27,560 research outputs found

    Statistical mechanics of voting

    Full text link
    Decision procedures aggregating the preferences of multiple agents can produce cycles and hence outcomes which have been described heuristically as `chaotic'. We make this description precise by constructing an explicit dynamical system from the agents' preferences and a voting rule. The dynamics form a one dimensional statistical mechanics model; this suggests the use of the topological entropy to quantify the complexity of the system. We formulate natural political/social questions about the expected complexity of a voting rule and degree of cohesion/diversity among agents in terms of random matrix models---ensembles of statistical mechanics models---and compute quantitative answers in some representative cases.Comment: 9 pages, plain TeX, 2 PostScript figures included with epsf.tex (ignore the under/overfull \vbox error messages

    Riemannian-geometric entropy for measuring network complexity

    Full text link
    A central issue of the science of complex systems is the quantitative characterization of complexity. In the present work we address this issue by resorting to information geometry. Actually we propose a constructive way to associate to a - in principle any - network a differentiable object (a Riemannian manifold) whose volume is used to define an entropy. The effectiveness of the latter to measure networks complexity is successfully proved through its capability of detecting a classical phase transition occurring in both random graphs and scale--free networks, as well as of characterizing small Exponential random graphs, Configuration Models and real networks.Comment: 15 pages, 3 figure

    Functional Complexity Measure for Networks

    Full text link
    We propose a complexity measure which addresses the functional flexibility of networks. It is conjectured that the functional flexibility is reflected in the topological diversity of the assigned graphs, resulting from a resolution of their vertices and a rewiring of their edges under certain constraints. The application will be a classification of networks in artificial or biological systems, where functionality plays a central role.Comment: 11 pages, LaTeX2e, 5 PostScript figure

    One-class classifiers based on entropic spanning graphs

    Get PDF
    One-class classifiers offer valuable tools to assess the presence of outliers in data. In this paper, we propose a design methodology for one-class classifiers based on entropic spanning graphs. Our approach takes into account the possibility to process also non-numeric data by means of an embedding procedure. The spanning graph is learned on the embedded input data and the outcoming partition of vertices defines the classifier. The final partition is derived by exploiting a criterion based on mutual information minimization. Here, we compute the mutual information by using a convenient formulation provided in terms of the α\alpha-Jensen difference. Once training is completed, in order to associate a confidence level with the classifier decision, a graph-based fuzzy model is constructed. The fuzzification process is based only on topological information of the vertices of the entropic spanning graph. As such, the proposed one-class classifier is suitable also for data characterized by complex geometric structures. We provide experiments on well-known benchmarks containing both feature vectors and labeled graphs. In addition, we apply the method to the protein solubility recognition problem by considering several representations for the input samples. Experimental results demonstrate the effectiveness and versatility of the proposed method with respect to other state-of-the-art approaches.Comment: Extended and revised version of the paper "One-Class Classification Through Mutual Information Minimization" presented at the 2016 IEEE IJCNN, Vancouver, Canad
    • …
    corecore