44,477 research outputs found

    Foundations of quantum programming

    Full text link
    Progress in the techniques of quantum devices has made people widely believe that large-scale and functional quantum computers will be eventually built. By then, super-powered quantum computer will solve many problems affecting economic and social life that cannot be addressed by classical computing. However, our experiences with classical computing suggest that once quantum computers become available in the future, quantum software will play a key role in exploiting their power, and quantum software market will even be much larger than quantum hardware market. Unfortunately, today's software development techniques are not suited to quantum computers due to the essential differences between the nature of the classical world and that of the quantum world. To lay a solid foundation for tomorrow's quantum software industry, it is critically essential to pursue systematic research into quantum programming methodology and techniques. © 2010 Springer-Verlag

    OpenFermion: The Electronic Structure Package for Quantum Computers

    Get PDF
    Quantum simulation of chemistry and materials is predicted to be an important application for both near-term and fault-tolerant quantum devices. However, at present, developing and studying algorithms for these problems can be difficult due to the prohibitive amount of domain knowledge required in both the area of chemistry and quantum algorithms. To help bridge this gap and open the field to more researchers, we have developed the OpenFermion software package (www.openfermion.org). OpenFermion is an open-source software library written largely in Python under an Apache 2.0 license, aimed at enabling the simulation of fermionic models and quantum chemistry problems on quantum hardware. Beginning with an interface to common electronic structure packages, it simplifies the translation between a molecular specification and a quantum circuit for solving or studying the electronic structure problem on a quantum computer, minimizing the amount of domain expertise required to enter the field. The package is designed to be extensible and robust, maintaining high software standards in documentation and testing. This release paper outlines the key motivations behind design choices in OpenFermion and discusses some basic OpenFermion functionality which we believe will aid the community in the development of better quantum algorithms and tools for this exciting area of research.Comment: 22 page

    An integrated software system for geometric correction of LANDSAT MSS imagery

    Get PDF
    A system for geometrically correcting LANDSAT MSS imagery includes all phases of processing, from receiving a raw computer compatible tape (CCT) to the generation of a corrected CCT (or UTM mosaic). The system comprises modules for: (1) control of the processing flow; (2) calculation of satellite ephemeris and attitude parameters, (3) generation of uncorrected files from raw CCT data; (4) creation, management and maintenance of a ground control point library; (5) determination of the image correction equations, using attitude and ephemeris parameters and existing ground control points; (6) generation of corrected LANDSAT file, using the equations determined beforehand; (7) union of LANDSAT scenes to produce and UTM mosaic; and (8) generation of output tape, in super-structure format

    A software development framework for context-aware systems

    Get PDF
    The beginning of the new century has been characterised by the miniaturisation and accessibility of electronics, which has enabled its widespread usage around the world. This technological background is progressively materialising the future of the remainder of the century, where industry-based societies have been moving towards information-based societies. Information from users and their environment is now pervasively available, and many new research areas have born in order to shape the potential of such advancements. Particularly, context-aware computing is at the core of many areas such as Intelligent Environments, Ambient Intelligence, Ambient Assisted Living or Pervasive Computing. Embedding contextual awareness into computers promises a fundamental enhancement in the interaction between computers and humans. While traditional computers require explicit commands in order to operate, contextually aware computers could also use information from the background and the users to provide services according to the situation. But embedding this contextual awareness has many unresolved challenges. The area of context-aware computing has attracted the interest of many researchers that have presented different approaches to solve particular aspects on the implementation of this technology. The great corpus of research in this direction indicates that context-aware systems have different requirements than those of traditional computing. Approaches for developing context-aware systems are typically scattered or do not present compatibility with other approaches. Existing techniques for creating context-aware systems also do not focus on covering all the different stages of a typical software development life-cycle. The contribution of this thesis is towards the foundation layers of a more holistic approach, that tries to facilitate further research on the best techniques for developing these kinds of systems. The approach presents a framework to support the development not only with methodologies, but with open-source tools that facilitate the implementation of context-aware systems in mobile and stationary platforms

    Architecture independent environment for developing engineering software on MIMD computers

    Get PDF
    Engineers are constantly faced with solving problems of increasing complexity and detail. Multiple Instruction stream Multiple Data stream (MIMD) computers have been developed to overcome the performance limitations of serial computers. The hardware architectures of MIMD computers vary considerably and are much more sophisticated than serial computers. Developing large scale software for a variety of MIMD computers is difficult and expensive. There is a need to provide tools that facilitate programming these machines. First, the issues that must be considered to develop those tools are examined. The two main areas of concern were architecture independence and data management. Architecture independent software facilitates software portability and improves the longevity and utility of the software product. It provides some form of insurance for the investment of time and effort that goes into developing the software. The management of data is a crucial aspect of solving large engineering problems. It must be considered in light of the new hardware organizations that are available. Second, the functional design and implementation of a software environment that facilitates developing architecture independent software for large engineering applications are described. The topics of discussion include: a description of the model that supports the development of architecture independent software; identifying and exploiting concurrency within the application program; data coherence; engineering data base and memory management
    corecore