513 research outputs found

    Matrices generated by semilattices

    Get PDF
    AbstractWe give a characterization of 0–1 matrices M which are generated by semilattices in the way that Mij = 0 if and only if xi Λ xj = 0̂ where xi,xj, 0̂ are elements in a semilattice

    Approximately multiplicative maps from weighted semilattice algebras

    Get PDF
    We investigate which weighted convolution algebras ω1(S)\ell^1_\omega(S), where SS is a semilattice, are AMNM in the sense of Johnson (JLMS, 1986). We give an explicit example where this is not the case. We show that the unweighted examples are all AMNM, as are all ω1(S)\ell^1_\omega(S) where SS has either finite width or finite height. Some of these finite-width examples are isomorphic to function algebras studied by Feinstein (IJMMS, 1999). We also investigate when (ω1(S),M2)(\ell^1_\omega(S),{\bf M}_2) is an AMNM pair in the sense of Johnson (JLMS, 1988), where M2{\bf M}_2 denotes the algebra of 2-by-2 complex matrices. In particular, we obtain the following two contrasting results: (i) for many non-trivial weights on the totally ordered semilattice Nmin{\bf N}_{\min}, the pair (ω1(Nmin),M2)(\ell^1_\omega({\bf N}_{\min}),{\bf M}_2) is not AMNM; (ii) for any semilattice SS, the pair (1(S),M2)(\ell^1(S),{\bf M}_2) is AMNM. The latter result requires a detailed analysis of approximately commuting, approximately idempotent 2×22\times 2 matrices.Comment: AMS-LaTeX. v3: 31 pages, additional minor corrections to v2. Final version, to appear in J. Austral. Math. Soc. v4: small correction of mis-statement at start of Section 4 (this should also be fixed in the journal version

    Stone-type representations and dualities for varieties of bisemilattices

    Full text link
    In this article we will focus our attention on the variety of distributive bisemilattices and some linguistic expansions thereof: bounded, De Morgan, and involutive bisemilattices. After extending Balbes' representation theorem to bounded, De Morgan, and involutive bisemilattices, we make use of Hartonas-Dunn duality and introduce the categories of 2spaces and 2spaces^{\star}. The categories of 2spaces and 2spaces^{\star} will play with respect to the categories of distributive bisemilattices and De Morgan bisemilattices, respectively, a role analogous to the category of Stone spaces with respect to the category of Boolean algebras. Actually, the aim of this work is to show that these categories are, in fact, dually equivalent
    corecore