. 6, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003

    Models for logics and conditional constraints in automated proofs of termination

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-13770-4_3Reasoning about termination of declarative programs, which are described by means of a computational logic, requires the definition of appropriate abstractions as semantic models of the logic, and also handling the conditional constraints which are often obtained. The formal treatment of such constraints in automated proofs, often using numeric interpretations and (arithmetic) constraint solving can greatly benefit from appropriate techniques to deal with the conditional (in)equations at stake. Existing results from linear algebra or real algebraic geometry are useful to deal with them but have received only scant attention to date. We investigate the definition and use of numeric models for logics and the resolution of linear and algebraic conditional constraints as unifying techniques for proving termination of declarative programs.Developed during a sabbatical year at UIUC. Supported by projects NSF CNS13-19109, MINECO TIN2010-21062-C02-02 and TIN2013-45732-C4-1-P, and GV BEST/2014/026 and PROMETEO/2011/052.Lucas Alba, S.; Meseguer, J. (2014). Models for logics and conditional constraints in automated proofs of termination. En Artificial Intelligence and Symbolic Computation. Springer Verlag (Germany). 9-20. https://doi.org/10.1007/978-3-319-13770-4_3S920Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving Termination Properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011)Alarcón, B., Lucas, S., Navarro-Marset, R.: Using Matrix Interpretations over the Reals in Proofs of Termination. In: Proc. of PROLE 2009, pp. 255–264 (2009)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. of Aut. Reas. 34(4), 325–363 (2006)Endrullis, J., Waldmann, J., Zantema, H.: Matrix Interpretations for Proving Termination of Term Rewriting. J. of Aut. Reas. 40(2-3), 195–220 (2008)Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal Termination. In: Voronkov, A. (ed.) RTA 2008. LNCS, vol. 5117, pp. 110–125. Springer, Heidelberg (2008)Futatsugi, K., Diaconescu, R.: CafeOBJ Report. AMAST Series. World Scientific (1998)Hudak, P., Peyton-Jones, S.J., Wadler, P.: Report on the Functional Programming Language Haskell: a non–strict, purely functional language. Sigplan Notices 27(5), 1–164 (1992)Lucas, S.: Context-sensitive computations in functional and functional logic programs. Journal of Functional and Logic Programming 1998(1), 1–61 (1998)Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theoretical Informatics and Applications 39(3), 547–586 (2005)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Information Processing Letters 95, 446–453 (2005)Lucas, S., Meseguer, J.: Proving Operational Termination of Declarative Programs in General Logics. In: Proc. of PPDP 2014, pp. 111–122. ACM Digital Library (2014)Lucas, S., Meseguer, J.: 2D Dependency Pairs for Proving Operational Termination of CTRSs. In: Proc. of WRLA 2014. LNCS, vol. 8663 (to appear, 2014)Lucas, S., Meseguer, J., Gutiérrez, R.: Extending the 2D DP Framework for CTRSs. In: Selected papers of LOPSTR 2014. LNCS (to appear, 2015)Meseguer, J.: General Logics. In: Ebbinghaus, H.-D., et al. (eds.) Logic Colloquium 1987, pp. 275–329. North-Holland (1989)Nguyen, M.T., de Schreye, D., Giesl, J., Schneider-Kamp, P.: Polytool: Polynomial interpretations as a basis for termination of logic programs. Theory and Practice of Logic Programming 11(1), 33–63 (2011)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (April 2002)Prestel, A., Delzell, C.N.: Positive Polynomials. In: From Hilbert’s 17th Problem to Real Algebra. Springer, Berlin (2001)Podelski, A., Rybalchenko, A.: A Complete Method for the Synthesis of Linear Ranking Functions. In: Steffen, B., Levi, G. (eds.) VMCAI 2004. LNCS, vol. 2937, pp. 239–251. Springer, Heidelberg (2004)Schrijver, A.: Theory of linear and integer programming. John Wiley & Sons (1986)Zantema, H.: Termination of Context-Sensitive Rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997

    Reducing relative termination to dependency pair problems

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-21401-6_11Relative termination, a generalized notion of termination, has been used in a number of different contexts like proving the confluence of rewrite systems or analyzing the termination of narrowing. In this paper, we introduce a new technique to prove relative termination by reducing it to dependency pair problems. To the best of our knowledge, this is the first significant contribution to Problem #106 of the RTA List of Open Problems. The practical significance of our method is illustrated by means of an experimental evaluation.Germán Vidal is partially supported by the EU (FEDER) and the Spanish Ministerio de Economía y Competitividad under grant TIN2013-44742-C4-R and by the Generalitat Valenciana under grant PROMETEOII201/013. Akihisa Yamadais supported by the Austrian Science Fund (FWF): Y757Iborra, J.; Nishida, N.; Vidal Oriola, GF.; Yamada, A. (2015). Reducing relative termination to dependency pair problems. En Automated Deduction - CADE-25. Springer. 163-178. https://doi.org/10.1007/978-3-319-21401-6_11S163178Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for A \vee C-termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010)Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000)Arts, T., Giesl, J.: A collection of examples for termination of term rewriting using dependency pairs. Technical report AIB-2001-09, RWTH Aachen (2001)Baader, F., Nipkow, T.: Term Rewriting and All That. Cambridge University Press, Cambridge (1998)Dershowitz, N.: Termination of rewriting. J. Symb. Comput. 3(1&2), 69–115 (1987)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008)Geser, A.: Relative termination. Dissertation, Fakultät für Mathematik und Informatik, Universität Passau, Germany (1990)Giesl, J., Kapur, D.: Dependency pairs for equational rewriting. In: Middeldorp, A. (ed.) RTA 2001. LNCS, vol. 2051, pp. 93–107. Springer, Heidelberg (2001)Giesl, J., Schneider-Kamp, P., Thiemann, R.: AProVE 1.2: automatic termination proofs in the dependency pair framework. In: Furbach, U., Shankar, N. (eds.) IJCAR 2006. LNCS (LNAI), vol. 4130, pp. 281–286. Springer, Heidelberg (2006)Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006)Hirokawa, N., Middeldorp, A.: Polynomial interpretations with negative coefficients. In: Buchberger, B., Campbell, J. (eds.) AISC 2004. LNCS (LNAI), vol. 3249, pp. 185–198. Springer, Heidelberg (2004)Hirokawa, N., Middeldorp, A.: Dependency pairs revisited. In: van Oostrom, V. (ed.) RTA 2004. LNCS, vol. 3091, pp. 249–268. Springer, Heidelberg (2004)Hirokawa, N., Middeldorp, A.: Decreasing diagrams and relative termination. J. Autom. Reasoning 47(4), 481–501 (2011)Hullot, J.M.: Canonical forms and unification. CADE-5. LNCS, vol. 87, pp. 318–334. Springer, Heidelberg (1980)Iborra, J., Nishida, N., Vidal, G.: Goal-directed and relative dependency pairs for proving the termination of narrowing. In: De Schreye, D. (ed.) LOPSTR 2009. LNCS, vol. 6037, pp. 52–66. Springer, Heidelberg (2010)Kamin, S., Lévy, J.J.: Two generalizations of the recursive path ordering (1980, unpublished note)Klop, J.W.: Term rewriting systems: a tutorial. Bull. Eur. Assoc. Theor. Comput. Sci. 32, 143–183 (1987)Koprowski, A., Zantema, H.: Proving liveness with fairness using rewriting. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 232–247. Springer, Heidelberg (2005)Koprowski, A.: TPA: termination proved automatically. In: Pfenning, F. (ed.) RTA 2006. LNCS, vol. 4098, pp. 257–266. Springer, Heidelberg (2006)Korp, M., Sternagel, C., Zankl, H., Middeldorp, A.: Tyrolean termination tool 2. In: Treinen, R. (ed.) RTA 2009. LNCS, vol. 5595, pp. 295–304. Springer, Heidelberg (2009)Lankford, D.: Canonical algebraic simplification in computational logic. Technical report ATP-25, University of Texas (1975)Liu, J., Dershowitz, N., Jouannaud, J.-P.: Confluence by critical pair analysis. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 287–302. Springer, Heidelberg (2014)Nishida, N., Sakai, M., Sakabe, T.: Narrowing-based simulation of term rewriting systems with extra variables. ENTCS 86(3), 52–69 (2003)Nishida, N., Vidal, G.: Termination of narrowing via termination of rewriting. Appl. Algebra Eng. Commun. Comput. 21(3), 177–225 (2010)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer-Verlag, London (2002)Thiemann, R., Allais, G., Nagele, J.: On the formalization of termination techniques based on multiset orderings. In: RTA 2012. LIPIcs, vol. 15, pp. 339–354. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012)Vidal, G.: Termination of narrowing in left-linear constructor systems. In: Garrigue, J., Hermenegildo, M.V. (eds.) FLOPS 2008. LNCS, vol. 4989, pp. 113–129. Springer, Heidelberg (2008)Yamada, A., Kusakari, K., Sakabe, T.: Nagoya termination tool. In: Dowek, G. (ed.) RTA-TLCA 2014. LNCS, vol. 8560, pp. 466–475. Springer, Heidelberg (2014)Yamada, A., Kusakari, K., Sakabe, T.: A unified ordering for termination proving. Sci. Comput. Program. (2014). doi: 10.1016/j.scico.2014.07.009Zantema, H.: Termination of term rewriting by semantic labelling. Fundamenta Informaticae 24(1/2), 89–105 (1995)Zantema, H.: Termination. In: Bezem, M., Klop, J.W., de Vrijer, R. (eds.) Term Rewriting Systems. Cambridge Tracts in Theoretical Computer Science, vol. 55, pp. 181–259. Cambridge University Press, Cambridge (2003

    Automatic Synthesis of Logical Models for Order-Sorted First-Order Theories

    Full text link
    [EN] In program analysis, the synthesis of models of logical theories representing the program semantics is often useful to prove program properties. We use order-sorted first- order logic as an appropriate framework to describe the semantics and properties of programs as given theories. Then we investigate the automatic synthesis of models for such theories. We use convex polytopic domains as a flexible approach to associate different domains to different sorts. We introduce a framework for the piecewise definition of functions and predicates. We develop its use with linear expressions (in a wide sense, including linear transformations represented as matrices) and inequalities to specify functions and predicates. In this way, algorithms and tools from linear algebra and arithmetic constraint solving (e.g., SMT) can be used as a backend for an efficient implementation.Partially supported by the EU (FEDER), projects TIN2015-69175-C4-1-R, and GV PROMETEOII/2015/ 013. R. Gutiérrez also supported by Juan de la Cierva Fellowship JCI-2012-13528.Lucas Alba, S.; Gutiérrez Gil, R. (2018). Automatic Synthesis of Logical Models for Order-Sorted First-Order Theories. Journal of Automated Reasoning. 60(4):465-501. https://doi.org/10.1007/s10817-017-9419-3S465501604Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with MU-TERM. In: Proceedings of AMAST’10. LNCS, vol. 6486, pp. 201–208 (2011)Alarcón, B., Lucas, S., Navarro-Marset, R.: Using matrix interpretations over the reals in proofs of termination. In: Proceedings of PROLE’09, pp. 255–264 (2009)Albert, E., Genaim, S., Gutiérrez, R.: A Transformational Approach to Resource Analysis with Typed-Norms. Revised Selected Papers from LOPSTR’13. LNCS, vol. 8901, pp 38–53 (2013)de Angelis, E., Fioravante, F., Pettorossi, A., Proietti, M.: Proving correctness of imperative programs by linearizing constrained Horn clauses. Theory Pract. Log. Program. 15(4–5), 635–650 (2015)de Angelis, E., Fioravante, F., Pettorossi, A., Proietti, M.: Semantics-based generation of verification conditions by program specialization. In: Proceedings of PPDP’15, pp. 91–102. ACM Press, New York (2015)Aoto, T.: Solution to the problem of zantema on a persistent property of term rewriting systems. J. Funct. Log. Program. 2001(11), 1–20 (2001)Barwise, J.: An Introduction to First-Order Logic. In: Barwise, J. (ed.) Handbook of Mathematical Logic. North-Holland, Amsterdam (1977)Barwise, J.: Axioms for Abstract Model Theory. Ann. Math. Log. 7, 221–265 (1974)Bochnak, J., Coste, M., Roy, M.-F.: Real Algebraic Geometry. Springer, Berlin (1998)Birkhoff, G., Lipson, J.D.: Heterogeneous algebras. J. Comb. Theory 8, 115–133 (1970)Bofill, M., Nieuwenhuis, R., Oliveras, A., Rodríguez-Carbonell, E., Rubio, A.: The Barcelogic SMT Solver. In: Proceedings of CAV’08. LNCS, vol. 5123, pp. 294–298 (2008)Bjørner, N., Gurfinkel, A., McMillan, K., Rybalchenko, A.: Horn-clause solvers for program verification. In: Fields of Logic and Computation II—Essays Dedicated to Yuri Gurevich on the Occasion of His 75th Birthday. LNCS, vol. 9300, pp. 24–51 (2015)Bjørner, N., McMillan, K., Rybalchenko, A.: On solving universally quantified horn-clauses. In: Proceedings of SAS’13. LNCS vol. 7935, pp. 105–125 (2013)Bjørner, N., McMillan, K., Rybalchenko, A.: Program verification as satisfiability modulo theories. In: Proceedings of SMT’12, EPiC Series in Computing, vol. 20, pp. 3–11 (2013)Bliss, G.A.: Algebraic Functions. Dover (2004)Bonfante, G., Marion, J.-Y., Moyen, J.-Y.: On Lexicographic Termination Ordering With Space Bound Certifications. Revised Papers from PSI 2001. LNCS, vol. 2244, pp. 482–493 (2001)Boolos, G.S., Burgess, J.P., Jeffrey, R.C.: Computability and Logic, 4th edn. Cambridge University Press, Cambridge (2002)Borralleras, C., Lucas, S., Oliveras, A., Rodríguez, E., Rubio, A.: SAT modulo linear arithmetic for solving polynomial constraints. J. Autom. Reason. 48, 107–131 (2012)Bürckert, H.-J., Hollunder, B., Laux, A.: On Skolemization in constrained logics. Ann. Math. Artif. Intell. 18, 95–131 (1996)Burstall, R.M., Goguen, J.A.: Putting Theories together to make specifications. In: Proceedings of IJCAI’77, pp. 1045–1058. William Kaufmann (1977)Caplain, M.: Finding invariant assertions for proving programs. In: Proceedings of the International Conference on Reliable Software, pp. 165–171. ACM Press, New York (1975)Chang, C.L., Lee, R.C.: Symbolic Logic and Mechanical Theorem Proving. Academic Press, Orlando (1973)Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C.: All About Maude—A High-Performance Logical Framework. LNCS 4350, (2007)Cohn, A.G.: Improving the expressiveness of many sorted logic. In: Proceedings of the National Conference on Artificial Intelligence, pp. 84–87. AAAI Press, Menlo Park (1983)Contejean, E., Marché, C., Tomás, A.-P., Urbain, X.: Mechanically proving termination using polynomial interpretations. J. Autom. Reason. 34(4), 325–363 (2006)Cooper, D.C.: Programs for mechanical program verification. Mach. Intell. 6, 43–59 (1971). Edinburgh University PressCooper, D.C.: Theorem proving in arithmetic without multiplication. Mach. Intell. 7, 91–99 (1972)Courtieu, P., Gbedo, G., Pons, O.: Improved matrix interpretations. In: Proceedings of SOFSEM’10. LNCS, vol. 5901, pp. 283–295 (2010)Cousot, P., Cousot, R., Mauborgne, L.: Logical abstract domains and interpretations. In: The Future of Sofware Engineering, pp. 48–71. Springer, New York (2011)Cousot, P., Halbwachs, N.: Automatic Discovery of linear restraints among variables of a program. In: Conference Record of POPL’78, pp. 84–96. ACM Press, New York (1978)Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order. Cambridge University Press, Cambridge (1990)Elspas, B., Levitt, K.N., Waldinger, R.J., Waksman, A.: An assessment of techniques for proving program correctness. Comput. Surv. 4(2), 97–147 (1972)van Emdem, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming language. J. ACM 23(4), 733–742 (1976)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. In: Proceedings of IJCAR’06. LNCS, vol. 4130, pp. 574–588 (2006)Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reason. 40(2–3), 195–220 (2008)Floyd, R.W.: Assigning meanings to programs. Math. Asp. Comput. Sci. 19, 19–32 (1967)Fuhs, C., Giesl, J., Middeldorp, A., Schneider-Kamp, P., Thiemann, R., Zankl, H.: Maximal termination. In: Proceedings of RTA’08. LNCS, vol. 5117, pp. 110–125 (2008)Fuhs, C., Giesl, J., Parting, M., Schneider-Kamp, P., Swiderski, S.: Proving termination by dependency pairs and inductive theorem proving. J. Autom. Reason. 47, 133–160 (2011)Fuhs, C., Kop, C.: Polynomial interpretations for higher-order rewriting. In: Proceedings of RTA’12. LIPIcs, vol. 15, pp. 176–192 (2012)Futatsugi, K., Diaconescu, R.: CafeOBJ Report. World Scientific, AMAST Series, (1998)Gaboardi, M., Péchoux, R.: On bounding space usage of streams using interpretation analysis. Sci. Comput. Program. 111, 395–425 (2015)Giesl, J., Mesnard, F., Rubio, A., Thiemann, R., Waldmann, J.: Termination competition (termCOMP 2015). In: Proceedings of CADE’15. LNCS, vol. 9195, pp. 105–108 (2015)Giesl, J., Ströder, T., Schneider-Kamp, P., Emmes, F., Fuhs, C.: Symbolic evaluation graphs and term rewriting—a general methodology for analyzing logic programs. In: Proceedings of the PPDP’12, pp. 1–12. ACM Press (2012)Giesl, J., Raffelsieper, M., Schneider-Kamp, P., Swiderski, S., Thiemann, R.: Automated termination proofs for haskell by term rewriting. ACM Trans. Program. Lang. Syst. 33(2), 7 (2011)Gnaedig, I.: Termination of Order-sorted Rewriting. In: Proceedings of ALP’92. LNCS, vol. 632, pp. 37–52 (1992)Goguen, J.A.: Order-Sorted Algebra. Semantics and Theory of Computation Report 14, UCLA (1978)Goguen, J.A., Burstall, R.M.: Some fundamental algebraic tools for the semantics of computation. Part 1: comma categories, colimits, signatures and theories. Theoret. Comput. Sci. 31, 175–209 (1984)Goguen, J.A., Burstall, R.M.: Some fundamental algebraic tools for the semantics of computation. Part 2 signed and abstract theories. Theoret. Comput. Sci. 31, 263–295 (1984)Goguen, J., Meseguer, J.: Models and equality for logical programming. In: Proceedings of TAPSOFT’87. LNCS, vol. 250, pp. 1–22 (1987)Goguen, J.A., Thatcher, J.W., Wagner, E.G.: An initial algebra approach to the specification, correctness and implementation of abstract data types. In: Current Trends in Programming Methodology, pp. 80–149. Prentice Hall (1978)Goguen, J.A., Meseguer, J.: Remarks on remarks on many-sorted equational logic. Sigplan Notices 22(4), 41–48 (1987)Goguen, J., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theoret. Comput. Sci. 105, 217–273 (1992)Goguen, J.A., Winkler, T., Meseguer, J., Futatsugi, K., Jouannaud, J.-P.: Introducing OBJ. In: Goguen, J., Malcolm, G. (eds.) Software Engineering with OBJ: Algebraic Specification in Action. Kluwer, Boston (2000)Grebenshikov, S., Lopes, N.P., Popeea, C., Rybalchenko, A.: Synthesizing software verifiers from proof rules. In: Proceedings of PLDI’12, pp. 405–416. ACM Press (2012)Gulwani, S., Tiwari, A.: Combining Abstract Interpreters. In: Proceedings of PLDI’06, pp. 376–386. ACM Press (2006)Gurfinkel, A., Kahsai, T., Komuravelli, A., Navas, J.A.: The seahorn verification framework. In: Proceedings of CAV’15, Part I. LNCS, vol. 9206, pp. 343–361 (2015)Gutiérrez, R., Lucas, S., Reinoso, P.: A tool for the automatic generation of logical models of order-sorted first-order theories. In: Proceedings of PROLE’16, pp. 215–230 (2016). http://zenon.dsic.upv.es/ages/Hantler, S.L., King, J.C.: An introduction to proving the correctness of programs. ACM Comput. Surv. 8(3), 331–353 (1976)Hayes, P.: A logic of actions. Mach. Intell. 6, 495–520 (1971). Edinburgh University Press, EdinburghHeidergott, B., Olsder, G.J., van der Woude, J.: Max plus at work. A course on max-plus algebra and its applications. In: Modeling and Analysis of Synchronized Systems, Princeton University Press (2006)Hirokawa, N., Moser, G.: Automated complexity analysis based on the dependency pair method. In: Proceedings of IJCAR 2008. LNCS, vol. 5195, pp. 364–379 (2008)Hoare, C.A.R.: An axiomatic basis for computer programming. Commun. ACM 12(10), 576–583 (1969)Hodges, W.: Elementary Predicate Logic. Handbook of Philosophical Logic, vol. 1, pp. 1–131. Reidel Publishing Company (1983)Hodges, W.: A Shorter Model Theory. Cambridge University Press, Cambridge (1997)Hofbauer, D.: Termination proofs by context-dependent interpretation. In: Proceedings of RTA’01. LNCS, vol. 2051, pp. 108–121 (2001)Hofbauer, D.: Termination proofs for ground rewrite systems. interpretations and derivational complexity. Appl. Algebra Eng. Commun. Comput. 12, 21–38 (2001)Hofbauer, D., Lautemann, C.: Termination proofs and the length of derivations. In: Proceedings of RTA’89. LNCS, vol. 355, pp. 167–177 (1989)Hull, T.E., Enright, W.H., Sedgwick, A.E.: The correctness of numerical algorithms. In: Proceedings of PAAP’72, pp. 66–73 (1972)Igarashi, S., London, R.L., Luckham, D.: Automatic program verification I: a logical basis and its implementation. Acta Inform. 4, 145–182 (1975)Iwami, M.: Persistence of termination of term rewriting systems with ordered sorts. In: Proceedings of 5th JSSST Workshop on Programming and Programming Languages, Shizuoka, Japan, pp. 47–56. (2003)Iwami, M.: Persistence of termination for non-overlapping term rewriting systems. In: Proceedings of Algebraic Systems, Formal Languages and Conventional and Unconventional Computation Theory, Kokyuroku RIMS, University of Kyoto, vol. 1366, pp. 91–99 (2004)Katz, S., Manna, Z.: Logical analysis of programs. Commun. ACM 19(4), 188–206 (1976)Langford, C.H.: Review: Über deduktive Theorien mit mehreren Sorten von Grunddingen. J. Symb. Log. 4(2), 98 (1939)Lankford, D.S.: Some approaches to equality for computational logic: a survey and assessment. Memo ATP-36, Automatic Theorem Proving Project, University of Texas, Austin, TXLondon, R.L.: The current state of proving programs correct. In: Proceedings of ACM’72, vol. 1, pp. 39–46. ACM (1972)Lucas, S.: Polynomials over the reals in proofs of termination: from theory to practice. RAIRO Theor. Inform. Appl. 39(3), 547–586 (2005)Lucas, S.: Synthesis of models for order-sorted first-order theories using linear algebra and constraint solving. Electron. Proc. Theor. Comput. Sci. 200, 32–47 (2015)Lucas, S.: Use of logical models for proving operational termination in general logics. In: Selected Papers from WRLA’16. LNCS, vol. 9942, pp. 1–21 (2016)Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inform. Proces. Lett. 95, 446–453 (2005)Lucas, S., Meseguer, J.: Models for logics and conditional constraints in automated proofs of termination. In: Proceedings of AISC’14. LNAI, vol. 8884, pp. 7–18 (2014)Lucas, S., Meseguer, J.: Order-sorted dependency pairs. In: Proceedings of PPDP’08 , pp. 108–119. ACM Press (2008)Lucas, S., Meseguer, J.: Proving operational termination of declarative programs in general logics. In: Proceedings of PPDP’14, pp. 111–122. ACM Digital Library (2014)Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebr. Methods Program. 86, 236–268 (2017)Manna, Z.: The correctness of programs. J. Comput. Syst. Sci. 3, 119–127 (1969)Manna, Z.: Properties of programs and the first-order predicate calculus. J. ACM 16(2), 244–255 (1969)Manna, Z.: Termination of programs represented as interpreted graphs. In: Proceedings of AFIPS’70, pp. 83–89 (1970)Manna, Z., Ness, S.: On the termination of Markov algorithms. In: Proceedings of the Third Hawaii International Conference on System Science, pp. 789–792 (1970)Manna, Z., Pnueli, A.: Formalization of properties of functional programs. J. ACM 17(3), 555–569 (1970)Marion, Y.-I., Péchoux, R.: Sup-interpretations, a semantic method for static analysis of program resources. ACM Trans. Comput. Log. 10(4), 27 (2009)Martí-Oliet, N., Meseguer, J., Palomino, M.: Theoroidal maps as algebraic simulations. Revised Selected Papers from WADT’04. LNCS, vol. 3423, pp. 126–143 (2005)McCarthy, J.: Recursive functions of symbolic expressions and their computation by machine. Part I. Commun. ACM 3(4), 184–195 (1960)Meseguer, J.: General logics. In: Ebbinghaus, H.D., et al. (eds.) Logic Colloquium’87, pp. 275–329. North-Holland (1989)Meseguer, J., Skeirik, S.: Equational formulas and pattern operations in initial order-sorted algebras. Revised Selected Papers from LOPSTR’15. LNCS, vol. 9527, pp. 36–53 (2015)Middeldorp, A.: Matrix interpretations for polynomial derivational complexity of rewrite systems. In: Proceedings of LPAR’12. LNCS, vol. 7180, p. 12 (2012)Monin, J.-F.: Understanding Formal Methods. Springer, London (2003)Montenegro, M., Peña, R., Segura, C.: Space consumption analysis by abstract interpretation: inference of recursive functions. Sci. Comput. Program. 111, 426–457 (2015)de Moura, L., Bjørner, N.: Satisfiability modulo theories: introduction and applications. Commun. ACM 54(9), 69–77 (2011)Naur, P.: Proof of algorithms by general snapshots. Bit 6, 310–316 (1966)Neurauter, F., Middeldorp, A.: Revisiting matrix interpretations for proving termination of term rewriting. In: Proceedings of RTA’11. LIPICS, vol. 10, pp. 251–266 (2011)Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer, New York (2002)Ölveczky, P.C., Lysne, O.: Order-sorted termination: the unsorted way. In: Proceedings of ALP’96. LNCS, vol. 1139, pp. 92–106 (1996)Otto, C., Brockschmidt, M., von Essen, C., Giesl, J.: Automated termination analysis of java bytecode by term rewriting. In: Proceedings of RTA’10. LIPICS, vol. 6, pp. 259–276 (2010)Péchoux, R.: Synthesis of sup-interpretations: a survey. Theoret. Comput. Sci. 467, 30–52 (2013)Podelski, A., Rybalchenko, A.: Transition invariants. In: IEEE Computer Society Proceedings of LICS’04, pp. 32–41 (2004)Prestel, A., Delzell, C.N.: Positive Polynomials. From Hilbert’s 17th Problem to Real Algebra. Springer, Berlin (2001)Robinson, D.J.S.: A Course in Linear Algebra with Applications, 2nd edn. World Scientific Publishing, Co, Singapore (2006)Rümmer, P., Hojjat, H., Kuncak, V.: Disjunctive interpolants for horn-clause verification. In: Proceedings of CAV’13, vol. 8044, pp. 347–363 (2013)Schrijver, A.: Theory of Linear and Integer Programming. Wiley, Amsterdam (1986)Schmidt, A.: Über deduktive Theorien mit mehreren Sorten von Grunddingen. Matematische Annalen 115(4), 485–506 (1938)Schmidt-Schauss, M.: Computational Aspects Of An Order-Sorted Logic With Term Declarations. PhD Thesis, Fachbereich Informatik der Universität Kaiserslautern (1988)Shapiro, S.: Foundations without Foundationalism: A Case for Second-Order Logic. Clarendon Press, New York (1991)Shostak, R.E.: A practical decision procedure for arithmetic with function symbols. J. ACM 26(2), 351–360 (1979)Smullyan, R.M.: Theory of Formal Systems. Princeton University Press, Princeton (1961)Tarski, A.: A Decision Method for Elementary Algebra and Geometry, 2nd edn. University of California Press, Berkeley (1951)Toyama, Y.: Counterexamples to termination for the direct sum of term rewriting systems. Inform. Process. Lett. 25, 141–143 (1987)Turing, A.M.: Checking a large routine. In: Report of a Conference on High Speed Automatic Calculating Machines, University Mathematics Laboratory, Cambridge, pp. 67–69 (1949)Urban, C.: The abstract domain of segmented ranking functions. In: Proceeding of SAS’13. LNCS, vol. 7935, pp. 43–62 (2013)Urban, C., Gurfinkel, A., Kahsai, T.: Synthesizing ranking functions from bits and pieces. In: Proceedings of TACAS’16. LNCS, vol. 9636, pp. 54–70 (2016)Waldmann, J.: Matrix interpretations on polyhedral domains. In: Proceedings of RTA’15. LIPICS, vol. 26, pp. 318–333 (2015)Waldmann, J., Bau, A., Noeth, E.: Matchbox termination prover. http://github.com/jwaldmann/matchbox/ (2014)Walther, C.: A mechanical solution of schubert’s steamroller by many-sorted resolution. Aritif. Intell. 26, 217–224 (1985)Wang, H.: Logic of many-sorted theories. J. Symb. Logic 17(2), 105–116 (1952)Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17, 23–50 (1994

    MU-TERM: Verify Termination Properties Automatically (System Description)

    Full text link
    [EN] We report on the new version of mu-term, a tool for proving termination properties of variants of rewrite systems, including conditional, context-sensitive, equational, and order-sorted rewrite systems. We follow a unified logic-based approach to describe rewriting computations. The automatic generation of logical models for suitable first-order theories and formulas provide a common basis to implement the proofs.Supported by EU (FEDER), and projects RTI2018-094403-B-C32,PROMETEO/ 2019/098, and SP20180225. Also by INCIBE program "Ayudas para la excelencia de los equipos de investigación avanzada en ciberseguridad" (Raul Gutiérrez).Gutiérrez Gil, R.; Lucas Alba, S. (2020). MU-TERM: Verify Termination Properties Automatically (System Description). Springer Nature. 436-447. https://doi.org/10.1007/978-3-030-51054-1_28S436447Alarcón, B., et al.: Improving context-sensitive dependency pairs. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008. LNCS (LNAI), vol. 5330, pp. 636–651. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89439-1_44Alarcón, B., Gutiérrez, R., Lucas, S.: Context-sensitive dependency pairs. Inf. Comput. 208(8), 922–968 (2010). https://doi.org/10.1016/j.ic.2010.03.003Alarcón, B., Gutiérrez, R., Lucas, S., Navarro-Marset, R.: Proving termination properties with mu-term. In: Johnson, M., Pavlovic, D. (eds.) AMAST 2010. LNCS, vol. 6486, pp. 201–208. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17796-5_12Alarcón, B., Lucas, S., Meseguer, J.: A dependency pair framework for AC{A} \vee {C}-termination. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 35–51. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_4Arts, T., Giesl, J.: Termination of term rewriting using dependency pairs. Theor. Comput. Sci. 236(1–2), 133–178 (2000). https://doi.org/10.1016/S0304-3975(99)00207-8Clavel, M., et al.: All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71999-1Endrullis, J., Waldmann, J., Zantema, H.: Matrix interpretations for proving termination of term rewriting. J. Autom. Reasoning 40(2–3), 195–220 (2008). https://doi.org/10.1007/s10817-007-9087-9Giesl, J., Arts, T.: Verification of erlang processes by dependency pairs. Appl. Algebra Eng. Commun. Comput. 12(1/2), 39–72 (2001). https://doi.org/10.1007/s002000100063Giesl, J., Thiemann, R., Schneider-Kamp, P.: Proving and disproving termination of higher-order functions. In: Gramlich, B. (ed.) FroCoS 2005. LNCS (LNAI), vol. 3717, pp. 216–231. Springer, Heidelberg (2005). https://doi.org/10.1007/11559306_12Giesl, J., Thiemann, R., Schneider-Kamp, P., Falke, S.: Mechanizing and improving dependency pairs. J. Autom. Reasoning 37(3), 155–203 (2006). https://doi.org/10.1007/s10817-006-9057-7Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for multiple inheritance, overloading, exceptions and partial operations. Theor. Comput. Sci. 105(2), 217–273 (1992). https://doi.org/10.1016/0304-3975(92)90302-VGutiérrez, R., Lucas, S.: Function calls at frozen positions in termination of context-sensitive rewriting. In: Martí-Oliet, N., Ölveczky, P.C., Talcott, C. (eds.) Logic, Rewriting, and Concurrency. LNCS, vol. 9200, pp. 311–330. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23165-5_15Gutiérrez, R., Lucas, S.: Proving termination in the context-sensitive dependency pair framework. In: Ölveczky, P.C. (ed.) WRLA 2010. LNCS, vol. 6381, pp. 18–34. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16310-4_3Gutiérrez, R., Lucas, S.: Automatic generation of logical models with AGES. In: Fontaine, P. (ed.) CADE 2019. LNCS (LNAI), vol. 11716, pp. 287–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29436-6_17Gutiérrez, R., Lucas, S.: Automatically proving and disproving feasibility conditions. In: Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNAI, vol. 12167, pp. 416–435. Springer, Heidelberg (2020)Lucas, S.: Context-sensitive computations in functional and functional logic programs. J. Funct. Log. Program. 1998(1), 1–61 (1998). http://danae.uni-muenster.de/lehre/kuchen/JFLP/articles/1998/A98-01/A98-01.htmlLucas, S.: Context-sensitive rewriting strategies. Inf. Comput. 178(1), 294–343 (2002). https://doi.org/10.1006/inco.2002.3176Lucas, S.: Proving semantic properties as first-order satisfiability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103174Lucas, S., Gutiérrez, R.: Automatic synthesis of logical models for order-sorted first-order theories. J. Autom. Reasoning 60(4), 465–501 (2017). https://doi.org/10.1007/s10817-017-9419-3Lucas, S., Gutiérrez, R.: Use of logical models for proving infeasibility in term rewriting. Inf. Process. Lett. 136, 90–95 (2018). https://doi.org/10.1016/j.ipl.2018.04.002Lucas, S., Marché, C., Meseguer, J.: Operational termination of conditional term rewriting systems. Inf. Process. Lett. 95(4), 446–453 (2005). https://doi.org/10.1016/j.ipl.2005.05.002Lucas, S., Meseguer, J.: Order-sorted dependency pairs. In: Antoy, S., Albert, E. (eds.) Proceedings of the 10th International ACM SIGPLAN Conference on Principles and Practice of Declarative Programming, 15–17 July 2008, Valencia, Spain, pp. 108–119. ACM (2008). https://doi.org/10.1145/1389449.1389463Lucas, S., Meseguer, J.: Dependency pairs for proving termination properties of conditional term rewriting systems. J. Log. Algebraic Methods Program. 86(1), 236–268 (2017). https://doi.org/10.1016/j.jlamp.2016.03.003Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems. Part I: Definition and basic processors. J. Comput. Syst. Sci. 96, 74–106 (2018). https://doi.org/10.1016/j.jcss.2018.04.002Lucas, S., Meseguer, J., Gutiérrez, R.: The 2D dependency pair framework for conditional rewrite systems—part II: advanced processors and implementation techniques. J. Autom. Reasoning (2020). https://doi.org/10.1007/s10817-020-09542-3McCune, W.: Prover9 & Mace4. Technical report (2005–2010). http://www.cs.unm.edu/~mccune/prover9/Ohlebusch, E.: Advanced Topics in Term Rewriting. Springer (2002). https://doi.org/10.1007/978-1-4757-3661-8 . http://www.springer.com/computer/swe/book/978-0-387-95250-5Ölveczky, P.C., Lysne, O.: Order-sorted termination: the unsorted way. In: Hanus, M., Rodríguez-Artalejo, M. (eds.) ALP 1996. LNCS, vol. 1139, pp. 92–106. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61735-3_6Zantema, H.: Termination of term rewriting: interpretation and type elimination. J. Symb. Comput. 17(1), 23–50 (1994). https://doi.org/10.1006/jsco.1994.1003Zantema, H.: Termination of context-sensitive rewriting. In: Comon, H. (ed.) RTA 1997. LNCS, vol. 1232, pp. 172–186. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62950-5_6

    12th International Workshop on Termination (WST 2012) : WST 2012, February 19–23, 2012, Obergurgl, Austria / ed. by Georg Moser

    Get PDF
    This volume contains the proceedings of the 12th International Workshop on Termination (WST 2012), to be held February 19–23, 2012 in Obergurgl, Austria. The goal of the Workshop on Termination is to be a venue for presentation and discussion of all topics in and around termination. In this way, the workshop tries to bridge the gaps between different communities interested and active in research in and around termination. The 12th International Workshop on Termination in Obergurgl continues the successful workshops held in St. Andrews (1993), La Bresse (1995), Ede (1997), Dagstuhl (1999), Utrecht (2001), Valencia (2003), Aachen (2004), Seattle (2006), Paris (2007), Leipzig (2009), and Edinburgh (2010). The 12th International Workshop on Termination did welcome contributions on all aspects of termination and complexity analysis. Contributions from the imperative, constraint, functional, and logic programming communities, and papers investigating applications of complexity or termination (for example in program transformation or theorem proving) were particularly welcome. We did receive 18 submissions which all were accepted. Each paper was assigned two reviewers. In addition to these 18 contributed talks, WST 2012, hosts three invited talks by Alexander Krauss, Martin Hofmann, and Fausto Spoto

    CoLoR: a Coq library on well-founded rewrite relations and its application to the automated verification of termination certificates

    Get PDF
    Termination is an important property of programs; notably required for programs formulated in proof assistants. It is a very active subject of research in the Turing-complete formalism of term rewriting systems, where many methods and tools have been developed over the years to address this problem. Ensuring reliability of those tools is therefore an important issue. In this paper we present a library formalizing important results of the theory of well-founded (rewrite) relations in the proof assistant Coq. We also present its application to the automated verification of termination certificates, as produced by termination tools

    Proving Termination of Graph Transformation Systems using Weighted Type Graphs over Semirings

    Full text link
    We introduce techniques for proving uniform termination of graph transformation systems, based on matrix interpretations for string rewriting. We generalize this technique by adapting it to graph rewriting instead of string rewriting and by generalizing to ordered semirings. In this way we obtain a framework which includes the tropical and arctic type graphs introduced in a previous paper and a new variant of arithmetic type graphs. These type graphs can be used to assign weights to graphs and to show that these weights decrease in every rewriting step in order to prove termination. We present an example involving counters and discuss the implementation in the tool Grez
    corecore